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ABSTRACT 
Sphere is a multi-user, multi-touch-sensitive spherical dis-
play in which an infrared camera used for touch sensing 
shares the same optical path with the projector used for the 
display. This novel configuration permits: (1) the enclosure 
of both the projection and the sensing mechanism in the 
base of the device, and (2) easy 360-degree access for mul-
tiple users, with a high degree of interactivity without sha-
dowing or occlusion. In addition to the hardware and soft-
ware solution, we present a set of multi-touch interaction 
techniques and interface concepts that facilitate collabora-
tive interactions around Sphere. We designed four spherical 
application concepts and report on several important obser-
vations of collaborative activity from our initial Sphere 
installation in three high-traffic locations.  
ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces. – Input devices and strate-
gies; Graphical user interfaces.  
General terms: Design, Human Factors  
Keywords: Spherical display, multi-touch, surface compu-
ting, collaboration, single-display groupware.  

INTRODUCTION 
Spherical displays offer an unobstructed 360° field of view 
to all users, enabling them to explore different perspectives 
of the displayed data by physically moving around the dis-
play. Viewers can use the spherical nature of the display, 
their physical body position and orientation, and additional 
cues from the surrounding environment to aid them in spa-
tially finding and understanding data displayed on the 
spherical surface. Thus, it is likely that the unique characte-
ristics of the spherical form factor could afford interesting 
usage scenarios and interaction challenges that go beyond 
what is possible with prevalent flat displays. 
While several commercially available spherical displays 
exist today [13, 17, 18], such displays are not directly inter-
active and tend to be used as output-only devices.  Any 
interactivity is usually provided through an auxiliary device 
such as a trackball or an additional flat touchscreen.  

In this paper, we present an implementation of a novel, 
multi-touch-sensitive, spherical display prototype called 
Sphere (Figure 1). We use Sphere to explore the interactive 
and collaborative possibilities of spherical interfaces 
through the development of several concept applications. 
Our work makes the following three contributions: 
First, we outline and discuss the unique benefits of spheri-
cal displays in comparison to flat displays. While the chal-
lenges of designing applications and interactions are argua-
bly greater for a spherical than for a flat surface, applica-
tions can be designed that exploit the unique characteristics 
of spherical displays to create interesting user experience. 
Second, we describe hardware and software components 
needed to facilitate multi-touch sensing on a spherical dis-
play. Sphere uses a commercially available Magic Planet 
display [13] as its core, augmented by our custom touch-
sensing hardware. We also discuss the projections needed 
to pre-distort data for display on a spherical surface. 
Third, we present a set of direct touch interaction tech-
niques – including dragging, scaling, rotating, and flicking 
of objects – that permit interaction and collaboration 
around Sphere. We also contribute gestural interactions and 
user interface concepts that account for the spherical nature 
of the interface. While general in nature, these interactions 
were developed within the context of four simple prototype 
application concepts that help us explore Sphere’s interac-
tive capabilities, including a picture and video browser, an 
omni-directional data viewer, a paint application, and a 
“pong” style game application. 
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Copyright 2008 ACM  978-1-59593-975-3/08/10...$5.00. Figure 1: Scaling a picture on Sphere, a multi-user, 

multi-touch spherical display prototype built on top 
of a Magic Planet display. 
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RELATED WORK 
Although several research prototypes of interactive spheri-
cal and hemispherical displays have been recently pre-
sented, none are able to sense and track multiple touch 
points on their curved surfaces.  
Kettner et al. [10] explored interactions with spherical data 
projected on a spherical surface. Their ViBall display re-
quired multiple external projectors and was not directly 
touch-sensitive, but was able to physically rotate in place, 
making it behave as a large trackball. This physical-
rotation-only sensing was well suited for the spherical data 
Kettner et al. experimented with (e.g., Earth globe images), 
but did not allow for direct position sensing of multiple 
touch-points on the spherical surface. A similar physical-
rotation-only sensing approach was used in the Globe4D 
hemispherical display [2]. Unlike the rotation sensing of 
ViBall and Globe4D, Marchese and Rose [14] used several 
ultrasonic distance sensors to allow for hand-based interac-
tions away from the display surface. In their system, each 
sensor independently controlled two rotation axes and one 
zoom axis.  
In contrast to spherical displays that present data on their 
curved surfaces (a category to which Sphere belongs), 
spherical volumetric displays have been used to visualize 
and interact with 3D data within the display. Grossman and 
colleagues performed several interaction studies on a spher-
ical 3D volumetric display from Actuality Systems, Inc. 
[7,8]. They found the two most noticeable interaction diffi-
culties resulted from an inability to: (1) display anything on 
the volumetric display’s surface, and (2) physically reach 
into the display. To alleviate these problems, Grossman et 
al. created a set of interactions based on modified ray-
casting selection from a distance, and used an external mo-
tion tracking system to allow gestural interactions with the 
3D data.  
While incapable of displaying either spherical or volume-
tric data, the i-ball2 display [24] creates the illusion of pre-
senting data within a transparent sphere. The i-ball2 system 
can support up to two users, but only by using two inde-
pendent display systems. Chan et al. [3] designed a system 
to track hand gestures above i-ball2. They used computer-
vision techniques to track the user’s hands and pressure 
sensors at the base of the ball to detect the user’s touches. 
In contrast to our work, Chan et al. do not support spherical 
interactions or projections on the sphere itself, but rather 
display data on a regular planar display and interact with it 
using gestures over a transparent sphere. The glass sphere 
in i-ball2 is only used to create the illusion of looking at 
something inside a sphere.  
There also exist numerous planetarium-style immersive 
displays where the user is located within a hemispherical 
display that is used to create a completely immersive expe-
rience. A complete discussion of these displays and various 
other immersive display technologies is beyond the scope 
of this paper, but we refer the reader to [1] for further in-
formation. Furthermore, while all the spherical displays 
currently available rely on a projection mechanism for dis-

play, in the future, the availability of flexible displays [4] 
should make various curved displays more common. Even 
with different implementations of spherical displays, our 
interaction principles should remain relevant.  
From an interaction perspective, our work primarily ex-
tends the surface computing research in multi-user and 
multi-touch interactions (e.g., [5, 9, 15, 19, 25, 26, 27]). 
Our multi-touch-sensing technique builds on the computer-
vision finger-tracking solutions developed by many surface 
computing prototypes (e.g., HoloWall [15], TouchLight 
[25], PlayAnywhere [26], and FTIR [9]). In all of these 
solutions, touch-sensing is performed using infra-red light 
while projection is done in the visible portion of the light 
spectrum. This light separation ensures that sensing is not 
disturbed by the visually visible projected data.  
The basic unit of interaction on Sphere is a rotation (qua-
ternion), rather than the translation (vector) common to 
most flat interactive surfaces. Our interactions are based on 
Shoemake’s work on quaternion-based rotation principles 
[22] and the ArcBall controller [23]. 
Research exploring how multiple people collaborate around 
an interactive tabletop [11, 16, 21] is also highly relevant, 
as we demonstrate that spherical displays may alleviate 
some data orientation difficulties commonly associated 
with tabletop collaboration. Shen et al’s. DiamondSpin 
toolkit [21] enabled arbitrary orientation of all displayed 
user interface elements to accommodate various user posi-
tions around a tabletop. We extend this concept by auto-
matically orienting objects around Sphere to simplify col-
laboration. We also show how the territoriality concept of 
Scott et al. [20] applies to spherical displays.  
THE DESIGN SPACE OF SPHERICAL DISPLAYS  
Most current spherical applications primarily focus on out-
put-only presentations of global data (e.g., weather pat-
terns) or simple marketing applications (e.g., spinning lo-
gos or animations). These applications exploit the omni-
directional viewing capability of spherical displays, and 
benefit from their novelty. In contrast, enabling interactivi-
ty on spherical displays makes direct manipulation of data 
and new applications possible. We believe that in order to 
create compelling interactive applications for spherical 
displays, it is important to investigate and understand their 
unique characteristics. While the following analysis focuses 
on Sphere, it also applies more generally to spherical and 
hemispherical displays.  
Unique Properties 
Non-visible Hemisphere: The diffuse nature of the spherical 
surface makes it impossible for users to see inside the dis-
play (unlike true 3D volumetric displays [7]) and ensures 
that each user, at any given time, can see at most one half 
(one hemisphere) of the display. While not being able to 
see the entire display simultaneously may be a disadvan-
tage for some applications, we believe that in many scena-
rios this presents a unique benefit. For example, multiple 
people can manipulate data on the same display without 
disturbing the other users.  

78



 

 

No Master User Position or Orientation: In contrast to hori-
zontal tabletop displays for which orientation of displayed 
content is often a difficult problem [11, 16, 21], spherical 
displays do not have a “master user” position. In many 
ways, spherical displays offer an egalitarian user expe-
rience, with each viewer around the display possessing an 
equally compelling perspective. In addition, the orientation 
of displayed content can be easily adjusted with respect to 
the prominent physical features of the display, such as the 
top and bottom poles.  
Visible Content Changes with Position and Height: In con-
trast to flat vertical displays where multiple users share a 
similar perspective, spherical displays offer each viewer a 
unique perspective determined by each viewer’s position 
around the display, their height, and the height of the dis-
play itself. Even small changes in head position may reveal 
new content or hide previously visible content.  
Smooth Transition Between Vertical and Horizontal Surfac-
es: A spherical display can be thought of as a continuously 
varying surface that combines the properties of both vertic-
al and horizontal surfaces. The top of the display can be 
considered a shared, almost horizontal, “flat” zone, while 
the sides of the sphere can be thought of as approximating 
multiple vertical displays. While this is also true of a cubo-
id or a cylindrical display, spherical displays offer conti-
nuously smooth transitions between all such areas. Another 
way to consider this property is to think about spherical 
displays as continuously changing in depth and orientation 
with respect to the user. This also means that for any user’s 
perspective, the best flat surface approximation is the tan-
gential plane at the point closest to the position of the us-
er’s eyes.  
Pseudo-Privacy: Viewers collaborating around a spherical 
display have a general sense of which portions of the dis-
play are visible to others. Although collaborators are os-
tensibly free to change position and peek at other portions 
of the display, such movements are obvious to everyone 
involved. Consequently, participants can rely on standard 
social cues to ensure “pseudo privacy” for their actions or 
content. While spherical displays may not be appropriate 
for viewing truly confidential data, certain applications, 
such as games, could exploit this ability to make some ac-
tions invisible to others simply by manipulating their loca-
tion.  
Borderless, but Finite Display: Spherical displays present a 
difficult design challenge as they usually require a user 
interface to be thought of as a continuous surface without 
borders. With standard flat displays, the content can often 
stretch beyond the borders of the display, i.e., the display 
can be thought of as a window into the larger digital world. 
But for a spherical display, such “off-screen space” usually 
does not exist; rather, any data moved far enough in one 
direction will eventually make it full circle around the dis-
play. Even when borders are physically present, such as at 
the base of a spherical display, users tend to mentally 
perceive this part of the display simply as a hidden portion 
of a continuous spherical surface. 

Natural Orientation Landmarks: Relatively few physical 
cues exist on the surface of a spherical display. Our infor-
mal observations reveal that most people tend to perceive 
the top (“north pole”) as the strongest natural landmark, 
followed by the equator and the bottom (although the bot-
tom of Sphere is not visible). In addition to these landmarks 
on the display itself, it is plausible that people can use 
landmarks in the surrounding environment to help them 
navigate spherical displays. 
SYSTEM HARDWARE AND SOFTWARE 
Hardware Implementation 
Sphere is based on the Magic Planet display from Global 
Imagination, Inc [13]. Magic Planet spherical displays use a 
projector and a wide-angle lens to project imagery from the 
bottom of the device onto a spherical surface. They are 
available in a variety of sizes ranging in diameter between 
16 inches and 6 feet. The spherical surface of Magic Planet 
displays is an empty plastic ball coated with a diffuse ma-
terial that serves as a passive curved projector screen. The 
bottom of the spherical surface is reserved for the lens and 
mounting bracket, leaving the displayable portion of the 
sphere at 290° vertically and 360° horizontally. The quality 
of the projected image depends on the size of the spherical 
surface; the brightness, contrast, and resolution of the pro-
jector; and the amount of ambient light in the surrounding 
environment. 
Our multi-touch-sensitive Sphere is built on a 34” high 
podium version of Magic Planet. We experimented with 
spherical surfaces of 16” and 24” diameter (Figure 2). We 
use a high-resolution DLP projector (Projection Design F20 
sx+, 1400x1050 pixels). Only the central circular portion of 
the projected image is actually visible on the surface, which 
effectively reduces the useful resolution to a circle with 
diameter of 1050 pixels, or approximately 866,000 pixels.  
To enable touch-sensing on the spherical surface through 
the same optical axis as the projection on the surface, we 
added: an infra-red (IR) sensitive camera, an IR-pass filter 
for the camera, an IR-cut filter for the projector, an IR il-
lumination ring, and a cold mirror. The physical layout of 
these components is illustrated in Figure 3. 

Figure 2:  Two sizes of spherical surfaces used in 
our Sphere prototype: (a) a 16”-diameter ball show-
ing a photo-browsing application, and (b) a 24”-
diameter ball showing an omni-directional panoram-
ic video. 
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Touch-sensing is performed by an IR camera (Firefly MV 
camera by Point Grey Research with an IR-pass filter) that 
looks through the same wide-angle lens as the projector. 
This camera is able to image the entire displayable portion 
of the spherical surface. To ensure that sensing is not dis-
turbed by currently visible projected data, we perform 
touch-sensing in the IR portion of the light spectrum, while 
projection is in the visible spectrum. This approach has 
previously been used in many camera-based sensing proto-
types (e.g., [9, 12, 24, 26]), but not in spherical display 
applications. We place an IR-cut filter in front of the pro-
jector to ensure that the projector emits only visible light 
which cannot be seen by the IR camera. 
The IR light used for sensing comes from a custom ring of 
72 wide-angle, IR-light-emitting diodes (LEDs). This ring 
fits around the wide-angle lens at the base of the sphere 
(Figure 3). The wavelength of light emitted by the LEDs 
(880nm) is matched by the IR-pass filter on the camera. 
Particular care was taken in designing this illumination 
source to ensure that it provides uniform illumination in-
side the sphere, but is not directly visible to the camera.  

To combine the optical axis of the camera and the projector 
through a single lens, we use a cold mirror (an optical com-
ponent that reflects visible light and transmits IR light). 
Figure 4 shows the difference in the optical paths for pro-
jection and sensing. Projected light hits the diffuse surface 
and is scattered into the eyes of observers; user fingers 
touching the surface reflect IR light back into the lens to be 
captured by the camera.  
Touch-Sensing Software 
In order to track multiple contacts on the surface, the soft-
ware takes a raw camera image of the entire displayable 
portion of Sphere, normalizes it, binarizes it, and then finds 
and tracks connected components in the binarized image 
(Figure 5).  
Any finger or object that touches the surface reflects IR 
light, and therefore appears brighter than its surroundings 
in the raw camera image. However, even with careful de-
sign, illumination is not completely uniform at different 
positions on the spherical surface, resulting in contacts on 
the top of the sphere (the center of the tracked image) ap-
pearing significantly brighter than contacts close to the base 
(as can be seen in Figure 5a). A normalization step ac-
counts for these varying levels of illumination by compu-
ting an image where all pixel values are normalized with 
respect to the minimum and maximum brightness observed 
at that location. The normalization procedure requires that 
during initial calibration, we capture a minimum brightness 
image (i.e., an image of an empty surface), and a maximum 
brightness image (i.e., an image of a completely covered 
surface).  

 

Figure 3: Schematic drawing of Sphere’s hardware 
components that enable multi-touch sensing 
through the same optical axis as the projection on 
the spherical surface. The inset picture shows the 
IR illumination ring consisting of 72 wide-angle 
LEDs fitted around the wide-angle lens. 

Figure 4: Comparison of optical paths in Sphere 
taken by: (a) the projection light path (visible), and 
(b) the tracking light path (IR). 

Figure 5: Different stages of our touch-sensing 
software: (a) raw image of two hands touching 
Sphere’s surface, (b) normalized image, (c) bina-
rized image, and (d) labeled binarized image with 
two tracked and connected components. 
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Our tracking software is written as a standalone C++ li-
brary and can be used by applications to receive touch up-
dates. The tracking library runs at approximately 30 frames 
per second with a camera resolution of 640x480 pixels. As 
for projection, the effective tracking area is constrained to 
the circle in the image that represents the view through the 
wide-angle lens a circle of approximately 400 pixels in 
diameter seen in Figure 5a. 
Sensing and Projection Distortions 
The wide-angle lens introduces significant distortions that 
need to be accounted for in both sensing and projection. 
The sensing camera is imaging a flat radial image (Figure 
5) that is subsequently mapped onto a spherical surface to 
report touch contacts in a 3D Cartesian coordinate system. 
The projection of data onto the spherical surface requires 
the use of the inverse mapping, i.e., the data in 3D Carte-
sian coordinates need to be flattened into a flat radial image 
for the projector (Figure 6a). This means that displayed 
objects need to be pre-distorted (flattened) in order to ap-
pear undistorted when projected (Figure 6d). 

The mapping depends on the physical size of the spherical 
ball, as the center maps to the top of the sphere and the 
distance from the center corresponds to the particular 
height (latitude) on the sphere (Figure 6c). The mapping is 
determined once during a separate calibration step and can 
be saved and reused later for all surfaces of the same size. 
For non-interactive applications, the distortion of data 
could be pre-computed off-line and simply replayed when 
desired. In fact, most existing spherical applications use 

this approach. However, user interaction with displayed 
content requires that the system support real-time computa-
tion of distortions. To achieve this, we wrote a custom ver-
tex shader to compute the position of each vertex in a radial 
image at every frame. In our approach, the quality of the 
distorted image depends greatly on the number of vertices 
the object possesses; therefore, we highly tessellate each 
displayed object (Figure 6b).  
The distortion requirement makes it impossible to author 
applications for Sphere using standard graphical user inter-
face toolkits, as these were designed primarily for flat, two-
dimensional interfaces. All of our current applications are 
written in C# using Microsoft’s XNA 2.0 framework and 
use our custom vertex shader to handle distortions. We run 
these applications on a PC with a 2.67 GHz Intel Core2 
processor, and NVIDIA GeForce 8600 GT graphics card. 
Data Coordinate Systems 
Although it is possible to create content for Sphere in the 
2D coordinate system of the projected radial disk image, 
the distortions described in the previous section make this 
approach challenging. However, this works well for setting 
the entire background to a texture in which distortions are 
not clearly noticeable. For example, the background image 
of our circular menu (Figure 11) is authored this way.  
Alternatively, authoring content in a cylindrical projection 
is relatively straightforward, as everything is performed in 
a 2D plane (cylindrical map) which then is mapped onto a 
sphere. All currently available commercial spherical dis-
plays are primarily used for displaying spherical data (e.g., 
visualizations of planets and stars), and such data is usually 
stored in a 2D map using an equidistant cylindrical projec-
tion (e.g., a flat 2D map of the Earth). However, using cy-
lindrical projections has several well-known distortion 
problems; these are most visible at the top and bottom of 
the map (the poles of the sphere). The entire top row (or 
bottom row) of the cylindrical map is mapped to a single 
point at the pole. Using such projections makes it difficult 
to display rectilinear objects near the poles.  
Another approach is to author content in 3D Cartesian 
coordinates in which all objects lie on a unit sphere cen-
tered at the origin (Figure 7). Although this approach is 
more difficult, as it requires all content to be specified in 
3D coordinates, it does not suffer from the distortion prob-
lems associated with cylindrical projection and offers addi-
tional advantages, such as being able take advantage of 3D 
game engines to incorporate shadows or game physics. 

Figure 7: Sphere content authored in 3D Cartesian 
coordinates: (a) a virtual view of a 3D scene; (b) the 
same scene flattened to a radial image for projec-
tion; (c) the scene when displayed on Sphere. 

Figure 6: Sphere projection distortions: (a) a radial 
image displayed by the projector in which all objects 
are pre-distorted by our vertex shader; (b) a wire-
frame view of a portion of the image (a) that reveals 
high tessellation of objects; (c) a mapping used to 
create the radial image maps each point on a 3D 
sphere to a 2D disk; (d) objects rendered on Sphere 
appear without distortions. 

81



 

 

Finally, a sphere at any given point can be considered lo-
cally flat. This assumption allows one to design a relatively 
small portion of the interface completely in 2D, and to then 
simply project this flat image from a tangential plane to a 
point on the 3D spherical surface. This locally flat approach 
is how photographs are displayed in Figure 1. 
Ultimately, the choice of which coordinate system to use 
for authoring will depend on the content itself and we antic-
ipate that data authored in different coordinate systems will 
be combined together in the same application.  
MULTI-TOUCH INTERACTIONS 
We now discuss various multi-touch interaction techniques 
we developed for Sphere. Enabling user interaction on a 
spherical surface requires the implementation of basic op-
erations such as selection, translation, rotation, and scaling, 
as well as providing support for browsing and task switch-
ing. While implemented within the context of four simple 
prototype applications, our interactions are general and 
designed to be useful to other applications on spherical or 
cylindrical displays. We also discuss implications of these 
interactions for multi-user collaboration around Sphere. 
Sphere Photo & Video Browser 
The first application we explored is a simple browser in 
which users can freely manipulate rectangular projections 
of images and videos (Figure 1). Such browsing applica-
tions have frequently been demonstrated on flat multi-touch 
prototypes (e.g., [9, 19]) as they tend to clearly show the 
capabilities of touch-based, direct manipulation interfaces. 
Basic Multi-Touch Object Manipulations  
Each object (photo or video) in our Sphere Photo & Video 
Browser can be independently dragged, rotated, and scaled. 
As with most touch-sensitive applications, selection of an 
object is implicitly triggered by any touch contact that 
lands on that object. Landing on a video object acts as a 
simple playback toggle: it starts the video playback if the 
video is paused or stops it if the video is running.  
Dragging: Enabling a user to drag an object around Sphere 
is not as obvious as it might seem at first. The difficulty is 
that the curved geometry of the spherical surface is drasti-
cally different from 2D flat space. In Euclidean space 
(standard 2D and 3D environments fall into this category), 
movement is best represented by a displacement vector 
which encapsulates the direction and magnitude of the 
movement in a particular line. However, the spherical sur-
face is not a Euclidian space and there are no straight lines 
on the sphere as all “lines” are actually curves and thus 
more accurately represented as arcs. While in some cases 
Euclidean geometry might offer a reasonable local approx-
imation, representing displacement on a sphere with vectors 
ultimately leads to problematic behaviors.  
Instead of vectors, the movement on a sphere is best 
represented by a quaternion, i.e., a rotation (Figure 8). This 
has some profound implications for our interactions, as the 
standard translation + rotation + scale manipulation model 
used in 2D and 3D environments becomes a compound 
rotation + scale manipulation model on Sphere. We stress 

that the rotation is often a compound action as the object is 
spherically “positioned” by a rotation around the sphere’s 
origin, and then often oriented further in its local coordinate 
system (see the Local Rotation section below).  
We adopted the use of quaternions as Sphere’s basic unit of 
movement, and we model our interactions on rotational 
principles similar to those discussed by Shoemake [22, 23]. 
While the system treats all dragging interactions as global 
rotations around the origin of the sphere, users tend to think 
of them from their local context and perceive them as a 
physical translation of an object around the sphere. When 
asked during demo sessions, users described the interac-
tions purely from their local coordinate system, e.g., “mov-
ing to the left” or “this object is above the other one.”  
Local Rotation: In addition to allowing the user to position 
(i.e., rotate) an object on Sphere, we facilitate additional 1D 
adjustment of the object’s orientation in its local coordinate 
system, similar to in-plane rotation of a picture on a flat 
surface. This operation requires at least two contacts to be 
touching the object; we map the local angular difference 
between those two contacts to a 1D rotation of the object. 
For all our basic manipulations, when multiple contacts are 
touching a particular object, we aggregate their behavior 
and apply the aggregate action to the object. 
Scaling: Users can scale a picture or a movie by moving 
their fingers closer together or further apart on top of the 
displayed object (Figure 1). We map the change in arc 
length between the touch points to the scaling factor ap-
plied to the object. Given that Sphere is a borderless but 
finite display, scaling an object larger has the potential to 
envelop the entire surface. While in a single user scenario 
this might be desired in order to enlarge a particularly small 
feature, scaling by more than a single hemisphere greatly 
affects other viewers and ultimately results in either seams 
or heavy distortions on the other side of the display. In our 
Sphere Photo & Video browser, the scale of an object is 
currently restricted to fit within one hemisphere. This 
seems to be a good compromise between manipulation 
flexibility and reduced disturbance to other users. 

Figure 8: A comparison of basic dragging manipula-
tions when moving a finger between points 1 and 2: 
(a) on a flat surface this movement is represented by 
a 2D vector V; (b) on a spherical surface this move-
ment follows an arc of an angle θ around an axis A (a 
3D vector), which is a rotation best described by a 4D 
quaternion Q.  
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Facilitating Collaboration 
We found that dragging an object around Sphere often left 
it in an awkward orientation (Figure 9a–c). Consequently, 
most drags need to be followed by a local rotation to cor-
rect for the object’s orientation. This was particularly ob-
vious with longer drags, e.g., dragging an object over the 
top of the display to show it to a collaborator results in an 
“upside down” orientation.  
Auto-rotation: To eliminate some of these orientation prob-
lems, we enabled each object to automatically orient itself 
so that the top of the object always pointed to the top of the 
sphere (Figure 9d–f). If the object was placed exactly on 
the top, it would remain in its current orientation, until 
dragged away. This auto-rotation behavior effectively eli-
minates the need for explicit user controlled local rotations, 
which is potentially most beneficial in collaborative scena-
rios. As discussed previously, the top (the “north pole”) is a 
natural orientation landmark that provides an omni-
directional “up” cue. Because the system continuously 
orients all objects with respect to the top, the user is able to 
simply pass a picture to a collaborator on the other side; the 
image automatically adjusts its local orientation so that 
viewing is correct. Surprisingly, this behavior is very much 
expected; during many Sphere demonstrations, users did 
not even notice that all objects automatically oriented 
themselves. Presumably, this behavior appeared natural to 
viewers because it always resulted in the “correct” view. 
The auto-rotation feature only became apparent when users 
attempted to locally rotate an object, an action which was 
now disabled. 

 
Extending User Reach 
In many scenarios, it is important to be able to place objects 
on the other side of the display. This becomes particularly 
important when collaborating with a viewer standing on the 
opposite side of Sphere. Although a user can simply drag 
an object to the other side, this action is tedious if repeated 
often as it requires extensive physical movement. We im-
plemented two interaction techniques to facilitate this ac-
tion by further extending the user’s reach: flicking and 
send-to-dark-side. 

Flicking: We added inertia to our manipulations to allow the 
user to flick an object in a particular direction and have the 
object continue traveling in that direction without explicit 
further guidance (such as with a finger). The speed and 
direction of movement before the user releases an object 
determine how far and in which direction the object will 
travel. One can also programmatically vary the angular 
deceleration (friction) of individual objects in order to en-
sure that it is easy to flick objects to the other side of the 
display. By touching an object while in motion, the user 
can catch it and stop further movement.  
Send-to-Dark-Side:* This interaction allows the user to ex-
plicitly warp an object and send it instantaneously to the 
other side of Sphere. To perform send-to-dark-side, the user 
places a flat palm on top of the object and waits one 
second. The object is then warped to the mirror position on 
the other hemisphere. Rather than sending the object direct-
ly to the opposite point of Sphere, we decided to simply 
mirror its position around the plane passing through the top 
and the bottom of the sphere (shown as dashed line in Fig-
ure 10). A significant benefit of send-to-dark-side is that 
instead of flicking an object and guessing its destination, 
the user can explicitly control where the object will appear 
by first manipulating the object’s position in its current 
hemisphere. 

 
Both the flicking and send-to-dark-side interactions benefit 
from enablement of auto-rotation because the latter pre-
vents objects from arriving in the other hemisphere upside 
down and thus in need of reorientation.  
While designed within the Sphere Photo & Video Browser 
application, the combination of basic multi-touch manipu-
lations and the additional interactions that facilitate colla-
boration and extend the user’s reach form a powerful inte-
raction toolset that can be used for designing other compel-
ling applications for the Sphere.  
Sphere’s Circular Menu 
The abilities to switch between tasks and to select different 
options are often needed in an interactive system. In 
Sphere, a circular menu allows the user to select between 
multiple applications. Currently, the menu is displayed in a 
circular arrangement around the top of the display and 
therefore visible to most users; however, if a location of the 
user were known, it might be better to place the menu in a 
semi-circle facing the user. Selection is performed not by 
touching an option but rather by rotating the menu in place 
                                                           
* We named this interaction after the Moon’s dark side, which is 
not illuminated by the Sun. 

 
Figure 10: Send-to-Dark-Side: The user touches an 
object with a flat hand and waits 1 second, resulting in 
object being warped to the other side of the Sphere. 

Figure 9: Comparison of orientation difficulties when 
dragging an object along a similar path shown in (a) 
and (d): (a–c) default unassisted behavior results in 
a difficult object orientation visible in (c); (d–f) Auto-
rotation behavior eliminates such problems by conti-
nuously orienting objects with respect to the top. 
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(similar to the JDCAD menu [12]). The highlighted option 
is selected upon contact removal. 
Orb-like Invocation: To invoke a circular menu, the user 
places two hands (in an open palm posture) on top of the 
display in a symmetric arrangement (Figure 11). The circu-
lar menu fades in accompanied by a sound effect to en-
hance the experience. Similar to the interaction concept of 
i-ball2 [3], this gesture is designed to evoke the feeling of 
interaction with a fortune-telling magic crystal ball. While 
playful and magic-like, this gesture is highly memorable, 
easy to repeat, and relatively hard to invoke inadvertently. 
The size of the two contacts (palm-sized contact is substan-
tially larger than most other touch contacts) and the particu-
lar symmetric arrangement of this gesture ensure that the 
menu is not easily triggered in error.  
By combining the orb-like invocation with selection by 
rotation rather than direct touching, we enabled task 
switching to occur in one continuous interaction (place 
hands to invoke, rotate into place, and lift-off to select).  

 
Sphere Omni-Directional Data Viewer 
Omni-directional images – such as cylindrical maps of any 
spherical object or 360° panoramic images – are well suited 
for display on Sphere. To explore user interaction with such 
data we designed Sphere Omni-Directional Data Viewer. 
Examples used were a live-stream from an omni-directional 
video conferencing camera (Figure 2b), omni-directional 
images of a city captured by a camera mounted on a car 
roof (Figure 12a), and the Earth’s surface (Figure 12b).  
The fact that omni-directional data usually spans the entire 
display surface presents interesting implications for multi-
user, multi-touch collaboration scenarios. Allowing more 
than one person to touch the data often results in conflict 
(e.g., multiple people trying to spin the globe in multiple 
directions at the same time). While restricting interactions 
to a single touch does mitigate some of the problems (e.g., 
the first touch assumes control), such a solution is often 
confusing to the other Sphere users. While this issue should 
be investigated further, in our current system users are left 
to socially mitigate such situations: either taking turns or 
allowing one person to “drive” the interaction 
Tether: We allow the user to rotate and inspect omni-
directional data; however, this often causes data to be left 
in an orientation potentially confusing to others. To miti-

gate this problem, we implemented a tether behavior. Teth-
er allows free manipulation of data via touch contacts, but 
upon release of all contacts the object animates back to its 
“natural” orientation (Figure 13). Since all of our omni-
directional images have a clear up direction, we use the top 
of the sphere as the tether axis; however, any arbitrary axis 
can be specified as the tether axis. 

 

 
Sphere Paint and Sphere Pong 
In addition to multi-point interactions that rely on tracking 
individual contact points, we explored interactions that use 
the entire touch area as input. We designed two concept 
applications: Sphere Paint and Sphere Pong (Figure 14). In 
Sphere Paint, the user can paint on Sphere with a finger or 
any available object (Figure 14a). Exploiting its spherical 
shape, we allow Sphere to spin slightly (similar behavior to 
a potter’s wheel), thus offering interesting artistic possibili-
ties to the user. Sphere Pong is a game prototype in which 
users can use their hands or any other object to bounce sev-
eral balls around the spherical surface and score points 
(Figure 14b). As with the classic game Battleship, not be-
ing able to see other users’ actions adds an exciting dimen-
sion to an otherwise standard pong game. 

Figure 14: Two concept applications that use the 
entire surface contact area as input: (a) Sphere 
Paint, and (b) Sphere Pong. 

Figure 13: Tether interaction: The user can freely 
manipulate omni-directional video. Upon contact re-
lease, the video returns to its horizontal state. 

Figure 12: Examples of Sphere omni-directional vi-
sualizations: (a) panoramic walk down Seattle city 
street; (b) visualization of the Earth as a globe. 

 
Figure 11: Orb-like Invocation: a bimanual gesture 
that invokes a circular task-switching menu. 
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INITIAL USER OBSERVATIONS  
We exhibited Sphere on three occasions at high-traffic lo-
cations in our organization (Figure 15). While these events 
were not formal user evaluations, they presented us with an 
opportunity to observe hundreds of people interacting with 
Sphere in an informal manner with little to no instructions. 
We now discuss our observations of multi-user interactions 
during these sessions.  
Sphere’s unusual shape, large size, and visibility from all 
directions attracted large crowds. People frequently de-
scribed their experience as “magical” and “like interacting 
with a crystal ball.” Photos and videos were easily browsed 
by several people independently, shared with others when 
desired, and moved to the unused space on the display for 
“storage of unwanted items” (usually the bottom hemis-
phere). This use pattern suggests that the territoriality con-
cepts introduced by Scott et al. [20] are applicable on 
Sphere, but more formal evaluation is clearly needed to 
explore differences caused by the form factor.  
Omni-directional data spanning the entire display proved 
more difficult to handle when many people tried to interact 
with Sphere at the same time. Because a given user cannot 
see other users touch Sphere in the other hemisphere, users 
often either fought for control or became confused by 
movement that they did not initiate.  
We also observed that people were much more inclined to 
start touching and interacting with Sphere if the objects 
were left in a disorganized, “messy” arrangement by pre-
vious users. In contrast, when the interface was reset and 
displayed objects were realigned, we usually had to demon-
strate and explain that Sphere is indeed touch-sensitive and 
interactive. This observation is especially important with 
respect to public interactive displays which rely on an “at-
tract mode” to solicit public touch and interaction. We sug-
gest placing objects in a non-perfectly aligned arrangement 
to draw users into interaction.  
During our demo sessions, we logged all touches and 
created radial heat maps for further analysis. These heat 
maps confirm that spherical displays have no master user 
position. While a heat map of a 15-minute single user ses-
sion (Figure 16a) suggests that a user assumes a particular 
position and does not move extensively around Sphere, the 
3-hour log of a number of different users shows no clear 
orientation preference (Figure 16b). In total, we examined 
logs of 21 hours of high-traffic use, all of which show simi-
lar user behavior. While promising, these results are clearly 
preliminary observations. We are planning to conduct more 
formal evaluations to confirm and extend these findings.  
Users viewing the Earth’s surface on Sphere often re-
quested high magnification (zoom) capability. In addition 
to scaling problems already discussed in this paper, high 
zoom level effectively results in a transformation of a 
spherical surface data into a mostly flat map-like data, 
which is not well suited for display on Sphere. We plan to 
further investigate zooming on Sphere and to study its im-
plications for interactivity and collaboration.  

DISCUSSION AND CONCLUSIONS 
We have presented Sphere, a novel hardware and software 
solution that enables multi-touch sensing on a spherical 
display. Our unique solution creates a self-enclosed device, 
capable of displaying and sensing data on a spherical sur-
face, without occlusions and shadowing problems. To al-
low for rich user interaction, we implemented four concept 
applications and a set of multi-touch interaction techniques 
that account for the unique characteristics of the spherical 
form and assist multi-user collaboration. We also contribute 
several interesting observations of Sphere being used by 
hundreds of people in three high traffic locations.  
The interactions and concepts presented in this paper form 
the building blocks for interactive spherical displays, but 
much research remains to be done. We are curious about 
the effect the Sphere size has on interaction as we believe 
that different sizes will yield different interaction para-
digms (e.g., a handheld Sphere vs. a room-sized one). Col-
laborative scenarios interest us the most, given the clear 
collaborative potential of this form factor. How do people 
align themselves around the display to best accomplish a 
task? How can user-interaction conflicts resulting from 
omni-directional data be effectively handled? How does 
sphere size affect collaboration? We believe all of these 
questions are worthy of further research.  
In addition, we are investigating using Sphere as a display-
able input device for navigational control of a remote robot 
or of an avatar in a synthetic virtual world. A similar sens-
ing mechanism to the one developed for Sphere could also 
be used to enable touch-sensing on different convex form 
factors (e.g., hemispheres, cylinders, cuboids).  
While the work described in this paper focused on Sphere 
being used as a single primary device integrating both dis-

Figure 16: Radial heat maps of user touches around 
the 24” Sphere: (a) a single user’s 15-minute session; 
(b) more than 50 users during a 3-hour demo session.  

Figure 15: Collaboration on Sphere in high-traffic lo-
cations: (a) 5 adults browsing videos; (b) 7 children 
interacting with a globe.   
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play and input sensing, it is important to not restrict our 
thinking to only solitary device usage scenarios. Indeed, it 
is highly likely that future use of Sphere will be within a 
broader heterogeneous ecology of displays and input tech-
nologies [6]. Rather than the “one size fits all” approach of 
current desktop computing, having different devices, each 
well suited to particular tasks, will likely as a whole pro-
vide a richer and more appropriate “workshop” for infor-
mation access and manipulation. We see Sphere as an 
integral element in such an information workshop of the 
future, and resulting issues such as information transfer 
between display formats of vastly different form factors 
will continue to provide interesting research challenges.  
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