
Elasticurves: Exploiting Stroke Dynamics and Inertia for
the Real-time Neatening of Sketched 2D Curves

Yannick Thiel, Karan Singh, Ravin Balakrishnan
Department of Computer Science

University of Toronto
{ythiel, karan, ravin}@dgp.toronto.edu

Figure 1: Input strokes are drawn in red, with drawing speed indicated by the spacing of green input points (a). The
input stroke in (a) is neatened using Laplacian smoothing with fixed-distance sampling (b), and using elasticurves (c).
Note the sharp corners and smooth arcs on the waves and teeth in (c), compared to the featureless smoothing in (b).

ABSTRACT
Elasticurves present a novel approach to neaten sketches in
real-time, resulting in curves that combine smoothness with
user-intended detail. Inspired by natural variations in stroke
speed when drawing quickly or with precision, we exploit
stroke dynamics to distinguish intentional fine detail from
stroke noise. Combining inertia and stroke dynamics,
elasticurves can be imagined as the trace of a pen attached
to the user by an oscillation-free elastic band. Sketched
quickly, the elasticurve spatially lags behind the stroke,
smoothing over stroke detail, but catches up and matches
the input stroke at slower speeds. Connectors, such as lines
or circular-arcs link the evolving elasticurve to the next
input point, growing the curve by a responsiveness fraction
along the connector. Responsiveness is calibrated, to reflect
drawing skill or device noise. Elasticurves are theoretically
sound and robust to variations in stroke sampling.
Practically, they neaten digital strokes in real-time while
retaining the modeless and visceral feel of pen on paper.

Author Keywords
Sketching, Stroke-based interfaces, Fair curve design.

ACM Classification Keywords
H.5.2 Graphical User Interfaces, Input Devices, and
Strategies;D.2.2User Interfaces;I.3.6 Interaction Techniques

General Terms
Algorithms, Design, Human Factors.

INTRODUCTION
Sketching has been used throughout history as a primitive
mode of expression and visual communication. Sketching is
also an increasingly viable medium of interaction with
devices ranging in size from small tablets to large displays.
Sketch strokes are used in a variety of computing scenarios:
as curves representing visual content from simple 2D
cartoons to complex 3D product designs [4, 15, 16, 23], as
motion paths for animation [13, 30] and as general gestural
input to invoke commands [3, 17, 22, 24, 25, 34].

An important area of ongoing research deals with
attempting to model and eliminate the difference or error
between the stroke a user mentally imagines and the one
that is drawn using a digital device. In this paper, we refer
to this problem as stroke neatening.

Stroke neatening can be addressed in two ways: first, by
attempting to model the characteristics of the differences
between sketched strokes and the resulting curves; second,
by using priors that describe desirable properties of curves
resulting from user strokes. Perhaps the most common prior
is smoothness (Figure 1b) since high-frequency jitter is
usually the result of device noise or an unsteady hand and
further, smooth or fair [8, 19] curves are generally
desirable. Indeed for many applications such as 3D design
curves, paths for navigation or spatial curves for
visualization, smoothing is sufficient for stroke neatening.
There are, however, applications such as 2D cartoon
drawing or motion paths for performance-based animation
and interactive tracking, where the desired result of a sketch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, California, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

383

is a mix of smoothness and high-frequency detail in
different parts of the neatened output curve (Figure 1c).

In general, the extent to which a user intends the resulting
curve to precisely track any portion of a sketched stroke is a
directive that must be explicitly defined by the user. While
the intended precision along parts of a stroke could be
specified after its completion using a variety of interfaces
[19, 26], not only would such an approach impede the
fluidity of a sketching workflow, it comes too late for real-
time applications like drawing or performance animation,
where the stroke must be neatened as the user sketches. It
would thus be ideal if a user could specify intended
precision along the stroke while sketching, using an
affordance of the drawing tool such as finger pressure or
pen tilt [21, 31]. Unfortunately, there is no evidence
indicating that there exists a natural relationship between
these device affordances and intended precision. We have
observed, however, that there is a relationship between
drawing speed and intended precision. In accordance with
the speed-accuracy trade-off common to human activity
[28], users instinctively slow down when drawing parts of a
curve where they desire precision and speed up over regions
that are smoother or less precise. We note also that drawing
speed is a user controlled variable independent of the input
device used, be it a finger, mouse, or stylus. Thus, using
speed as a mechanism to control precision simply builds on
users’ inherent sketching behaviour.

A number of approaches that neaten a stroke after its
completion [4, 16, 19, 23] typically fit a curve primitive
such as a cubic spline [4] or optimize a criterion such as
variation of curvature [19], over the entire stroke. Most of
these approaches can be further improved by additionally
exploiting the precision intent conveyed via stroke speed.

These approaches, however, remain ill-suited to real-time
applications, where a neatened curve must be incrementally
committed while the user draws. This was especially noted
by in-between and clean-up artists sketching over scanned
drawings, where the lack of commitment of any part of the
neatened curve until a stroke was completed was visually
frustrating and often required sketching the same stroke
multiple times without guarantee of success. A similar
frustration was voiced by animators wishing to lasso-select
objects in regions contained within neatened strokes.

To perform real-time neatening, however, the evolving end
of a committed curve must differ at times from the current
end of the stroke, which we refer to as stroke inertia or
spatial lag (see waves in Figure 1c and video). We draw
inspiration from the traditional tape drawing technique [5]
used by designers where curves are created by rolling out
tape with one hand and fastening it with the other.
Metaphorically, the hand rolling out the tape defines the
stroke and the hand fastening the tape defines the
committed curve. The tape in-between the two hands is the
spatial lag. In a one-handed sketch-based version of tape
drawing [11], the spatial lag has a fixed length and the

committed curve can be thought of as being drawn by a pen
attached to the user’s hand by an invisible rod. The smaller
the lag (the shorter the rod), the more closely the committed
curve tracks the sketched stroke, and larger lags result in
smoother curves with less detail. This is captured in spirit
by Dynadraw [12], simulating a pen with mass and friction
being physically pulled across the paper. Given that
controlling the amount of lag enables the creation of curves
with different smoothness and detailed variation
characteristics, we propose a novel approach whereby the
lag is directly modulated in real-time by the stroke speed.
The user can select from different curve primitives such as
lines or circular-arcs to model the lag segment, allowing
them to generate near perfect lines or arcs despite drawing
quickly. At the same time, slowly drawn parts of a curve are
tracked precisely without any explicit mode changes.

There exists a continuum of intended curves ranging from
completely free-hand to precise geometric primitives like
lines and circles [10]. A good real-time stroke neatening
algorithm would allow users to move freely within this
continuum over the course of a single stroke. We believe
elasticurves are the first real-time stroke neatening approach
to possess this property.

RELATED WORK
There has been much research in the area of stroke
processing. Broadly one branch looks at the symbolic
processing of strokes for handwriting and other gestural
recognition [3, 17, 22, 24, 25, 34]. Here, the stroke is
classified as an instance of a known set of symbols. This is
typically done by looking for structure within the stroke in
terms of geometric features such as corners or inflections
and then by matching these features to corresponding sets
of examples for each known symbol. The actual geometry
of such strokes serves only to classify and distinguish them.

The second and more relevant branch addresses the
neatening of strokes. An essential aspect of stroke neatening
is determining which parts of the stroke to neaten. The
majority of approaches [4, 19] simply neaten the entire
stroke based on the assumption that smooth curves are
desirable and that sharp corners or high-frequency detail
will explicitly be created by concatenating multiple smooth
strokes [4]. While this is perfectly acceptable for many
applications, sketches such as that in Figure 1c would be
cumbersome to create and require a large number of tiny
strokes. Some approaches relax this assumption by breaking
the stroke into a number of smooth segments connected at
sharp corners [26].

In other approaches users explicitly describe the intended
shape of the curve using templates [10] or French curves
[27] allowing the creation of very precise curve shapes. The
two disadvantages of such approaches are that it is still
difficult to transition through different neatening directives
within the same stroke, and the external template needs to
be invoked explicitly by the user, breaking the desirable
flow of pure modeless sketching [14].

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

384

There are many different ways of achieving a desired stroke
neatening directive. For simple stroke smoothing a variety
of techniques exist including Laplacian smoothing [32],
cubic spline fitting [4], clothoid fitting [19] and one-handed
tape drawing [11]. Piecewise clothoid fitting [19] has been
shown to create curves with the most appealing curvature
properties but is hard to combine with point, tangent or
other precise constraints. Some of these techniques such as
Laplacian smoothing and one-handed tape drawing can be
used to smooth and commit a stroke as it is drawn, whereas
the remainder of the approaches are global in nature, based
on optimization or fitting, and require a complete stroke.

Ours is the first approach to propose the principled and
explicit use of stroke dynamics as a neatening directive and
perform this neatening in real-time as the stroke is sketched.
We draw inspiration for this affordance from the kinematics
of drawing [18, 28] and research that relates drawing speed
to curve features such as cusps and corners [25].

There are a number of other approaches to curve creation
and control that are relevant to this work. Fiume [9]
introduced arc-length as a control parameter in conjunction
with typical Bezier constraints. Using physical forces and
dynamics as a control methodology has also been used
extensively [6, 12, 29]. Dynadraw [12], aimed at creating
calligraphic strokes, indirectly correlates stroke speed and
lag by physically simulating a pen pulled across paper.
Cords [7] are 3D curves which wrap around scene objects.
Cords are procedurally generated from user-defined guide
curves and a stiffness parameter that models their pliability.
Our elasticurve framework has a similar mathematical
formulation.

Variants of the above research exist in commercial software
such as Sketchbook-Pro [2], Illustrator [1] and Windows
Journal [20]. We discuss these in relation to Elasticurves in
the comparisons section.

PROBLEM STATEMENT
Given an input stroke segment Q, compute a neatened curve
P that continuously changes from precisely Q to a smooth
approximation of Q with increasing drawing speed (Figure
3). The curve construction must also be incremental: i.e. if
Q is a sub-stroke of a longer stroke Q’, its neatened curve P
is the corresponding sub-stroke of the longer neatened
curve P’ (Figure 2).

Figure 2: Incremental Elasticurve construction: (a) A
partial segment Q of an input stroke. (b) The
elasticurve segment P corresponding to Q. (c) The
continued stroke Q’ and elasticurve P’ (in blue).
Once commited, P is invariant to subsequent input.

ELASTICURVES ALGORITHM
The elasticurve framework is a “pure” sketching interface,
in that all information related to stroke input and neatening
is provided by the user in the stroke itself. We describe a
minimal number of parameters that allow additional control
over the generated curves but in practice users can create
their desired curves predictably with the default settings.

Figure 3: The input stroke (left) is parameterized by
time: the spacing of the green input points indicates
stroke speed. The elasticurve (right) varies with
increasing speed from a precise replica to a smooth
approximation of the input.

Input Stroke
Input strokes from current sketching devices are typically a
sequence of 2D points that are sampled at a small and
regular time interval dt ms (see Appendix A). In practice
this simply parameterizes the input stroke such that the
distance between adjacent point samples is a measure of
stroke speed (Figure 3). We denote this input stroke as Q,
and the ith point on it as qi. Elasticurves grow as a fraction
(called responsiveness) of the spatial lag between the
current elasticurve and stroke. Therefore, in a discrete
setting, they only ever get infinitesimally close to the input
stroke if subsequent points on the stroke are at the same
position. In practice we can replace this converging
progression of elasticurve points with an analytic curve
segment as long as we can detect such a paused stroke state.
Note that while the elasticurve will inertially lag and catch-
up to the stroke as the user draws, the paused state can be
thought of as an explicit catch-up of the elasticurve where
the stroke inertia or lag is reset to zero. In practice, the
curve often enters the paused state at sharp corners and
upon stroke completion. We detect a pause in a stroke at a
point where there is no movement for dtpause milliseconds.

Curve Generation
We define an inertial responsiveness parameter r, which
controls the mapping from stroke speed to the neatness of
the curve. Users typically calibrate r to reflect their drawing
skill or the noise and ergonomic inaccuracy of the input
device (0<r<=1, r=0.5 by default). The elasticurve
precisely matches the input stroke for r=1. Lowering r
increases stroke inertia (for r=0 the elasticurve is a
stationary point) resulting in fairer curves (Figure 6).

We will denote the generated elasticurve as P and its ith
point as pi. While we can use the metaphor of an

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

385

oscillation-free zero-rest-length elastic band to describe the
inertia between pi and qi, this is more to describe its visual
behaviour than to accurately model its dynamics. Indeed in
our case, the points are generated by a generalization of the
formulation in [7], subject to p0=q0.

 (1)

We will refer to the function f as being the connector
between the evolving elasticurve and the input stroke. The
connector locally controls the shape of the elasticurve and
thus models prior knowledge of desirable curve shapes
(such as lines or circles) that would connect pi and qi+1. The
elasticurve segment between pi and pi+1 is simply the
parametric fraction r of this connector (Figure 5). The
overall evolution of the elasticurve for linear and circular-
arc connectors is shown in Figure 4. We explored various
connector shapes and present the mathematical details of
lines and circular-arcs in Appendix A.

Figure 4: Elasticurve construction for 6 points of an
input stroke using linear (top) and circular (bottom)
connectors: the elasticurve evolves over six steps.
At each step the curve grows by a fraction (r=0.5)
along the connector shown by a dashed shape.

Figure 5: Connector shapes: lines, parabolas, arcs
(left to right) with increasing r (top to bottom).

Linear Connectors
Linear elasticurves favour a linear interpretation of the
input stroke. Intuitively, if the user were to provide input
points which were all collinear, the generated curve should

be a straight line. Deviations from this linearity in the input
stroke result in similar deviations in the elasticurve, albeit
dampened by a factor of r. The formulation used is:

Leading to the following recursive formula:

This allows deviations from linearity in Q to be attenuated
in P. As a consequence, P will always be more linear than
Q especially when drawn rapidly (Figure 6), making the
linear formulation ideal for sketching straight lines quickly.
Further, while linear elasticurves seem to be only discrete
polylines, they converge with finer sampling of an input
stroke to a limit curve with the same degree of continuity as
the input stroke (Appendix A).

Circular-arc Connectors
Circles are also a common shape prior that can be captured
as a connector. Circular-arc connectors are defined by the
circle passing through qi+1, pi with the tangent at pi being
the same as the tangent of P at pi. Using this circle, we take
a fraction r of the smaller-arc between pi and qi+1 to find
pi+1. (Figure 5). The first circular-arc connector is defined
by the smaller circular-arc connecting q0,q1,q2. Like linear
elasticurves, circular-arc elasticurves also converge to a
limit curve but are G1 continuous (a sequence of tangent
continuous circular-arcs) even in the discrete setting.
Circular-arcs can also represent lines (arcs of infinite
radius) and are thus our default choice of connector.

Figure 6: Responsiveness: At high r, elasticurves
track the input regardless of connector. The impact
of the connector shape is evident at lower r or when
drawing quickly (left). A comparison between linear
and circular-arcs for the same input at low r shows
that circular-arcs handle curved regions better and
can also capture line segments (right).

Alternate Connectors
While we present linear and circular connectors in detail,
the elasticurve framework can accommodate any parametric
connector function f. In particular, cubic Beziers can be
used if curvature continuous elasticurves are desired.
Curves with desired arc-lengths [9] can also be created
using a tangent continuous parabolic connector passing
through pi with an arc length given by .

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

386

Figure 7: The elasticurve (connector is shown dashed) naturally catches-up to the input in a slowly drawn section.

Elasticurve Properties

Explicit use of drawing speed
An important property of elasticurves is their embodiment
of stroke dynamics. Regardless of the connector or the
responsiveness, elasticurves naturally match the input
stroke when the user draws slowly and approximates
quickly drawn portions of the stroke, in keeping with the
speed-accuracy trade-off seen in human input actions [28].

Figure 7 shows a circular-arc elasticurve approaching a
slowly drawn section of the input stroke, indicated by the
many input points (sampled at equal time intervals) close to
each other. Since the elasticurve grows by a fraction of the
connector it gets progressively closer to the input where
points are repeated or are close to each other. Within a few
such iterations, the elasticurve becomes visually
indistinguishable from that of the input stroke until an
increase in stroke speed creates visually discernable spatial
lag. If multiple points of an elasticurve are built using the
same input point repeated over time, the elasticurve
converges to the point as an infinite geometric progression
of the responsiveness fraction. We identify this condition as
a pause in sketching to complete the connector. These
pauses occur naturally when drawing sharp corners, cusps
and upon stroke completion.

Figure 8: Curve completion: The elasticurve typically
lags the end-point of a stroke (top). A paused state
causes the curve to grow to the end-point (bottom).

Curve Completion
Once the input stroke is in a paused state, which is to say
the cursor has not changed position for dtpause ms or the
stroke is completed, we complete the curve along its last
connector. Conceptually, this is equivalent to creating an
infinite number of input points at the given end-point. We
implement this by repeating end-points (till the elasticurve
is within a distance threshold to the curve) and then snap to
the end-point, to keep the point distribution of the generated
elasticurves consistent (Figure 8). Using the paused state in
this manner also allows for the easy creation of cusps and
tangent discontinuities, where natural pauses in drawing
allow the elasticurve to catch up to the input at corners.

Incremental generation
The incremental construction of elasticurves makes it
suitable to real-time curve neatening. In contrast most curve
neatening algorithms [4, 19, 26] use a “global” fit to the
current stroke, implying that the overall curve is never
finalized until the input stroke is completed.

While the “global” fit algorithms can produce curves with
nicer mathematical properties such as linear variation in
curvature [19], it comes at the cost of losing the immediacy
of curve creation, a critical affordance in certain scenarios.

Elasticurve Parameters
Elasticurves have three meaningful parameters: sampling
interval (dt), time interval for a pause state to be detected
(dtpause), and responsiveness (r). dt is a function of the
spatio-temporal resolution of the input device and dtpause a
matter of user agility and drawing skill. While we set these
manually in our implementation, both are easy to calibrate:
dt can be set such that the difference between the user input
and the poly-line stroke is below a desired threshold. dtpause
can be inferred by asking users to draw a few sharp corners.
Responsiveness is the one free parameter that relates to the
inertial feel of the curve. While we could attempt to learn a
user-specific default setting for r, we find that users grasp
its behaviour quickly and adjust it often while sketching.

SPATIAL LAG RELATIONSHIPS
As mentioned above, elasticurves possess an inertial
relationship to their input stroke. This spatial lag is a direct
consequence of real-time neatening, where the curve can
drift from the stroke to smoothen the input but must adhere
to it when precision is intended. The spatial lag model used

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

387

impacts the nature of curves produced. We classify a few
existing models: stick lag connects the evolving curve and
current input by a conceptual stick, akin to one-handed tape
drawing [11]. String lag models this link as a piece of
string. Points are added to the input stroke only when the
string is taut, creating curves similar to one-handed tape
drawing but allowing sharp corners, by letting the string go
slack to abruptly change directions. Spring lag, akin to
Dynadraw [12], models the link with a zero-rest-length
spring, creating physically plausible trajectories that are
often pleasing but can have undesirable oscillations.
Elasticurves model what can be termed as speed lag, where
the spatial inertia is directly related to stroke speed. Note
that connectors and lag models are complementary and can
be arbitrarily paired.

HUMAN ABILITY TO CONTROL SKETCHING SPEED
An obvious question that follows from wanting to use
dynamics to indicate stroke precision while drawing is: how
naturally and precisely can a user control sketching speed?

Attempting to determine if users had any control over their
drawing speed, we asked 5 participants (aged 24-30, 4
right-handed, 1 left-handed), to continuously draw the same
shape repeatedly, but with decreasing speed. For example, a
participant would begin by drawing a line as fast as they
could, and subsequently draw that same line with
monotonically decreasing speed. This experiment was
performed with lines, Bezier arcs and circles.

The results (Figure 9) illustrate that users do in fact possess
reasonable control over their drawing speed, in that they
can gradually slow down or speed up. The results, like other
sensory controls, tend to follow Weber’s law [33], in that a
user can more aptly distinguish between slower speeds than
fast ones. While a formal investigation of human drawing
speed is worthwhile, this experiment suggests that users do
possess adequate stroke speed control to utilize elasticurves
effectively.

Figure 9: Speed control experiment: plotting average speed
(in pix/ms) versus stroke index (decreasing speed).

CURVATURE AND ELASTICURVES
A well-documented perceptual factor affecting sketching
speed is curvature. As was noted in [18], stroke speed
follows a power law relationship with respect to curvature,
namely:

Where is tangential end-point speed, is the
instantaneous curvature of the path, and is a constant.

This formula entails that sketching speed is lower when
attempting to draw areas of high curvature. However, this
behaviour arises instinctively; there is no active decision to
do so. In other words one might expect that a user intends to
draw a curve with the same degree of smoothing but the
unconscious drop in speed in regions of high curvature
cause them to be drawn more precisely than regions of low
curvature. Elasticurves can be modified to compensate for
this by computing two speeds: vmeasured, the observed speed
of the input stroke, and vexpected, the speed given by the
power law relationship. Discrete curvature is computed at
points by looking one input ahead and computing the angle
between the neighbours. The difference
 thus captures any conscious
variation in stroke speed by the user. We then map vactual to
responsiveness.

While the compensation method described above accounts
for the perceptual effect curvature has on sketching speed,
we found it to have little effect in practice, since the instant
visual feedback from the elasticurve lets users compensate
for this effect in their drawing directly.

USER FEEDBACK
We evaluated our system by distributing it to 6 users and
asking them to try it out and send us their creations. We did
not specify which input method they should use; two used a
tablet computer, one a trackpad and three a mouse. Each
user was aged between 20 and 40, had a familiarity with
computers and drawing ability varying from professional to
completely inexperienced. Notably, the experienced users
used tablets, while the inexperienced ones used a mouse or
trackpad as their input device. Their period of usage ranged
from one to eight hours. Figures 1 and 10 illustrate sketches
created by a user of above-average drawing skill on a pen
and tablet interface. Of particular note in these images is
how elasticurves satisfactorily handle both precise strokes
(such as the arm and book of the character, as well as the
fish and shark) and rapid strokes where precision is of no
concern (such as the waves, ground, and tree foliage).

Figure 11, on the other hand, illustrates how elasticurves
can be used to improve sketching ability. The image was
created by a user with no sketching experience using a
mouse and a background image to trace over.

The ability of elasticurves to allow users to create desirable
primitive shapes (Figures 11-13), with a mouse or trackpad
and little drawing experience, is particularly noteworthy.

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

388

Figure 10: Elasticurve sketch created using pen and tablet interface. Stroke input (left), overlaid elasticurves (right).

An experienced user also mentioned how she felt she had to
draw “extra slow” for it to match her exact movements. We
feel this is indicative of how, with experience, skilled artists
will become proficient at making precise strokes quickly.
While increasing responsiveness easily remedies this
problem, it does indicate that parameter calibration is
recommended (if not required) before extended use. Yet
another user complained that the sampling frequency setting
was too coarse for their device, once again hinting that
calibration may be required on different input devices. One
user also complained that the stroke inertia of elasticurves
was distracting. The user felt they had to mentally predict
the curve’s reaction to their future motion. Given that other
users were comfortable with spatial lag, something
professional tape-drawing artists live with, we believe that
experience with the tool would mitigate such discomfort.

Figure 11: Sketches created by a novice user. Tracing
over a background image (top).

Figure 12: Mouse sketches by an intermediate user.

Users described the interface as “cool”, “fluid” or
“physical” and remarked that the system was different from
any sketching applications with which they had prior
experience. One user who sketched with a mouse
mentioned how when using our tool he “drew in a different
way than [he] would using something unassisted” because
“with [something else], [he] would try to draw things as
straight (or circular) as possible, and probably fail, whereas
with [elasticurves], [he] would guide the mouse in the
general direction knowing roughly how the program was
going to correct it”.

Figure 13: Sketches created using a trackpad by an
intermediate user. An oversketch (top). Using the
trackpad as a virtual skating rink (bottom).

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

389

Another user mentioned that it felt like “drawing with hair
on bathroom tiles”, which we believe is an allusion to the
inertial and smooth nature of elasticurves.

Figure 14: Additional sketches created by various
users of intermediate drawing experience.

APPLICATIONS
We believe the affordances provided by an elasticurve
sketching system are applicable in many fields. Notable
here are: a front-end to gesture-based interfaces [3, 17, 22,
24, 25, 34], where the real-time mix of smoothness and
sharp corners can provide shape recognizers with improved
input; image tracing for vectorization and cel animation,
where the incremental nature of elasticurves allows visual
evaluation of the result while the user draws; interactive
trajectories for performance animation [30], where in
addition to real-time neatening, the timing along the path is
encoded in elasticurve parameterization.

In general sketching scenarios, responsiveness provides
users a single parameter to control a level of drawing
assistance and to compensate for device and motor noise.

Drawing Assistance
Elasticurves were in part developed as a means to assist
users lacking the control and practice of a professional artist
(Figure 11). Since the responsiveness parameter controls
how closely the input stroke is tracked (Figure 6), it
provides all users with a manner by which to adjust
elasticurves to appropriately augment their personal
sketching ability, in particular for drawing near perfect lines
or circular arcs.

Device and motor ability compensation
The strong approximations elasticurves with low
responsiveness can induce on input strokes make them
viable candidates for sketching tasks on commonly used
devices that are not designed for drawing such as mice,
trackpads, touchscreens and trackballs (Figures 11-13).

Figure 15: An input stroke with jitter is attenuated
using a low responsiveness elasticurve.

A similar argument holds for users lacking fine motor
control. As shown in Figure 15, by lowering responsiveness
to an appropriate level, jitter and noisy input can be
attenuated to create visually appealing strokes.

ELASTICURVE COMPARISONS
The neatening of sketches is a long standing problem with a
large body of research. To evaluate elasticurves relative to
existing research we compare elasticurves to three popular
commercial systems: Windows7 Journal [20], Illustrator
CS5 [1] and Sketchbook-Pro 2010 [2].

Figure 16: Sketch neatening technique comparison
using a trackpad on an image tracing task. The
visually neatest result of 7 trials for each technique
by an intermediate user are shown.

Sketch neatening in Journal and Illustrator are based on
global fitting after stroke completion. Sketchbook-Pro
implements a real-time variant of Dynadraw [12].
Theoretically, a fair comparison with elasticurves is
difficult. Journal and Illustrator have the advantage of
globally optimizing an entire stroke over the real-time local
approach of Sketchbook and Elasticurves. Conversely, the
latter two use speed as a neatening directive. Elasticurves
enable further user control via responsiveness. Despite
these issues, to gain some practical insight, we asked an
intermediate user to trace the outline of a background image
using all four techniques. After a few strokes to gain
familiarity with all systems, the user traced over the image
with a single stroke. The four techniques were used in turn
and repeated overall 7 times. The neatest visual result of
each technique using a trackpad is shown in Figure 16.
Qualitatively, the neatening in Journal is more localized
than Illustrator, resulting in sharp corners but an overall
noisier sketch. Illustrator conversely produces a globally
smooth but wiggly curve that tends to round subtle corners
(the concave corners of the star in Figure 16). Sketchbook is
optimized for local real-time neatening and produces noisy
results visually similar to Journal. Elasticurves, with low
responsiveness, produce the most pleasing result: Corners
are precisely created at pauses in the stroke and the circular-
arc connector captures lines, arcs and smooth curves with
ease. The same task done with a pen produced differences
that were subtler but noticeably similar to the trackpad.

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

390

Within the genre of elasticurves we further explored viable
alternatives to the problem of real-time curve neatening. In
both cases we re-parameterized the curve by arc-length and
then used stroke speed to modulate a smoothing approach.

Speed modulated Laplacian Smoothing
Simple neighbour averaging is a popular approach to stroke
smoothing that is trivial to implement. Conceptually,
correlating smoothing strength to stroke speed should result
in neatened curves. In practice (Figure 1b), the locality of
neighbour averaging can create wiggles or pockets of
curvature in curves and varying smoothing strength along
the curve can cause irregular spacing of curve points. It also
lacks the tangent continuity of circular-arc connectors.

Speed modulated responsiveness
Stroke speed can also be inversely related to the
responsiveness of an arc-length parameterized elasticurve.
This provides better results than Laplacian smoothing (see
Figure 17 and video), but both approaches suffer from re-
parameterization artifacts and do not have the convergence
guarantees of elasticurves shown in Appendix A.

Figure 17: Speed modulated responsiveness built
using input points 30 pixels apart. The brightness of
the green input points indicates speed.

CONCLUSION
We explored stroke neatening in real-time, and argued that
in a general scenario, neatening intent along a stroke should
be provided by the user. Motivated by the ergonomics of
sketching, we proposed using stroke speed as a neatening
directive. An experiment where users drew sequences of
strokes while consciously controlling drawing speed led
further credence to this choice

We then developed elasticurves, a stroke neatening
framework explicitly driven by stroke speed. We capture
desirable shapes like lines and circles as connectors along
which the elasticurve evolves. We analyzed the geometric
properties of elasticurves and showed them to be
mathematically stable, robust and convergent with
increasing sampling resolution of the input. They are also
capable of representing precise shapes like lines and circles.

Our evaluation of elasticurves was two-fold. First a free-
form user study with 6 users of varying skills show
elasticurves to be an effective and promising solution to the
real-time neatening of sketch input. Second, we favourably
compared our results with those of three commercial
systems for an image tracing task.

Avenues for improvement and future work on elasticurves
include the automatic adaption of responsiveness to
estimated sketch noise, curvature continuous connectors
and an extension of elasticurves to 3D surface modeling.

REFERENCES
1. Adobe Systems Inc. (2010). Adobe Illustrator CS 5.

http://www.adobe.com/products/illustrator.html
2. Autodesk Inc. (2010). Autodesk Sketchbook Pro 2010.

http://area.autodesk.com/sketchbook
3. Anderson, D., Bailey, C., & Skubic, M. (2004). Hidden

Markov Model Symbol Recognition for Sketch-Based
Interfaces. AAAI Fall Symposium (pp. 15-21). Menlo
Park, CA: AAAI Press.

4. Bae, S.-H., Balakrishnan, R., & Singh, K. (2008).
ILoveSketch:As-Natural-As-Possible System for
Creating 3D Curve Models. Proc. UIST , 151-160.

5. Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., &
Buxton, W. (1999). Digital Tape Drawing. Proc. UIST,
161-169.

6. Barzel, R. (1997). Faking Dynamics of Ropes and
Strings. IEEE CGA, 3, pp. 31-39.

7. Coleman, P., & Singh, K. (2006). Cords: Geometric
Curve Primitives for Modeling Contact. IEEE CGA, 3,
pp. 72-79.

8. Farin, G., Rein, G., Sapidis, N., & Worsey, A. (1987).
Fairing Cubic B-Spline Curves. Computer Aided
Geometric Design , 91-103.

9. Fiume, E. (1995). Isometric Piecewise Polynomial
Curves. Computer Graphics Forum , 1, pp. 47-58.

10. Fung, R., Lank, E., Terry, M., & Latulipe, C. (2008).
Kinematic Templates: End-User Tools for Content-
Relative Cursor Manipulations. Proc. UIST , 47-56.

11. Grossman, T., Balakrishnan, R., Kurtenbach, G.,
Fitzmaurice, G., Khan, A., & Buxton, B. (2002).
Creating Principal 3D Curves with Digital Tape
Drawing. Proc. CHI , 121-128.

12. Haeberli, P. (1989). DynaDraw. Silicon Graphics
Corporation. Mountain View, California, USA.
http://www.graficaobscura.com/dyna/index.html

13. Igarashi, T., Kadobayashi, R., Mase, K., & Tanaka, H.
(1998). Path Drawing for 3D Walkthrough. Proc. UIST,
(pp. 173-174).

14. Igarashi, T., Kawachiya, S., Matsuoka, S., & Tanaka, H.
(1997). In Search for an Ideal Computer-Assisted
Drawing System. INTERACT, (pp. 104-111).

15. Igarashi, T., Matsuoka, S., & Tanaka, H. (1999). Teddy:
A Sketching Interface for 3D Freeform Design.
SIGGRAPH, (pp. 409-416).

16. Igarashi, T., Matsuoka, S., Kawachiya, S., & Tanaka, H.
(1997). Interactive Beautification: A Technique for
Rapid Geometric Design. Proc. UIST, (pp. 105-114).

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

391

http://www.adobe.com/products/illustrator.html
http://area.autodesk.com/sketchbook
http://www.graficaobscura.com/dyna/index.html

17. Labahn, G., MacLean, S., Marzouk, M., Rutherford, I.,
& Tausky, D. (2006). MathBrush: An Experimental
Pen-Based Math System. Dagstuhl Seminar
Proceedings, Challenges in Symbolic Computation.

18. Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The
law relating the kinematics and figural aspects of
drawing movements. Acta Psychologica , pp. 115-130.

19. McCrae, J., & Singh, K. (2008). Sketching Piecewise
Clothoid Curves. SBIM, pp. 1-8.

20. Microsoft Corporation (2009). Windows 7 Journal.
21. Ramos, G., Boulos, M., & Balakrishnan, R. (2004).

Pressure Widgets. Proc. CHI, (pp. 487-494).
22. Rubine, D. (1991). Specifying gestures by example.

Proc. SIGGRAPH, (pp. 329-337).
23. Schmidt, R., Khan, A., Singh, K., & Kurtenbach, G.

(2010). Analytic Drawing of 3D Scaffolds. Proc.
SIGGRAPH ASIA (to appear).

24. Sezgin, T., & Davis, R. (2005). HMM-based efficient
sketch recognition. Proc. IUI , 281-283.

25. Sezgin, T., Stahovich, T., & Davis, R. (2001). Sketch
Based Interfaces: Early Processing for Sketch
Understanding. Proc. PUI .

26. Shao, L., & Zhou, H. (1996). Curve Fitting with Bezier
Cubics. Graphical Models and Image Processing , 3, pp.
223-232.

27. Singh, K. (1999). Interactive Curve Design using Digital
French Curves. Proc. I3D, 23-30.

28. Soukoreff, R., & MacKenzie, I. (2009). An informatic
rationale for the speed-accuracy trade-off. Proc. IEEE
SMC, (pp. 2969-2975).

29. Terzopoulos, D., & Qin, H. (1994). Dynamic NURBS
with Geometric Constraints for Interactive Sculpting.
ACM TOG, 2, pp. 103-136.

30. Thorne, M., Burke, D., & van de Panne, M. (2004).
Motion Doodles: An Interface for Sketching Character
Motion. ACM TOG, v.23 n.3.

31. Tian, F., Ao, X., Hongan, W., Setlur, V., & Dai, G.
(2008). Tilt menu: using the 3D orientation information
of pen devices to extend the selection capability of pen-
based user interfaces. Proc. CHI, (pp. 1371-1380).

32. Tsang, S., Balakrishnan, R., Singh, K., & Ranjan, A.
(2004). A suggestive interface for image guided 3d
sketching. Proc. CHI, (pp. 591-598).

33. Weber, E. (1846). Der Tastsinn und das Gemeingefühl.
In Wagner, Handlewörterbuch der Physiologie (Vol.
iii).

34. Wobbrock, J., Wilson, A., & Li., Y. (2007). Gestures
without Libraries, Toolkits or Training: a 1$ Recognizer
for User Interface Prototypes. Proc. UIST. (pp 159-168).

APPENDIX A
We present the computation of linear and circular-arc
connectors. We also show convergence to a continuous
limit elasticurve with increased sampling frequency

Linear Elasticurves

And substituting back into (1), we get:

Writing the responsiveness as s*dt, where we fix s to be
constant and dt is the sampling interval of time we get:

which is a linear first order differential equation, whose
solution is the elasticurve p(t) as dt→0.

Circular-arc Elasticurves
Figure 18 shows the circle passing through qi+1, pi with
tangent ti at pi, where ti and ni are the tangent and normal of
the elasticurve at pi.

Figure 18: Computing the circular-arc connector.

The circle radius R = and the
connector angle , where

 .

As before writing as s*dt we get:

In the limit as dt→0,

which verifies that the curve is tangent continuous and
shows that p(t) converges to the solution of the above
equations as dt→0. It is important to note here that the
vectors and are updated by a rotation of .

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

392

