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Figure 1: Input strokes are drawn in red, with drawing speed indicated by the spacing of green input points (a). The 
input stroke in (a) is neatened using Laplacian smoothing with fixed-distance sampling (b), and using elasticurves (c). 
Note the sharp corners and smooth arcs on the waves and teeth in (c), compared to the featureless smoothing in (b).  

ABSTRACT 
Elasticurves present a novel approach to neaten sketches in 
real-time, resulting in curves that combine smoothness with 
user-intended detail. Inspired by natural variations in stroke 
speed when drawing quickly or with precision, we exploit 
stroke dynamics to distinguish intentional fine detail from 
stroke noise. Combining inertia and stroke dynamics, 
elasticurves can be imagined as the trace of a pen attached 
to the user by an oscillation-free elastic band. Sketched 
quickly, the elasticurve spatially lags behind the stroke, 
smoothing over stroke detail, but catches up and matches 
the input stroke at slower speeds. Connectors, such as lines 
or circular-arcs link the evolving elasticurve to the next 
input point, growing the curve by a responsiveness fraction 
along the connector. Responsiveness is calibrated, to reflect 
drawing skill or device noise. Elasticurves are theoretically 
sound and robust to variations in stroke sampling. 
Practically, they neaten digital strokes in real-time while 
retaining the modeless and visceral feel of pen on paper. 
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INTRODUCTION 
Sketching has been used throughout history as a primitive 
mode of expression and visual communication. Sketching is 
also an increasingly viable medium of interaction with 
devices ranging in size from small tablets to large displays. 
Sketch strokes are used in a variety of computing scenarios: 
as curves representing visual content from simple 2D 
cartoons to complex 3D product designs [4, 15, 16, 23], as 
motion paths for animation [13, 30] and as general gestural 
input to invoke commands [3, 17, 22, 24, 25, 34].  

An important area of ongoing research deals with 
attempting to model and eliminate the difference or error 
between the stroke a user mentally imagines and the one 
that is drawn using a digital device. In this paper, we refer 
to this problem as stroke neatening.  

Stroke neatening can be addressed in two ways: first, by 
attempting to model the characteristics of the differences 
between sketched strokes and the resulting curves; second, 
by using priors that describe desirable properties of curves 
resulting from user strokes. Perhaps the most common prior 
is smoothness (Figure 1b) since high-frequency jitter is 
usually the result of device noise or an unsteady hand and 
further, smooth or fair [8, 19] curves are generally 
desirable. Indeed for many applications such as 3D design 
curves, paths for navigation or spatial curves for 
visualization, smoothing is sufficient for stroke neatening.  
There are, however, applications such as 2D cartoon 
drawing or motion paths for performance-based animation 
and interactive tracking, where the desired result of a sketch 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
UIST’11, October 16–19, 2011, Santa Barbara, California, USA. 
Copyright 2011 ACM  978-1-4503-0716-1/11/10...$10.00. 

Paper Session: Patterns UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

383



is a mix of smoothness and high-frequency detail in 
different parts of the neatened output curve (Figure 1c).  

In general, the extent to which a user intends the resulting 
curve to precisely track any portion of a sketched stroke is a 
directive that must be explicitly defined by the user. While 
the intended precision along parts of a stroke could be 
specified after its completion using a variety of interfaces 
[19, 26], not only would such an approach impede the 
fluidity of a sketching workflow, it comes too late for real-
time applications like drawing or performance animation, 
where the stroke must be neatened as the user sketches. It 
would thus be ideal if a user could specify intended 
precision along the stroke while sketching, using an 
affordance of the drawing tool such as finger pressure or 
pen tilt [21, 31]. Unfortunately, there is no evidence 
indicating that there exists a natural relationship between 
these device affordances and intended precision. We have 
observed, however, that there is a relationship between 
drawing speed and intended precision. In accordance with 
the speed-accuracy trade-off common to human activity 
[28], users instinctively slow down when drawing parts of a 
curve where they desire precision and speed up over regions 
that are smoother or less precise. We note also that drawing 
speed is a user controlled variable independent of the input 
device used, be it a finger, mouse, or stylus. Thus, using 
speed as a mechanism to control precision simply builds on 
users’ inherent sketching behaviour.  

A number of approaches that neaten a stroke after its 
completion [4, 16, 19, 23] typically fit a curve primitive 
such as a cubic spline [4] or optimize a criterion such as 
variation of curvature [19], over the entire stroke. Most of 
these approaches can be further improved by additionally 
exploiting the precision intent conveyed via stroke speed.  

These approaches, however, remain ill-suited to real-time 
applications, where a neatened curve must be incrementally 
committed while the user draws. This was especially noted 
by in-between and clean-up artists sketching over scanned 
drawings, where the lack of commitment of any part of the 
neatened curve until a stroke was completed was visually 
frustrating and often required sketching the same stroke 
multiple times without guarantee of success. A similar 
frustration was voiced by animators wishing to lasso-select 
objects in regions contained within neatened strokes. 

To perform real-time neatening, however, the evolving end 
of a committed curve must differ at times from the current 
end of the stroke, which we refer to as stroke inertia or 
spatial lag (see waves in Figure 1c and video). We draw 
inspiration from the traditional tape drawing technique [5] 
used by designers where curves are created by rolling out 
tape with one hand and fastening it with the other. 
Metaphorically, the hand rolling out the tape defines the 
stroke and the hand fastening the tape defines the 
committed curve. The tape in-between the two hands is the 
spatial lag. In a one-handed sketch-based version of tape 
drawing [11], the spatial lag has a fixed length and the 

committed curve can be thought of as being drawn by a pen 
attached to the user’s hand by an invisible rod. The smaller 
the lag (the shorter the rod), the more closely the committed 
curve tracks the sketched stroke, and larger lags result in 
smoother curves with less detail. This is captured in spirit 
by Dynadraw [12], simulating a pen with mass and friction 
being physically pulled across the paper. Given that 
controlling the amount of lag enables the creation of curves 
with different smoothness and detailed variation 
characteristics, we propose a novel approach whereby the 
lag is directly modulated in real-time by the stroke speed. 
The user can select from different curve primitives such as 
lines or circular-arcs to model the lag segment, allowing 
them to generate near perfect lines or arcs despite drawing 
quickly. At the same time, slowly drawn parts of a curve are 
tracked precisely without any explicit mode changes.  

There exists a continuum of intended curves ranging from 
completely free-hand to precise geometric primitives like 
lines and circles [10]. A good real-time stroke neatening 
algorithm would allow users to move freely within this 
continuum over the course of a single stroke. We believe 
elasticurves are the first real-time stroke neatening approach 
to possess this property. 

RELATED WORK 
There has been much research in the area of stroke 
processing. Broadly one branch looks at the symbolic 
processing of strokes for handwriting and other gestural 
recognition [3, 17, 22, 24, 25, 34]. Here, the stroke is 
classified as an instance of a known set of symbols. This is 
typically done by looking for structure within the stroke in 
terms of geometric features such as corners or inflections 
and then by matching these features to corresponding sets 
of examples for each known symbol. The actual geometry 
of such strokes serves only to classify and distinguish them.  

The second and more relevant branch addresses the 
neatening of strokes. An essential aspect of stroke neatening 
is determining which parts of the stroke to neaten. The 
majority of approaches [4, 19] simply neaten the entire 
stroke based on the assumption that smooth curves are 
desirable and that sharp corners or high-frequency detail 
will explicitly be created by concatenating multiple smooth 
strokes [4]. While this is perfectly acceptable for many 
applications, sketches such as that in Figure 1c would be 
cumbersome to create and require a large number of tiny 
strokes. Some approaches relax this assumption by breaking 
the stroke into a number of smooth segments connected at 
sharp corners [26].  

In other approaches users explicitly describe the intended 
shape of the curve using templates [10] or French curves 
[27] allowing the creation of very precise curve shapes. The 
two disadvantages of such approaches are that it is still 
difficult to transition through different neatening directives 
within the same stroke, and the external template needs to 
be invoked explicitly by the user, breaking the desirable 
flow of pure modeless sketching [14].  
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There are many different ways of achieving a desired stroke 
neatening directive. For simple stroke smoothing a variety 
of techniques exist including Laplacian smoothing [32], 
cubic spline fitting [4], clothoid fitting [19] and one-handed 
tape drawing [11]. Piecewise clothoid fitting [19] has been 
shown to create curves with the most appealing curvature 
properties but is hard to combine with point, tangent or 
other precise constraints. Some of these techniques such as 
Laplacian smoothing and one-handed tape drawing can be 
used to smooth and commit a stroke as it is drawn, whereas 
the remainder of the approaches are global in nature, based 
on optimization or fitting, and require a complete stroke. 

Ours is the first approach to propose the principled and 
explicit use of stroke dynamics as a neatening directive and 
perform this neatening in real-time as the stroke is sketched. 
We draw inspiration for this affordance from the kinematics 
of drawing [18, 28] and research that relates drawing speed 
to curve features such as cusps and corners [25]. 

There are a number of other approaches to curve creation 
and control that are relevant to this work. Fiume [9] 
introduced arc-length as a control parameter in conjunction 
with typical Bezier constraints. Using physical forces and 
dynamics as a control methodology has also been used 
extensively [6, 12, 29]. Dynadraw [12], aimed at creating 
calligraphic strokes, indirectly correlates stroke speed and 
lag by physically simulating a pen pulled across paper. 
Cords [7] are 3D curves which wrap around scene objects. 
Cords are procedurally generated from user-defined guide 
curves and a stiffness parameter that models their pliability. 
Our elasticurve framework has a similar mathematical 
formulation. 

Variants of the above research exist in commercial software 
such as Sketchbook-Pro [2], Illustrator [1] and Windows 
Journal [20]. We discuss these in relation to Elasticurves in 
the comparisons section.  

PROBLEM STATEMENT 
Given an input stroke segment Q, compute a neatened curve 
P that continuously changes from precisely Q to a smooth 
approximation of Q with increasing drawing speed (Figure 
3). The curve construction must also be incremental: i.e. if 
Q is a sub-stroke of a longer stroke Q’, its neatened curve P 
is the corresponding sub-stroke of the longer neatened 
curve P’ (Figure 2).  

 
Figure 2: Incremental Elasticurve construction: (a) A 
partial segment Q of an input stroke. (b) The 
elasticurve segment P corresponding to Q. (c) The 
continued stroke Q’ and elasticurve P’ (in blue). 
Once commited, P is invariant to subsequent input. 

ELASTICURVES ALGORITHM 
The elasticurve framework is a “pure” sketching interface, 
in that all information related to stroke input and neatening 
is provided by the user in the stroke itself. We describe a 
minimal number of parameters that allow additional control 
over the generated curves but in practice users can create 
their desired curves predictably with the default settings. 

 
Figure 3: The input stroke (left) is parameterized by 
time: the spacing of the green input points indicates 
stroke speed. The elasticurve (right) varies with 
increasing speed from a precise replica to a smooth 
approximation of the input. 

Input Stroke 
Input strokes from current sketching devices are typically a 
sequence of 2D points that are sampled at a small and 
regular time interval dt ms (see Appendix A). In practice 
this simply parameterizes the input stroke such that the 
distance between adjacent point samples is a measure of 
stroke speed (Figure 3). We denote this input stroke as Q, 
and the ith point on it as qi. Elasticurves grow as a fraction 
(called responsiveness) of the spatial lag between the 
current elasticurve and stroke. Therefore, in a discrete 
setting, they only ever get infinitesimally close to the input 
stroke if subsequent points on the stroke are at the same 
position. In practice we can replace this converging 
progression of elasticurve points with an analytic curve 
segment as long as we can detect such a paused stroke state. 
Note that while the elasticurve will inertially lag and catch-
up to the stroke as the user draws, the paused state can be 
thought of as an explicit catch-up of the elasticurve where 
the stroke inertia or lag is reset to zero. In practice, the 
curve often enters the paused state at sharp corners and 
upon stroke completion. We detect a pause in a stroke at a 
point where there is no movement for dtpause milliseconds.  

Curve Generation 
We define an inertial responsiveness parameter r, which 
controls the mapping from stroke speed to the neatness of 
the curve. Users typically calibrate r to reflect their drawing 
skill or the noise and ergonomic inaccuracy of the input 
device (0<r<=1, r=0.5 by default). The elasticurve 
precisely matches the input stroke for r=1. Lowering r 
increases stroke inertia (for r=0 the elasticurve is a 
stationary point) resulting in fairer curves (Figure 6). 

We will denote the generated elasticurve as P and its ith 
point as pi. While we can use the metaphor of an 
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oscillation-free zero-rest-length elastic band to describe the 
inertia between pi and qi, this is more to describe its visual 
behaviour than to accurately model its dynamics. Indeed in 
our case, the points are generated by a generalization of the 
formulation in [7], subject to p0=q0. 

                          (1) 

We will refer to the function f as being the connector 
between the evolving elasticurve and the input stroke. The 
connector locally controls the shape of the elasticurve and 
thus models prior knowledge of desirable curve shapes 
(such as lines or circles) that would connect pi and qi+1. The 
elasticurve segment between pi and pi+1 is simply the 
parametric fraction r of this connector (Figure 5). The 
overall evolution of the elasticurve for linear and circular-
arc connectors is shown in Figure 4. We explored various 
connector shapes and present the mathematical details of 
lines and circular-arcs in Appendix A.  

 
Figure 4: Elasticurve construction for 6 points of an 
input stroke using linear (top) and circular (bottom) 
connectors: the elasticurve evolves over six steps. 
At each step the curve grows by a fraction (r=0.5) 
along the connector shown by a dashed shape. 

 
Figure 5: Connector shapes: lines, parabolas, arcs 
(left to right) with increasing r (top to bottom). 

Linear Connectors 
Linear elasticurves favour a linear interpretation of the 
input stroke. Intuitively, if the user were to provide input 
points which were all collinear, the generated curve should 

be a straight line. Deviations from this linearity in the input 
stroke result in similar deviations in the elasticurve, albeit 
dampened by a factor of r. The formulation used is: 

                          

Leading to the following recursive formula: 

                     

This allows deviations from linearity in Q to be attenuated 
in P. As a consequence, P will always be more linear than 
Q especially when drawn rapidly (Figure 6), making the 
linear formulation ideal for sketching straight lines quickly. 
Further, while linear elasticurves seem to be only discrete 
polylines, they converge with finer sampling of an input 
stroke to a limit curve with the same degree of continuity as 
the input stroke (Appendix A).  

Circular-arc Connectors 
Circles are also a common shape prior that can be captured 
as a connector. Circular-arc connectors are defined by the 
circle passing through qi+1, pi with the tangent at pi being 
the same as the tangent of P at pi. Using this circle, we take 
a fraction r of the smaller-arc between pi and qi+1 to find 
pi+1. (Figure 5). The first circular-arc connector is defined 
by the smaller circular-arc connecting q0,q1,q2. Like linear 
elasticurves, circular-arc elasticurves also converge to a 
limit curve but are G1 continuous (a sequence of tangent 
continuous circular-arcs) even in the discrete setting. 
Circular-arcs can also represent lines (arcs of infinite 
radius) and are thus our default choice of connector. 

  
Figure 6: Responsiveness: At high r, elasticurves 
track the input regardless of connector. The impact 
of the connector shape is evident at lower r or when 
drawing quickly (left). A comparison between linear 
and circular-arcs for the same input at low r shows 
that circular-arcs handle curved regions better and 
can also capture line segments (right).  

Alternate Connectors  
While we present linear and circular connectors in detail, 
the elasticurve framework can accommodate any parametric 
connector function f. In particular, cubic Beziers can be 
used if curvature continuous elasticurves are desired. 
Curves with desired arc-lengths [9] can also be created 
using a tangent continuous parabolic connector passing 
through pi with an arc length given by            . 
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Figure 7: The elasticurve (connector is shown dashed) naturally catches-up to the input in a slowly drawn section. 

Elasticurve Properties 

Explicit use of drawing speed 
An important property of elasticurves is their embodiment 
of stroke dynamics. Regardless of the connector or the 
responsiveness, elasticurves naturally match the input 
stroke when the user draws slowly and approximates 
quickly drawn portions of the stroke, in keeping with the 
speed-accuracy trade-off seen in human input actions [28]. 

Figure 7 shows a circular-arc elasticurve approaching a 
slowly drawn section of the input stroke, indicated by the 
many input points (sampled at equal time intervals) close to 
each other. Since the elasticurve grows by a fraction of the 
connector it gets progressively closer to the input where 
points are repeated or are close to each other. Within a few 
such iterations, the elasticurve becomes visually 
indistinguishable from that of the input stroke until an 
increase in stroke speed creates visually discernable spatial 
lag. If multiple points of an elasticurve are built using the 
same input point repeated over time, the elasticurve 
converges to the point as an infinite geometric progression 
of the responsiveness fraction. We identify this condition as 
a pause in sketching to complete the connector. These 
pauses occur naturally when drawing sharp corners, cusps 
and upon stroke completion. 

 
Figure 8: Curve completion: The elasticurve typically 
lags the end-point of a stroke (top). A paused state 
causes the curve to grow to the end-point (bottom). 

Curve Completion 
Once the input stroke is in a paused state, which is to say 
the cursor has not changed position for dtpause ms or the 
stroke is completed, we complete the curve along its last 
connector. Conceptually, this is equivalent to creating an 
infinite number of input points at the given end-point. We 
implement this by repeating end-points (till the elasticurve 
is within a distance threshold to the curve) and then snap to 
the end-point, to keep the point distribution of the generated 
elasticurves consistent (Figure 8). Using the paused state in 
this manner also allows for the easy creation of cusps and 
tangent discontinuities, where natural pauses in drawing 
allow the elasticurve to catch up to the input at corners. 

Incremental generation 
The incremental construction of elasticurves makes it 
suitable to real-time curve neatening. In contrast most curve 
neatening algorithms [4, 19, 26] use a “global” fit to the 
current stroke, implying that the overall curve is never 
finalized until the input stroke is completed. 

While the “global” fit algorithms can produce curves with 
nicer mathematical properties such as linear variation in 
curvature [19], it comes at the cost of losing the immediacy 
of curve creation, a critical affordance in certain scenarios.  

Elasticurve Parameters 
Elasticurves have three meaningful parameters: sampling 
interval (dt), time interval for a pause state to be detected 
(dtpause), and responsiveness (r). dt is a function of  the 
spatio-temporal resolution of the input device and dtpause a 
matter of user agility and drawing skill. While we set these 
manually in our implementation, both are easy to calibrate: 
dt can be set such that the difference between the user input 
and the poly-line stroke is below a desired threshold. dtpause 
can be inferred by asking users to draw a few sharp corners. 
Responsiveness is the one free parameter that relates to the 
inertial feel of the curve. While we could attempt to learn a 
user-specific default setting for r, we find that users grasp 
its behaviour quickly and adjust it often while sketching.  

SPATIAL LAG RELATIONSHIPS 
As mentioned above, elasticurves possess an inertial 
relationship to their input stroke. This spatial lag is a direct 
consequence of real-time neatening, where the curve can 
drift from the stroke to smoothen the input but must adhere 
to it when precision is intended. The spatial lag model used 
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impacts the nature of curves produced. We classify a few 
existing models: stick lag connects the evolving curve and 
current input by a conceptual stick, akin to one-handed tape 
drawing [11]. String lag models this link as a piece of 
string. Points are added to the input stroke only when the 
string is taut, creating curves similar to one-handed tape 
drawing but allowing sharp corners, by letting the string go 
slack to abruptly change directions. Spring lag, akin to 
Dynadraw [12], models the link with a zero-rest-length 
spring, creating physically plausible trajectories that are 
often pleasing but can have undesirable oscillations. 
Elasticurves model what can be termed as speed lag, where 
the spatial inertia is directly related to stroke speed. Note 
that connectors and lag models are complementary and can 
be arbitrarily paired.   

HUMAN ABILITY TO CONTROL SKETCHING SPEED 
An obvious question that follows from wanting to use 
dynamics to indicate stroke precision while drawing is: how 
naturally and precisely can a user control sketching speed?  

Attempting to determine if users had any control over their 
drawing speed, we asked 5 participants (aged 24-30, 4 
right-handed, 1 left-handed), to continuously draw the same 
shape repeatedly, but with decreasing speed. For example, a 
participant would begin by drawing a line as fast as they 
could, and subsequently draw that same line with 
monotonically decreasing speed. This experiment was 
performed with lines, Bezier arcs and circles. 

The results (Figure 9) illustrate that users do in fact possess 
reasonable control over their drawing speed, in that they 
can gradually slow down or speed up. The results, like other 
sensory controls, tend to follow Weber’s law [33], in that a 
user can more aptly distinguish between slower speeds than 
fast ones. While a formal investigation of human drawing 
speed is worthwhile, this experiment suggests that users do 
possess adequate stroke speed control to utilize elasticurves 
effectively. 

Figure 9: Speed control experiment: plotting average speed 
(in pix/ms) versus stroke index (decreasing speed). 

CURVATURE AND ELASTICURVES 
A well-documented perceptual factor affecting sketching 
speed is curvature. As was noted in [18], stroke speed 
follows a power law relationship with respect to curvature, 
namely: 

              
   

Where      is tangential end-point speed,      is the 
instantaneous curvature of the path, and   is a constant. 

This formula entails that sketching speed is lower when 
attempting to draw areas of high curvature. However, this 
behaviour arises instinctively; there is no active decision to 
do so. In other words one might expect that a user intends to 
draw a curve with the same degree of smoothing but the 
unconscious drop in speed in regions of high curvature 
cause them to be drawn more precisely than regions of low 
curvature. Elasticurves can be modified to compensate for 
this by computing two speeds: vmeasured, the observed speed 
of the input stroke, and vexpected, the speed given by the 
power law relationship. Discrete curvature is computed at 
points by looking one input ahead and computing the angle 
between the neighbours. The difference         
                      thus captures any conscious 
variation in stroke speed by the user. We then map vactual to 
responsiveness. 

While the compensation method described above accounts 
for the perceptual effect curvature has on sketching speed, 
we found it to have little effect in practice, since the instant 
visual feedback from the elasticurve lets users compensate 
for this effect in their drawing directly. 

USER FEEDBACK 
We evaluated our system by distributing it to 6 users and 
asking them to try it out and send us their creations. We did 
not specify which input method they should use; two used a 
tablet computer, one a trackpad and three a mouse. Each 
user was aged between 20 and 40, had a familiarity with 
computers and drawing ability varying from professional to 
completely inexperienced. Notably, the experienced users 
used tablets, while the inexperienced ones used a mouse or 
trackpad as their input device. Their period of usage ranged 
from one to eight hours. Figures 1 and 10 illustrate sketches 
created by a user of above-average drawing skill on a pen 
and tablet interface. Of particular note in these images is 
how elasticurves satisfactorily handle both precise strokes 
(such as the arm and book of the character, as well as the 
fish and shark) and rapid strokes where precision is of no 
concern (such as the waves, ground, and tree foliage).  

Figure 11, on the other hand, illustrates how elasticurves 
can be used to improve sketching ability. The image was 
created by a user with no sketching experience using a 
mouse and a background image to trace over.  

The ability of elasticurves to allow users to create desirable 
primitive shapes (Figures 11-13), with a mouse or trackpad 
and little drawing experience, is particularly noteworthy. 
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Figure 10: Elasticurve sketch created using pen and tablet interface. Stroke input (left), overlaid elasticurves (right).

An experienced user also mentioned how she felt she had to 
draw “extra slow” for it to match her exact movements. We 
feel this is indicative of how, with experience, skilled artists 
will become proficient at making precise strokes quickly. 
While increasing responsiveness easily remedies this 
problem, it does indicate that parameter calibration is 
recommended (if not required) before extended use. Yet 
another user complained that the sampling frequency setting 
was too coarse for their device, once again hinting that 
calibration may be required on different input devices. One 
user also complained that the stroke inertia of elasticurves 
was distracting. The user felt they had to mentally predict 
the curve’s reaction to their future motion. Given that other 
users were comfortable with spatial lag, something 
professional tape-drawing artists live with, we believe that 
experience with the tool would mitigate such discomfort. 

 
Figure 11: Sketches created by a novice user. Tracing 
over a background image (top). 

 
Figure 12: Mouse sketches by an intermediate user. 

Users described the interface as “cool”, “fluid” or 
“physical” and remarked that the system was different from 
any sketching applications with which they had prior 
experience. One user who sketched with a mouse 
mentioned how when using our tool he “drew in a different 
way than [he] would using something unassisted” because 
“with [something else], [he] would try to draw things as 
straight (or circular) as possible, and probably fail, whereas 
with [elasticurves], [he] would guide the mouse in the 
general direction knowing roughly how the program was 
going to correct it”. 

 
Figure 13: Sketches created using a trackpad by an 
intermediate user. An oversketch (top). Using the 
trackpad as a virtual skating rink (bottom). 
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Another user mentioned that it felt like “drawing with hair 
on bathroom tiles”, which we believe is an allusion to the 
inertial and smooth nature of elasticurves.  

 
Figure 14: Additional sketches created by various 
users of intermediate drawing experience. 

APPLICATIONS 
We believe the affordances provided by an elasticurve 
sketching system are applicable in many fields. Notable 
here are: a front-end to gesture-based interfaces [3, 17, 22, 
24, 25, 34], where the real-time mix of smoothness and 
sharp corners can provide shape recognizers with improved 
input; image tracing for vectorization and cel animation, 
where the incremental nature of elasticurves allows visual 
evaluation of the result while the user draws; interactive 
trajectories for performance animation [30], where in 
addition to real-time neatening, the timing along the path is 
encoded in elasticurve parameterization. 

In general sketching scenarios, responsiveness provides 
users a single parameter to control a level of drawing 
assistance and to compensate for device and motor noise.      

Drawing Assistance 
Elasticurves were in part developed as a means to assist 
users lacking the control and practice of a professional artist 
(Figure 11). Since the responsiveness parameter controls 
how closely the input stroke is tracked (Figure 6), it 
provides all users with a manner by which to adjust 
elasticurves to appropriately augment their personal 
sketching ability, in particular for drawing near perfect lines 
or circular arcs.  

Device and motor ability compensation 
The strong approximations elasticurves with low 
responsiveness can induce on input strokes make them 
viable candidates for sketching tasks on commonly used 
devices that are not designed for drawing such as mice, 
trackpads, touchscreens and trackballs (Figures 11-13).  

 
Figure 15: An input stroke with jitter is attenuated 
using a low responsiveness elasticurve. 

A similar argument holds for users lacking fine motor 
control. As shown in Figure 15, by lowering responsiveness 
to an appropriate level, jitter and noisy input can be 
attenuated to create visually appealing strokes. 

ELASTICURVE COMPARISONS 
The neatening of sketches is a long standing problem with a 
large body of research. To evaluate elasticurves relative to 
existing research we compare elasticurves to three popular 
commercial systems: Windows7 Journal [20], Illustrator 
CS5 [1] and Sketchbook-Pro 2010 [2].  

 
Figure 16: Sketch neatening technique comparison 
using a trackpad on an image tracing task. The 
visually neatest result of 7 trials for each technique 
by an intermediate user are shown. 

Sketch neatening in Journal and Illustrator are based on 
global fitting after stroke completion. Sketchbook-Pro 
implements a real-time variant of Dynadraw [12]. 
Theoretically, a fair comparison with elasticurves is 
difficult. Journal and Illustrator have the advantage of 
globally optimizing an entire stroke over the real-time local 
approach of Sketchbook and Elasticurves. Conversely, the 
latter two use speed as a neatening directive. Elasticurves 
enable further user control via responsiveness. Despite 
these issues, to gain some practical insight, we asked an 
intermediate user to trace the outline of a background image 
using all four techniques. After a few strokes to gain 
familiarity with all systems, the user traced over the image 
with a single stroke. The four techniques were used in turn 
and repeated overall 7 times. The neatest visual result of 
each technique using a trackpad is shown in Figure 16. 
Qualitatively, the neatening in Journal is more localized 
than Illustrator, resulting in sharp corners but an overall 
noisier sketch. Illustrator conversely produces a globally 
smooth but wiggly curve that tends to round subtle corners 
(the concave corners of the star in Figure 16). Sketchbook is 
optimized for local real-time neatening and produces noisy 
results visually similar to Journal. Elasticurves, with low 
responsiveness, produce the most pleasing result: Corners 
are precisely created at pauses in the stroke and the circular-
arc connector captures lines, arcs and smooth curves with 
ease. The same task done with a pen produced differences 
that were subtler but noticeably similar to the trackpad.   
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Within the genre of elasticurves we further explored viable 
alternatives to the problem of real-time curve neatening. In 
both cases we re-parameterized the curve by arc-length and 
then used stroke speed to modulate a smoothing approach.   

Speed modulated Laplacian Smoothing 
Simple neighbour averaging is a popular approach to stroke 
smoothing that is trivial to implement. Conceptually, 
correlating smoothing strength to stroke speed should result 
in neatened curves. In practice (Figure 1b), the locality of 
neighbour averaging can create wiggles or pockets of 
curvature in curves and varying smoothing strength along 
the curve can cause irregular spacing of curve points. It also 
lacks the tangent continuity of circular-arc connectors. 

Speed modulated responsiveness 
Stroke speed can also be inversely related to the 
responsiveness of an arc-length parameterized elasticurve. 
This provides better results than Laplacian smoothing (see 
Figure 17 and video), but both approaches suffer from re-
parameterization artifacts and do not have the convergence 
guarantees of elasticurves shown in Appendix A.  

 
Figure 17: Speed modulated responsiveness built 
using input points 30 pixels apart. The brightness of 
the green input points indicates speed.  

CONCLUSION 
We explored stroke neatening in real-time, and argued that 
in a general scenario, neatening intent along a stroke should 
be provided by the user. Motivated by the ergonomics of 
sketching, we proposed using stroke speed as a neatening 
directive. An experiment where users drew sequences of 
strokes while consciously controlling drawing speed led 
further credence to this choice 

We then developed elasticurves, a stroke neatening 
framework explicitly driven by stroke speed. We capture 
desirable shapes like lines and circles as connectors along 
which the elasticurve evolves. We analyzed the geometric 
properties of elasticurves and showed them to be 
mathematically stable, robust and convergent with 
increasing sampling resolution of the input. They are also 
capable of representing precise shapes like lines and circles.  

Our evaluation of elasticurves was two-fold. First a free-
form user study with 6 users of varying skills show 
elasticurves to be an effective and promising solution to the 
real-time neatening of sketch input. Second, we favourably 
compared our results with those of three commercial 
systems for an image tracing task. 

Avenues for improvement and future work on elasticurves 
include the automatic adaption of responsiveness to 
estimated sketch noise, curvature continuous connectors 
and an extension of elasticurves to 3D surface modeling. 
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APPENDIX A 
We present the computation of linear and circular-arc 
connectors. We also show convergence to a continuous 
limit elasticurve with increased sampling frequency 

Linear Elasticurves 
                          

And substituting back into (1), we get: 

                     

Writing the responsiveness   as s*dt, where we fix s to be 
constant and dt is the sampling interval of time we get: 

                    

which is a linear first order differential equation, whose 
solution is the elasticurve p(t) as dt→0. 

Circular-arc Elasticurves 
Figure 18 shows the circle passing through qi+1, pi with 
tangent ti at pi, where ti and ni are the tangent and normal of 
the elasticurve at pi.  

 
Figure 18: Computing the circular-arc connector. 

                                          

The circle radius R =                      and the 
connector angle       , where 

                                . 

As before writing   as s*dt we get: 

                                        

In the limit as dt→0,              

which verifies that the curve is tangent continuous and 
shows that p(t) converges to the solution of the above 
equations as dt→0. It is important to note here that the 
vectors    and    are updated by a rotation of   . 
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