
Mosaic: Sketch-Based Interface for Creating Digital Decorative Mosaics

Rinat Abdrashitov ‡

University of Toronto
Emilie Guy ∗

Telecom ParisTech,
CNRS LTCI, Institut Mines Telecom

JiaXian Yao †

University of California,
Berkeley

Karan Singh ‡

University of Toronto

(a) (b) (c) (d)
Figure 1: Creative workflow in Mosaic: (a) Two mosaic tile pieces of different size and shape are sketched. The first and second tiles are
laid out along sketched paths to create part of the body and head respectively, the pieces placed and deformed automatically, to maintain a
uniform grout. (b) More tiles are cloned to complete the mosaic. (c) Sketch strokes are then used to color the tiles and the grout area. (d) A
peacock, created in 40 min.

Abstract

Mosaic is a sketch-based system that simplifies and automates the
creation of digital decorative mosaics from scratch. The creation of
each tile piece of unique shape, color and orientation, in a complex
mosaic is a tedious process. Our core contribution is two-fold: first,
we present a new tile growing algorithm, that balances the shape
and placement of tiles with need for uniform grout; second, we de-
velop a suite of sketch-based tools on top of this algorithm to create
and clone tiles and tile patterns along sketched paths, and color
them efficiently. A user evaluation shows that our system makes
the creation of mosaics fast and accessible to a broad audience.

CR Categories: I.3.3 [Computer Graphics]: Curve Generation

Keywords: sketching, curves, mosaic, decoration

1 Introduction

Mosaic is the art of creating pictures or patterns by arranging small
colored pieces of material, such as stone, tile, glass or even pa-
per, together. Mimicking the alignment and packing of elements in

∗emilie.guy@telecom-paristech.fr
†jiaxian.yao@eecs.berkeley.edu
‡(rinat|karan)@dgp.toronto.edu

nature, mosaics have applications in architecture, design, furniture,
jewellery and children’s craft [Kelly 2004]. One of the most ancient
and inventive forms of surface decoration, mosaic design is equally
ubiquitous today. They have been found across the entire areas of
the Roman Empire, in the Middle East and Western Asia, exhibit-
ing and enormous range of genres and styles [Massey and Slater
1999]. Historically, mosaics were popularized by the inexpensive
availability of uniform tiled pieces as well as scrap and found ma-
terial. At present, increasingly common 2D routing devices such
as laser cutters have further eased the ability to fabricate custom
pieces for use in mosaic art.

Creating a mosaic both physically, or as a digital image, from
scratch can be a painstaking process. Standard commercial drawing
applications like Illustrator, Photoshop, or Autodesk Sketchbook
require users to tediously manipulate individual pieces, and do not
capture the higher level structure of a mosaic needed to facilitate
rapid creation and coloring of large numbers of mosaic pieces.

Our system is inspired by two observations relevant to modern mo-
saic construction: variability of mosaic pieces and the importance
of uniform grout. As observed by practical texts on mosaic de-
sign [Kelly 2004], while individual mosaic tiles locally define an
image, their arrangement defines the visual flow within the image.
While mosaics have traditionally been composed of regular tiles,
variations in otherwise regular mosaic pieces can positively im-
pact the aesthetic of an image, as with patterns observed in nature
[Turk 1991; Pedersen and Singh 2006]. The space in-between tiles,
known as grout, defines a negative space within which the mosaic
is embedded. Professional mosaics strive to maintain a uniformly
spaced grout throughout the image, as variations in grout draw vi-
sual attention away from the mosaic itself. We present an algorithm
that grows mosaic pieces to balance the needs of uniform grout and
regular tiles.

There is a large body of research on and related to digital mosaic
creation [Battiato et al. 2007], focused on a range of styles with
monikers such as crystallization, ancient, photo and puzzle mosaics
(Figure 2). The majority of these approaches are largely automatic,
numerically optimizing a tiling fitness function relative to an input
image, with little user interaction. We instead focus on the creative
process, allowing users to bring their own style to bear in creating
mosaics by interactive sketching on a blank canvas, or tracing over
reference imagery.

Figure 2: Mosaic image (right) created from the source image (left)
using voronoi diagrams [Dobashi et al. 2002].

Our system, Mosaic, uses a new tile growing algorithm that simpli-
fies the creation and placement of uniquely shaped mosaic pieces,
with uniform grout. Our algorithm iteratively, expands and moves
each mosaic tile from an initial centroid location, subject to forces
that attempt to preserve tile-shape and repel other tiles to maintain
uniform grout. Even a single mosaic piece drawn by the user is
enough to tile a creation. The system provides sketch-based tools
to create a mosaic accurately piece by piece, as well as to automat-
ically clone and fill regions or paths with multiple pieces. Sketch-
based coloring of multiple pieces at once with the same color or
creating a color gradients is also supported. Users have full interac-
tive control to impose their own style over the created mosaics.

In a typical workflow, the user first creates a palette of few mosaic
pieces by drawing tiles of different shape and size (Figure 1a), and
then outlines the main features of the mosaic using a few strokes.
These stroke gestures allow the user to quickly clone mosaic pieces
to fill space in desired patterns, leaving the tedious aspects of tile
packing to our tile growing algorithm (Figure 1b). Using similar
stroke gestures the user can also color mosaic pieces to create the
final result (Figure 1c, d). Using Mosaic, first-time users are able to
create complex and original mosaics within minutes.

Our technical contribution is twofold:

1. A tile growing algorithm for the creation of mosaics with uni-
form grout.

2. A suite of sketch-based tools that build upon the algorithm, to
clone and color mosaic images from scratch.

The remainder of this paper is structured as follows. We discuss
NPR approaches to mosaic creation in related work (Section 2),
followed by our user interface, tools and system workflow (Section
3). Section 4 details the tile growing algorithm. Finally, we present
an evaluation and results of system usage by users of varying artistic
skill and experience (Section 5).

2 Related Work

A large body of research in Non-photorealistic rendering addresses
the transformation of raster images into a various artistic represen-
tations [Pedersen and Singh 2006; Li and Mould 2011], including
mosaic of various styles. The bulk of these techniques are auto-
matic. For example, Hausner [2001] presents a method to simulate

decorative mosaics that employs centroidal Voronoi diagrams to ar-
range square tiles and uses an imposed direction field to align tiles
with edge features chosen by a user. Voronoi techniques have also
been used to automatically preserve both features and color varia-
tion of an original image [Dobashi et al. 2002]. These and similar
methods [Elber and Wolberg 2003; Di Blasi and Gallo 2005] are
not aimed at user interactivity (for an overview, see [Battiato et al.
2007]). Commercial applications like Adobe Photoshop and GIMP
are also able to produce mosaics from an input image, but similar
to the above research provide users with little interactive control.

Similarly to Mosaic, there are other digital systems that are inspired
by the real-world art forms. SandCanvas [Kazi et al. 2011], Project
Gustav [Chu et al. 2010], Fluid Paint [Vandoren et al. 2009], DECO
[Igarashi 2011] and Holy [Igarashi and Igarashi 2010] are digital
systems that deliver various tools to the artist which strongly re-
semble real-world techniques. Vignette [Kazi et al. 2012] facilitates
texture creation in pen-and-ink illustrations. Users draw a fraction
of a texture and use gestures to automatically fill regions with the
texture or repeat textures along the drawn path. Mosaic uses sim-
ilar ideas to simplify and automate the creation of mosaic pieces.
However, unlike Mosaic, Vignette does not embody the notion of
grout or negative space, nor does it facilitate deformation of pieces
in order to create unique shapes, it only repeats or rearranges them.

3 Mosaic: Interface and interaction

The main window in Mosaic has three panels (Figure 3). A Draw
Panel, which allows users to create mosaic pieces of any shape. A
Drop panel has slots for frequently used mosaic pieces. A Clone
Panel is the main drawing canvas where users create mosaics by
cloning one or more mosaic pieces created in the Draw Panel. Users
select from a suite of tools (Figure 4) to perform operations in the
Main window.

Figure 3: Main window. (a) Mosaic pieces are created in the Draw
Panel. (b) Drop Panel allows to quickly switch between mosaic
pieces when cloning using the Guide Clone tool. (c) Mosaics are
arranged in the Clone Panel by cloning mosaic pieces.

Almost all operations in Mosaic are performed using simple stroke
or drag gestures. These operations include drawing, selecting,
cloning, erasing and coloring mosaic pieces:

Background image tool. Users can load a background image into
the Clone Panel as a visual reference, with variable transparency, to
aid in mosaic creation (Figure 3c).

Pencil tool. Users sketch strokes in the Draw and Clone Panels. In
the Draw Panel users can draw curves to be used as individual mo-
saic pieces or small arrangements of a set of mosaic pieces. In the
Clone Panel users sketch strokes (with user controlled smoothness),
that act as boundary strokes that contain the growth of mosaic tiles
to one side or the other of the curve.

Figure 4: Toolbox.

Select tool. User performs selection by stroking over one or multi-
ple mosaic pieces in the Draw Panel. The Drop Panel allows users
to switch between frequently used pieces directly without employ-
ing the select tool.

Erase tool. User can erase one or multiple mosaic pieces by
stroking over them in any panel.

Clone tool. When precision is required, users can clone mosaic
pieces one by one. Pieces selected in the Draw Panel, can be
dragged and positioned to the desired location in the Clone Panel
as illustrated in Figure 3 (mosaic piece in red). The rigidity of
each mosaic piece can be defined, so that a range of deformable
behaviours can be accommodated, in cases where the new piece
overlaps existing pieces (Figure 5).

Figure 5: Three clone modes. Piece being added is highlighted in
red. (a) All pieces are deformed. (b) Only added piece is deformed.
(c) None of the pieces are deformed. Added piece is moved to avoid
collision.

Guide Clone tool. Most mosaics use the lines of grout in-between
mosaic tiles to define flow-lines within an image. It is thus natural
for users to define paths along which mosaic pieces are laid out by
sketched strokes. Users can thus simply select one or more mosaic
pieces in the Draw Panel (Figure 6a), and sketch a guide line (Fig-
ure 6b) in the Clone Panel. The sketched guide line is automatically
populated with selected pieces, aligned along the stroke, that fill-in
using our tile growing algorithm (Figure 6c). Users can dynami-
cally control the tile density of pieces placed by the tool (Figure 6d,
e and Figure 7).

Brush Clone tool. Users may create local patterns and arrangements
of multiple mosaic pieces that they may wish to selectively clone.
Users select a starting point in the Draw Panel (Figure 8a), and then
brush over the Clone Panel. Brush movements in the Clone Panel
are then synchronized with the Draw Panel and mosaic pieces that
are brushed over are cloned (Figure 8b). In our implementation,

Figure 6: Guide clone tool. (a) Select a piece to be cloned. (b)
Stroke a guide line. (c, d, e) Pieces are cloned and deformed along
the guide line with different density.

Figure 7: (a) Pieces are cloned along the stroke and rotated. (b)
Tile growing algorithm is applied to deform the pieces.

if the user brushes over more than 25% of a piece, then the entire
piece is cloned (Figure 8c).

Figure 8: Brush Clone tool. (a) Set a start point. (b) Brush over
pieces. (c) Selected pieces are cloned.

Figure 9: Color tool with gradient effect. (a) Stroke over the pieces
(b) Chosen pieces are colored. (c, d) Gradient effect is an option.

Color tool. Mosaic tiles can be colored in all three panels. Users
color pieces by simply stroking over them, filling them with a cho-
sen solid color or color gradient (Figure 9). Grout color can also be
set by stoking anywhere in the background.

A typical workflow in Mosaic starts by drawing a few boundary
strokes (optionally over a background image) to delimit the mosaic.
After that, mosaic pieces are drawn and selected from the Drop
Panel. The mosaic itself can then be defined with precision using
the Clone tool, or quickly filled along paths using the Guide Clone

tool or in regions using the Brush Clone tool. The tile growing al-
gorithm interactively ensures that the mosaic pieces grow to respect
the boundary curves and trade-off between tile rigidity, placement
and grout uniformity. The Color tool can be used at any point dur-
ing this workflow to color the mosaic.

4 Tile Growing Algorithm

All mosaic pieces are represented as 2D poly-lines. In our imple-
mentation we rasterize them at high resolution into connected set
of 2D pixels (Figure 10). This representation forms the input to our
tile growing algorithm.

Figure 10: Zoomed mosaic piece. Points are tightly packed.

Our tile growing algorithm is an iterative simulation where points
corresponding to mosaic pieces and boundary curves, evolve under
various forces at each step. Assume that some tile has N points,
with orginal positions oi, and evolving positions pi (1 ≤ i ≤ N).
We support three forces acting upon the evolving points :
-a growth force G that pushes points outwards from the tile
centroid c = (

∑
i(oi))/N towards their original location on the

tile shape. Gi = g ∗ (oi− c) where g is a fractional constant. After
k iterations the shape is a k ∗ g scaled version of the tile around its
centroid c.
-a repulsion force R between nearby points that is responsi-
ble for maintaining uniform grout, preventing interpenetration
between mosaic tiles, and between tiles and boundary curves.
Ri =

∑
j vdw(||qj − pi||) ∗ (qj − pi), where vdw is a van der

Waals force between pi and points on other tiles and boundaries
qj , within a radius of influence d. The force vdw is exponentially
negative or repulsive for points closer than the desired grout
thickness t, and positive or attractive for point distances between
(t, d) dropping to zero at distance d and beyond [Pedersen and
Singh 2006].
-a shape force S that rigidly transforms all points of a tile (at
its currently grown scale) to best fit the tile’s current deformed
shape. In other words, we compute the rotation A and trans-
lation T of the tile at the current or kth iteration scale (points
vi = c+k ∗g(oi−c)), such that ||(Avi+T)−pi||2 is minimized.
The solution of A and T to this expression due to Horn [Horn
1987], is well known [Breslav et al. 2007], the translation T for
instance being simply (

∑
i(pi))/N − c. The shape force Si is

simply a linear blend Si = pi + rigid ∗ ((Avi + T)− pi), where
rigid ∈ [0, 1] is a shape rigidity parameter.

Growth begins by shrinking all points to the centroid of their respec-
tive tiles (Figure 11a). Assume that tile has N points, the position of
each point, pi (1 ≤ i ≤ N), is updated by adding the three forces.
At every iteration, the point pi is updated to pi+Gi+Ri+Si, grow-
ing outwards subject to G (Figure 11b,c), repelling nearby points
according to R and maintaining a rigid or deformable shape based
on S and the rigid prameter. To keep the simulation stable, it-
eration stops and point locations are permanently set (points high-
lighted in green in Figure 11d) once the user desired grout thickness

is achieved or a point grows to its original location (we do not scale
tiles past their given size). Finally, for each piece we perform a
linear interpolation to fill any missing points that result from tile
deformation.

Figure 11: Tile growing. (a) Illustrates initial state when pieces are
added. (b, c) Pieces are then reduced to their centroids and start
growing incrementally. (d) If collision is detected for some points,
their growth is terminated.

5 User Evaluation and Results

Four people were asked to participate in our evaluation (2 males, 2
females, age range 22-26 years old, 2 with good drawing skills). All
had some experience with non-professional drawing applications.
A 9 min video tutorial explaining features and user interface of the
application, the software (written in Java) and a questionnaire was
sent to them. Users were either using mouse and keyboard or a pen
tablet device to draw mosaics.

Figures 12, 13, 14 showcase some of the results. On average, it
took 30 minutes to complete the images. Participants’ overall im-
pression was very positive. They mentioned that Mosaic was easy
to learn (4.25 on a scale of 1 (hard) to 5 (easy)). Participants found
that using same stroke-based interactions for creating, deleting and
coloring of mosaic pieces made the drawing process pleasant and
fast (4 on a scale of 1 (unpleasant) to 5 (pleasant)). They indi-
cated that out of all mosaic cloning tools available they mostly used
Guide Clone tool. Interestingly, their strokes are not always evident
since our tile growing algorithm uniformly fills in space when the
tile density is high enough. Only 1-4 pieces were created and then
cloned to complete the images. They were also satisfied with the
final results (4.5 on scale of 1 (not satisfied) to 5 (satisfied)). Some
mentioned that using our system had motivated them to create mo-
saics out of real materials.

Some suggestions were made on how to improve the application:
bigger canvas, zoom in/out in order to add fine details, multitouch
version for a tablet device. One user found the Clone tool to be
relatively difficult to understand.

6 Limitations

Limitation of our tile growing algorithm is that points are tightly
packed and have 2D interger coordinates (might cause rounding er-
rors). Due to iterativity of our algorithm, those factors might lead
to jaggy appearances of some tiles. Jaggedness can be avoided by
increasing number of iterations, reducing initial number of points
or applying point reduction algorithm, like Ramer Douglas Peucker
algorithm, after mosaics are finished. In addition, smoothing and
antialiasing can be applied to get more pleasing results.

7 Conclusion and Future Work

We have presented a sketch-based Mosaic application that stream-
lines and simplifies the often long and painstaking mosaic creation
process, using a tile growing algorithm and stroke and brush based
tile cloning operations. This application gives users the power
to create beautiful mosaic images with only a few simple strokes
and shapes. The application is accessible to a broad audience and
even beginners can create artistic mosaics that carry their individ-
ual style. Our approach also has the potential to create animated
mosaics [Smith et al. 2005], since the construction history of guide
strokes and the iterative nature of the tile growing algorithm are
amenable to handling temporal coherence, and this is subject to fu-
ture work.

Acknowledgements

We would like to thank ZhengZheng Ye, Heisei Cantero, Yiyan Zhu
and Jason Shum for participating in the user study and submitting
their beautiful mosaics. Also we would like to thank Bruno De
Araujo for his critique on the early draft of the paper.

References

BATTIATO, S., DI BLASI, G., FARINELLA, G. M., AND GALLO,
G. 2007. Digital mosaic frameworks - an overview. Computer
Graphics Forum 26, 4, 794–812.

BRESLAV, S., SZERSZEN, K., MARKOSIAN, L., BARLA, P., AND
THOLLOT, J. 2007. Dynamic 2d patterns for shading 3d scenes.
In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA,
SIGGRAPH ’07.

CHU, N., BAXTER, W., WEI, L.-Y., AND GOVINDARAJU,
N. 2010. Detail-preserving paint modeling for 3d brushes.
In Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, ACM, New York, NY,
USA, NPAR ’10, 27–34.

DI BLASI, G., AND GALLO, G. 2005. Artificial mosaics. The
Visual Computer 21, 6, 373–383.

DOBASHI, Y., HAGA, T., JOHAN, H., AND NISHITA, T. 2002. A
method for creating mosaic images using voronoi diagrams. In
Proceedings of Eurographics, vol. 2, 341–348.

ELBER, G., AND WOLBERG, G. 2003. Rendering traditional mo-
saics. The Visual Computer 19, 1, 67–78.

HAUSNER, A. 2001. Simulating decorative mosaics. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, NY, USA, SIG-
GRAPH ’01, 573–580.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America
A 4, 4, 629–642.

IGARASHI, Y., AND IGARASHI, T. 2010. Holly: A drawing editor
for designing stencils. Computer Graphics and Applications,
IEEE 30, 4 (July), 8–14.

IGARASHI, Y. 2011. Deco: A design editor for rhinestone dec-
orations. Computer Graphics and Applications, IEEE 31, 5
(September), 90–94.

KAZI, R. H., CHUA, K. C., ZHAO, S., DAVIS, R., AND LOW,
K.-L. 2011. Sandcanvas: A multi-touch art medium inspired by
sand animation. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ACM, New York, NY,
USA, CHI ’11, 1283–1292.

KAZI, R. H., IGARASHI, T., ZHAO, S., AND DAVIS, R. 2012.
Vignette: Interactive texture design and manipulation with
freeform gestures for pen-and-ink illustration. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Sys-
tems, ACM, New York, NY, USA, CHI ’12, 1727–1736.

KELLY, S. 2004. The Complete Mosaic Handbook: Projects, Tech-
niques, Designs. Firefly Books.

LI, H., AND MOULD, D. 2011. Artistic tessellations by growing
curves. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Non-Photorealistic Animation and Rendering,
ACM, New York, NY, USA, NPAR ’11, 125–134.

MASSEY, P., AND SLATER, A. 1999. Beginner’s Guide to Mosaic.
Search Press, 4–5.

PEDERSEN, H., AND SINGH, K. 2006. Organic labyrinths and
mazes. In Proceedings of the 4th International Symposium on
Non-photorealistic Animation and Rendering, ACM, New York,
NY, USA, NPAR ’06, 79–86.

SMITH, K., LIU, Y., AND KLEIN, A. 2005. Animosaics. In
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, ACM, New York, NY, USA,
SCA ’05, 201–208.

TURK, G. 1991. Generating textures on arbitrary surfaces using
reaction-diffusion. In Proceedings of the 18th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM,
New York, NY, USA, SIGGRAPH ’91, 289–298.

VANDOREN, P., CLAESEN, L., VAN LAERHOVEN, T., TAELMAN,
J., RAYMAEKERS, C., FLERACKERS, E., AND VAN REETH, F.
2009. Fluidpaint: An interactive digital painting system using
real wet brushes. In Proceedings of the ACM International Con-
ference on Interactive Tabletops and Surfaces, ACM, New York,
NY, USA, ITS ’09, 53–56.

Figure 12: Pocahontas - 20 min.

Figure 13: Boat - 25 min., Ballerina - 40 min., Starry Night - 30
min.

Figure 14: Lily - 40 min., Wave - 20 min., Rose - 30 min.

