

Sphere: Multi-Touch Interactions on a Spherical Display
Hrvoje Benko1, Andrew D. Wilson1, and Ravin Balakrishnan1,2

1Microsoft Research
One Microsoft Way, Redmond, WA, USA

{benko | awilson}@microsoft.com

2Department of Computer Science
University of Toronto, Toronto, ON, Canada

ravin@dgp.toronto.edu

ABSTRACT
Sphere is a multi-user, multi-touch-sensitive spherical dis-
play in which an infrared camera used for touch sensing
shares the same optical path with the projector used for the
display. This novel configuration permits: (1) the enclosure
of both the projection and the sensing mechanism in the
base of the device, and (2) easy 360-degree access for mul-
tiple users, with a high degree of interactivity without sha-
dowing or occlusion. In addition to the hardware and soft-
ware solution, we present a set of multi-touch interaction
techniques and interface concepts that facilitate collabora-
tive interactions around Sphere. We designed four spherical
application concepts and report on several important obser-
vations of collaborative activity from our initial Sphere
installation in three high-traffic locations.
ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces. – Input devices and strate-
gies; Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Spherical display, multi-touch, surface compu-
ting, collaboration, single-display groupware.

INTRODUCTION
Spherical displays offer an unobstructed 360° field of view
to all users, enabling them to explore different perspectives
of the displayed data by physically moving around the dis-
play. Viewers can use the spherical nature of the display,
their physical body position and orientation, and additional
cues from the surrounding environment to aid them in spa-
tially finding and understanding data displayed on the
spherical surface. Thus, it is likely that the unique characte-
ristics of the spherical form factor could afford interesting
usage scenarios and interaction challenges that go beyond
what is possible with prevalent flat displays.
While several commercially available spherical displays
exist today [13, 17, 18], such displays are not directly inter-
active and tend to be used as output-only devices. Any
interactivity is usually provided through an auxiliary device
such as a trackball or an additional flat touchscreen.

In this paper, we present an implementation of a novel,
multi-touch-sensitive, spherical display prototype called
Sphere (Figure 1). We use Sphere to explore the interactive
and collaborative possibilities of spherical interfaces
through the development of several concept applications.
Our work makes the following three contributions:
First, we outline and discuss the unique benefits of spheri-
cal displays in comparison to flat displays. While the chal-
lenges of designing applications and interactions are argua-
bly greater for a spherical than for a flat surface, applica-
tions can be designed that exploit the unique characteristics
of spherical displays to create interesting user experience.
Second, we describe hardware and software components
needed to facilitate multi-touch sensing on a spherical dis-
play. Sphere uses a commercially available Magic Planet
display [13] as its core, augmented by our custom touch-
sensing hardware. We also discuss the projections needed
to pre-distort data for display on a spherical surface.
Third, we present a set of direct touch interaction tech-
niques – including dragging, scaling, rotating, and flicking
of objects – that permit interaction and collaboration
around Sphere. We also contribute gestural interactions and
user interface concepts that account for the spherical nature
of the interface. While general in nature, these interactions
were developed within the context of four simple prototype
application concepts that help us explore Sphere’s interac-
tive capabilities, including a picture and video browser, an
omni-directional data viewer, a paint application, and a
“pong” style game application.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00. Figure 1: Scaling a picture on Sphere, a multi-user,

multi-touch spherical display prototype built on top
of a Magic Planet display.

77

RELATED WORK
Although several research prototypes of interactive spheri-
cal and hemispherical displays have been recently pre-
sented, none are able to sense and track multiple touch
points on their curved surfaces.
Kettner et al. [10] explored interactions with spherical data
projected on a spherical surface. Their ViBall display re-
quired multiple external projectors and was not directly
touch-sensitive, but was able to physically rotate in place,
making it behave as a large trackball. This physical-
rotation-only sensing was well suited for the spherical data
Kettner et al. experimented with (e.g., Earth globe images),
but did not allow for direct position sensing of multiple
touch-points on the spherical surface. A similar physical-
rotation-only sensing approach was used in the Globe4D
hemispherical display [2]. Unlike the rotation sensing of
ViBall and Globe4D, Marchese and Rose [14] used several
ultrasonic distance sensors to allow for hand-based interac-
tions away from the display surface. In their system, each
sensor independently controlled two rotation axes and one
zoom axis.
In contrast to spherical displays that present data on their
curved surfaces (a category to which Sphere belongs),
spherical volumetric displays have been used to visualize
and interact with 3D data within the display. Grossman and
colleagues performed several interaction studies on a spher-
ical 3D volumetric display from Actuality Systems, Inc.
[7,8]. They found the two most noticeable interaction diffi-
culties resulted from an inability to: (1) display anything on
the volumetric display’s surface, and (2) physically reach
into the display. To alleviate these problems, Grossman et
al. created a set of interactions based on modified ray-
casting selection from a distance, and used an external mo-
tion tracking system to allow gestural interactions with the
3D data.
While incapable of displaying either spherical or volume-
tric data, the i-ball2 display [24] creates the illusion of pre-
senting data within a transparent sphere. The i-ball2 system
can support up to two users, but only by using two inde-
pendent display systems. Chan et al. [3] designed a system
to track hand gestures above i-ball2. They used computer-
vision techniques to track the user’s hands and pressure
sensors at the base of the ball to detect the user’s touches.
In contrast to our work, Chan et al. do not support spherical
interactions or projections on the sphere itself, but rather
display data on a regular planar display and interact with it
using gestures over a transparent sphere. The glass sphere
in i-ball2 is only used to create the illusion of looking at
something inside a sphere.
There also exist numerous planetarium-style immersive
displays where the user is located within a hemispherical
display that is used to create a completely immersive expe-
rience. A complete discussion of these displays and various
other immersive display technologies is beyond the scope
of this paper, but we refer the reader to [1] for further in-
formation. Furthermore, while all the spherical displays
currently available rely on a projection mechanism for dis-

play, in the future, the availability of flexible displays [4]
should make various curved displays more common. Even
with different implementations of spherical displays, our
interaction principles should remain relevant.
From an interaction perspective, our work primarily ex-
tends the surface computing research in multi-user and
multi-touch interactions (e.g., [5, 9, 15, 19, 25, 26, 27]).
Our multi-touch-sensing technique builds on the computer-
vision finger-tracking solutions developed by many surface
computing prototypes (e.g., HoloWall [15], TouchLight
[25], PlayAnywhere [26], and FTIR [9]). In all of these
solutions, touch-sensing is performed using infra-red light
while projection is done in the visible portion of the light
spectrum. This light separation ensures that sensing is not
disturbed by the visually visible projected data.
The basic unit of interaction on Sphere is a rotation (qua-
ternion), rather than the translation (vector) common to
most flat interactive surfaces. Our interactions are based on
Shoemake’s work on quaternion-based rotation principles
[22] and the ArcBall controller [23].
Research exploring how multiple people collaborate around
an interactive tabletop [11, 16, 21] is also highly relevant,
as we demonstrate that spherical displays may alleviate
some data orientation difficulties commonly associated
with tabletop collaboration. Shen et al’s. DiamondSpin
toolkit [21] enabled arbitrary orientation of all displayed
user interface elements to accommodate various user posi-
tions around a tabletop. We extend this concept by auto-
matically orienting objects around Sphere to simplify col-
laboration. We also show how the territoriality concept of
Scott et al. [20] applies to spherical displays.
THE DESIGN SPACE OF SPHERICAL DISPLAYS
Most current spherical applications primarily focus on out-
put-only presentations of global data (e.g., weather pat-
terns) or simple marketing applications (e.g., spinning lo-
gos or animations). These applications exploit the omni-
directional viewing capability of spherical displays, and
benefit from their novelty. In contrast, enabling interactivi-
ty on spherical displays makes direct manipulation of data
and new applications possible. We believe that in order to
create compelling interactive applications for spherical
displays, it is important to investigate and understand their
unique characteristics. While the following analysis focuses
on Sphere, it also applies more generally to spherical and
hemispherical displays.
Unique Properties
Non-visible Hemisphere: The diffuse nature of the spherical
surface makes it impossible for users to see inside the dis-
play (unlike true 3D volumetric displays [7]) and ensures
that each user, at any given time, can see at most one half
(one hemisphere) of the display. While not being able to
see the entire display simultaneously may be a disadvan-
tage for some applications, we believe that in many scena-
rios this presents a unique benefit. For example, multiple
people can manipulate data on the same display without
disturbing the other users.

78

No Master User Position or Orientation: In contrast to hori-
zontal tabletop displays for which orientation of displayed
content is often a difficult problem [11, 16, 21], spherical
displays do not have a “master user” position. In many
ways, spherical displays offer an egalitarian user expe-
rience, with each viewer around the display possessing an
equally compelling perspective. In addition, the orientation
of displayed content can be easily adjusted with respect to
the prominent physical features of the display, such as the
top and bottom poles.
Visible Content Changes with Position and Height: In con-
trast to flat vertical displays where multiple users share a
similar perspective, spherical displays offer each viewer a
unique perspective determined by each viewer’s position
around the display, their height, and the height of the dis-
play itself. Even small changes in head position may reveal
new content or hide previously visible content.
Smooth Transition Between Vertical and Horizontal Surfac-
es: A spherical display can be thought of as a continuously
varying surface that combines the properties of both vertic-
al and horizontal surfaces. The top of the display can be
considered a shared, almost horizontal, “flat” zone, while
the sides of the sphere can be thought of as approximating
multiple vertical displays. While this is also true of a cubo-
id or a cylindrical display, spherical displays offer conti-
nuously smooth transitions between all such areas. Another
way to consider this property is to think about spherical
displays as continuously changing in depth and orientation
with respect to the user. This also means that for any user’s
perspective, the best flat surface approximation is the tan-
gential plane at the point closest to the position of the us-
er’s eyes.
Pseudo-Privacy: Viewers collaborating around a spherical
display have a general sense of which portions of the dis-
play are visible to others. Although collaborators are os-
tensibly free to change position and peek at other portions
of the display, such movements are obvious to everyone
involved. Consequently, participants can rely on standard
social cues to ensure “pseudo privacy” for their actions or
content. While spherical displays may not be appropriate
for viewing truly confidential data, certain applications,
such as games, could exploit this ability to make some ac-
tions invisible to others simply by manipulating their loca-
tion.
Borderless, but Finite Display: Spherical displays present a
difficult design challenge as they usually require a user
interface to be thought of as a continuous surface without
borders. With standard flat displays, the content can often
stretch beyond the borders of the display, i.e., the display
can be thought of as a window into the larger digital world.
But for a spherical display, such “off-screen space” usually
does not exist; rather, any data moved far enough in one
direction will eventually make it full circle around the dis-
play. Even when borders are physically present, such as at
the base of a spherical display, users tend to mentally
perceive this part of the display simply as a hidden portion
of a continuous spherical surface.

Natural Orientation Landmarks: Relatively few physical
cues exist on the surface of a spherical display. Our infor-
mal observations reveal that most people tend to perceive
the top (“north pole”) as the strongest natural landmark,
followed by the equator and the bottom (although the bot-
tom of Sphere is not visible). In addition to these landmarks
on the display itself, it is plausible that people can use
landmarks in the surrounding environment to help them
navigate spherical displays.
SYSTEM HARDWARE AND SOFTWARE
Hardware Implementation
Sphere is based on the Magic Planet display from Global
Imagination, Inc [13]. Magic Planet spherical displays use a
projector and a wide-angle lens to project imagery from the
bottom of the device onto a spherical surface. They are
available in a variety of sizes ranging in diameter between
16 inches and 6 feet. The spherical surface of Magic Planet
displays is an empty plastic ball coated with a diffuse ma-
terial that serves as a passive curved projector screen. The
bottom of the spherical surface is reserved for the lens and
mounting bracket, leaving the displayable portion of the
sphere at 290° vertically and 360° horizontally. The quality
of the projected image depends on the size of the spherical
surface; the brightness, contrast, and resolution of the pro-
jector; and the amount of ambient light in the surrounding
environment.
Our multi-touch-sensitive Sphere is built on a 34” high
podium version of Magic Planet. We experimented with
spherical surfaces of 16” and 24” diameter (Figure 2). We
use a high-resolution DLP projector (Projection Design F20
sx+, 1400x1050 pixels). Only the central circular portion of
the projected image is actually visible on the surface, which
effectively reduces the useful resolution to a circle with
diameter of 1050 pixels, or approximately 866,000 pixels.
To enable touch-sensing on the spherical surface through
the same optical axis as the projection on the surface, we
added: an infra-red (IR) sensitive camera, an IR-pass filter
for the camera, an IR-cut filter for the projector, an IR il-
lumination ring, and a cold mirror. The physical layout of
these components is illustrated in Figure 3.

Figure 2: Two sizes of spherical surfaces used in
our Sphere prototype: (a) a 16”-diameter ball show-
ing a photo-browsing application, and (b) a 24”-
diameter ball showing an omni-directional panoram-
ic video.

79

Touch-sensing is performed by an IR camera (Firefly MV
camera by Point Grey Research with an IR-pass filter) that
looks through the same wide-angle lens as the projector.
This camera is able to image the entire displayable portion
of the spherical surface. To ensure that sensing is not dis-
turbed by currently visible projected data, we perform
touch-sensing in the IR portion of the light spectrum, while
projection is in the visible spectrum. This approach has
previously been used in many camera-based sensing proto-
types (e.g., [9, 12, 24, 26]), but not in spherical display
applications. We place an IR-cut filter in front of the pro-
jector to ensure that the projector emits only visible light
which cannot be seen by the IR camera.
The IR light used for sensing comes from a custom ring of
72 wide-angle, IR-light-emitting diodes (LEDs). This ring
fits around the wide-angle lens at the base of the sphere
(Figure 3). The wavelength of light emitted by the LEDs
(880nm) is matched by the IR-pass filter on the camera.
Particular care was taken in designing this illumination
source to ensure that it provides uniform illumination in-
side the sphere, but is not directly visible to the camera.

To combine the optical axis of the camera and the projector
through a single lens, we use a cold mirror (an optical com-
ponent that reflects visible light and transmits IR light).
Figure 4 shows the difference in the optical paths for pro-
jection and sensing. Projected light hits the diffuse surface
and is scattered into the eyes of observers; user fingers
touching the surface reflect IR light back into the lens to be
captured by the camera.
Touch-Sensing Software
In order to track multiple contacts on the surface, the soft-
ware takes a raw camera image of the entire displayable
portion of Sphere, normalizes it, binarizes it, and then finds
and tracks connected components in the binarized image
(Figure 5).
Any finger or object that touches the surface reflects IR
light, and therefore appears brighter than its surroundings
in the raw camera image. However, even with careful de-
sign, illumination is not completely uniform at different
positions on the spherical surface, resulting in contacts on
the top of the sphere (the center of the tracked image) ap-
pearing significantly brighter than contacts close to the base
(as can be seen in Figure 5a). A normalization step ac-
counts for these varying levels of illumination by compu-
ting an image where all pixel values are normalized with
respect to the minimum and maximum brightness observed
at that location. The normalization procedure requires that
during initial calibration, we capture a minimum brightness
image (i.e., an image of an empty surface), and a maximum
brightness image (i.e., an image of a completely covered
surface).

Figure 3: Schematic drawing of Sphere’s hardware
components that enable multi-touch sensing
through the same optical axis as the projection on
the spherical surface. The inset picture shows the
IR illumination ring consisting of 72 wide-angle
LEDs fitted around the wide-angle lens.

Figure 4: Comparison of optical paths in Sphere
taken by: (a) the projection light path (visible), and
(b) the tracking light path (IR).

Figure 5: Different stages of our touch-sensing
software: (a) raw image of two hands touching
Sphere’s surface, (b) normalized image, (c) bina-
rized image, and (d) labeled binarized image with
two tracked and connected components.

80

Our tracking software is written as a standalone C++ li-
brary and can be used by applications to receive touch up-
dates. The tracking library runs at approximately 30 frames
per second with a camera resolution of 640x480 pixels. As
for projection, the effective tracking area is constrained to
the circle in the image that represents the view through the
wide-angle lens a circle of approximately 400 pixels in
diameter seen in Figure 5a.
Sensing and Projection Distortions
The wide-angle lens introduces significant distortions that
need to be accounted for in both sensing and projection.
The sensing camera is imaging a flat radial image (Figure
5) that is subsequently mapped onto a spherical surface to
report touch contacts in a 3D Cartesian coordinate system.
The projection of data onto the spherical surface requires
the use of the inverse mapping, i.e., the data in 3D Carte-
sian coordinates need to be flattened into a flat radial image
for the projector (Figure 6a). This means that displayed
objects need to be pre-distorted (flattened) in order to ap-
pear undistorted when projected (Figure 6d).

The mapping depends on the physical size of the spherical
ball, as the center maps to the top of the sphere and the
distance from the center corresponds to the particular
height (latitude) on the sphere (Figure 6c). The mapping is
determined once during a separate calibration step and can
be saved and reused later for all surfaces of the same size.
For non-interactive applications, the distortion of data
could be pre-computed off-line and simply replayed when
desired. In fact, most existing spherical applications use

this approach. However, user interaction with displayed
content requires that the system support real-time computa-
tion of distortions. To achieve this, we wrote a custom ver-
tex shader to compute the position of each vertex in a radial
image at every frame. In our approach, the quality of the
distorted image depends greatly on the number of vertices
the object possesses; therefore, we highly tessellate each
displayed object (Figure 6b).
The distortion requirement makes it impossible to author
applications for Sphere using standard graphical user inter-
face toolkits, as these were designed primarily for flat, two-
dimensional interfaces. All of our current applications are
written in C# using Microsoft’s XNA 2.0 framework and
use our custom vertex shader to handle distortions. We run
these applications on a PC with a 2.67 GHz Intel Core2
processor, and NVIDIA GeForce 8600 GT graphics card.
Data Coordinate Systems
Although it is possible to create content for Sphere in the
2D coordinate system of the projected radial disk image,
the distortions described in the previous section make this
approach challenging. However, this works well for setting
the entire background to a texture in which distortions are
not clearly noticeable. For example, the background image
of our circular menu (Figure 11) is authored this way.
Alternatively, authoring content in a cylindrical projection
is relatively straightforward, as everything is performed in
a 2D plane (cylindrical map) which then is mapped onto a
sphere. All currently available commercial spherical dis-
plays are primarily used for displaying spherical data (e.g.,
visualizations of planets and stars), and such data is usually
stored in a 2D map using an equidistant cylindrical projec-
tion (e.g., a flat 2D map of the Earth). However, using cy-
lindrical projections has several well-known distortion
problems; these are most visible at the top and bottom of
the map (the poles of the sphere). The entire top row (or
bottom row) of the cylindrical map is mapped to a single
point at the pole. Using such projections makes it difficult
to display rectilinear objects near the poles.
Another approach is to author content in 3D Cartesian
coordinates in which all objects lie on a unit sphere cen-
tered at the origin (Figure 7). Although this approach is
more difficult, as it requires all content to be specified in
3D coordinates, it does not suffer from the distortion prob-
lems associated with cylindrical projection and offers addi-
tional advantages, such as being able take advantage of 3D
game engines to incorporate shadows or game physics.

Figure 7: Sphere content authored in 3D Cartesian
coordinates: (a) a virtual view of a 3D scene; (b) the
same scene flattened to a radial image for projec-
tion; (c) the scene when displayed on Sphere.

Figure 6: Sphere projection distortions: (a) a radial
image displayed by the projector in which all objects
are pre-distorted by our vertex shader; (b) a wire-
frame view of a portion of the image (a) that reveals
high tessellation of objects; (c) a mapping used to
create the radial image maps each point on a 3D
sphere to a 2D disk; (d) objects rendered on Sphere
appear without distortions.

81

Finally, a sphere at any given point can be considered lo-
cally flat. This assumption allows one to design a relatively
small portion of the interface completely in 2D, and to then
simply project this flat image from a tangential plane to a
point on the 3D spherical surface. This locally flat approach
is how photographs are displayed in Figure 1.
Ultimately, the choice of which coordinate system to use
for authoring will depend on the content itself and we antic-
ipate that data authored in different coordinate systems will
be combined together in the same application.
MULTI-TOUCH INTERACTIONS
We now discuss various multi-touch interaction techniques
we developed for Sphere. Enabling user interaction on a
spherical surface requires the implementation of basic op-
erations such as selection, translation, rotation, and scaling,
as well as providing support for browsing and task switch-
ing. While implemented within the context of four simple
prototype applications, our interactions are general and
designed to be useful to other applications on spherical or
cylindrical displays. We also discuss implications of these
interactions for multi-user collaboration around Sphere.
Sphere Photo & Video Browser
The first application we explored is a simple browser in
which users can freely manipulate rectangular projections
of images and videos (Figure 1). Such browsing applica-
tions have frequently been demonstrated on flat multi-touch
prototypes (e.g., [9, 19]) as they tend to clearly show the
capabilities of touch-based, direct manipulation interfaces.
Basic Multi-Touch Object Manipulations
Each object (photo or video) in our Sphere Photo & Video
Browser can be independently dragged, rotated, and scaled.
As with most touch-sensitive applications, selection of an
object is implicitly triggered by any touch contact that
lands on that object. Landing on a video object acts as a
simple playback toggle: it starts the video playback if the
video is paused or stops it if the video is running.
Dragging: Enabling a user to drag an object around Sphere
is not as obvious as it might seem at first. The difficulty is
that the curved geometry of the spherical surface is drasti-
cally different from 2D flat space. In Euclidean space
(standard 2D and 3D environments fall into this category),
movement is best represented by a displacement vector
which encapsulates the direction and magnitude of the
movement in a particular line. However, the spherical sur-
face is not a Euclidian space and there are no straight lines
on the sphere as all “lines” are actually curves and thus
more accurately represented as arcs. While in some cases
Euclidean geometry might offer a reasonable local approx-
imation, representing displacement on a sphere with vectors
ultimately leads to problematic behaviors.
Instead of vectors, the movement on a sphere is best
represented by a quaternion, i.e., a rotation (Figure 8). This
has some profound implications for our interactions, as the
standard translation + rotation + scale manipulation model
used in 2D and 3D environments becomes a compound
rotation + scale manipulation model on Sphere. We stress

that the rotation is often a compound action as the object is
spherically “positioned” by a rotation around the sphere’s
origin, and then often oriented further in its local coordinate
system (see the Local Rotation section below).
We adopted the use of quaternions as Sphere’s basic unit of
movement, and we model our interactions on rotational
principles similar to those discussed by Shoemake [22, 23].
While the system treats all dragging interactions as global
rotations around the origin of the sphere, users tend to think
of them from their local context and perceive them as a
physical translation of an object around the sphere. When
asked during demo sessions, users described the interac-
tions purely from their local coordinate system, e.g., “mov-
ing to the left” or “this object is above the other one.”
Local Rotation: In addition to allowing the user to position
(i.e., rotate) an object on Sphere, we facilitate additional 1D
adjustment of the object’s orientation in its local coordinate
system, similar to in-plane rotation of a picture on a flat
surface. This operation requires at least two contacts to be
touching the object; we map the local angular difference
between those two contacts to a 1D rotation of the object.
For all our basic manipulations, when multiple contacts are
touching a particular object, we aggregate their behavior
and apply the aggregate action to the object.
Scaling: Users can scale a picture or a movie by moving
their fingers closer together or further apart on top of the
displayed object (Figure 1). We map the change in arc
length between the touch points to the scaling factor ap-
plied to the object. Given that Sphere is a borderless but
finite display, scaling an object larger has the potential to
envelop the entire surface. While in a single user scenario
this might be desired in order to enlarge a particularly small
feature, scaling by more than a single hemisphere greatly
affects other viewers and ultimately results in either seams
or heavy distortions on the other side of the display. In our
Sphere Photo & Video browser, the scale of an object is
currently restricted to fit within one hemisphere. This
seems to be a good compromise between manipulation
flexibility and reduced disturbance to other users.

Figure 8: A comparison of basic dragging manipula-
tions when moving a finger between points 1 and 2:
(a) on a flat surface this movement is represented by
a 2D vector V; (b) on a spherical surface this move-
ment follows an arc of an angle θ around an axis A (a
3D vector), which is a rotation best described by a 4D
quaternion Q.

82

Facilitating Collaboration
We found that dragging an object around Sphere often left
it in an awkward orientation (Figure 9a–c). Consequently,
most drags need to be followed by a local rotation to cor-
rect for the object’s orientation. This was particularly ob-
vious with longer drags, e.g., dragging an object over the
top of the display to show it to a collaborator results in an
“upside down” orientation.
Auto-rotation: To eliminate some of these orientation prob-
lems, we enabled each object to automatically orient itself
so that the top of the object always pointed to the top of the
sphere (Figure 9d–f). If the object was placed exactly on
the top, it would remain in its current orientation, until
dragged away. This auto-rotation behavior effectively eli-
minates the need for explicit user controlled local rotations,
which is potentially most beneficial in collaborative scena-
rios. As discussed previously, the top (the “north pole”) is a
natural orientation landmark that provides an omni-
directional “up” cue. Because the system continuously
orients all objects with respect to the top, the user is able to
simply pass a picture to a collaborator on the other side; the
image automatically adjusts its local orientation so that
viewing is correct. Surprisingly, this behavior is very much
expected; during many Sphere demonstrations, users did
not even notice that all objects automatically oriented
themselves. Presumably, this behavior appeared natural to
viewers because it always resulted in the “correct” view.
The auto-rotation feature only became apparent when users
attempted to locally rotate an object, an action which was
now disabled.

Extending User Reach
In many scenarios, it is important to be able to place objects
on the other side of the display. This becomes particularly
important when collaborating with a viewer standing on the
opposite side of Sphere. Although a user can simply drag
an object to the other side, this action is tedious if repeated
often as it requires extensive physical movement. We im-
plemented two interaction techniques to facilitate this ac-
tion by further extending the user’s reach: flicking and
send-to-dark-side.

Flicking: We added inertia to our manipulations to allow the
user to flick an object in a particular direction and have the
object continue traveling in that direction without explicit
further guidance (such as with a finger). The speed and
direction of movement before the user releases an object
determine how far and in which direction the object will
travel. One can also programmatically vary the angular
deceleration (friction) of individual objects in order to en-
sure that it is easy to flick objects to the other side of the
display. By touching an object while in motion, the user
can catch it and stop further movement.
Send-to-Dark-Side:* This interaction allows the user to ex-
plicitly warp an object and send it instantaneously to the
other side of Sphere. To perform send-to-dark-side, the user
places a flat palm on top of the object and waits one
second. The object is then warped to the mirror position on
the other hemisphere. Rather than sending the object direct-
ly to the opposite point of Sphere, we decided to simply
mirror its position around the plane passing through the top
and the bottom of the sphere (shown as dashed line in Fig-
ure 10). A significant benefit of send-to-dark-side is that
instead of flicking an object and guessing its destination,
the user can explicitly control where the object will appear
by first manipulating the object’s position in its current
hemisphere.

Both the flicking and send-to-dark-side interactions benefit
from enablement of auto-rotation because the latter pre-
vents objects from arriving in the other hemisphere upside
down and thus in need of reorientation.
While designed within the Sphere Photo & Video Browser
application, the combination of basic multi-touch manipu-
lations and the additional interactions that facilitate colla-
boration and extend the user’s reach form a powerful inte-
raction toolset that can be used for designing other compel-
ling applications for the Sphere.
Sphere’s Circular Menu
The abilities to switch between tasks and to select different
options are often needed in an interactive system. In
Sphere, a circular menu allows the user to select between
multiple applications. Currently, the menu is displayed in a
circular arrangement around the top of the display and
therefore visible to most users; however, if a location of the
user were known, it might be better to place the menu in a
semi-circle facing the user. Selection is performed not by
touching an option but rather by rotating the menu in place

* We named this interaction after the Moon’s dark side, which is
not illuminated by the Sun.

Figure 10: Send-to-Dark-Side: The user touches an
object with a flat hand and waits 1 second, resulting in
object being warped to the other side of the Sphere.

Figure 9: Comparison of orientation difficulties when
dragging an object along a similar path shown in (a)
and (d): (a–c) default unassisted behavior results in
a difficult object orientation visible in (c); (d–f) Auto-
rotation behavior eliminates such problems by conti-
nuously orienting objects with respect to the top.

83

(similar to the JDCAD menu [12]). The highlighted option
is selected upon contact removal.
Orb-like Invocation: To invoke a circular menu, the user
places two hands (in an open palm posture) on top of the
display in a symmetric arrangement (Figure 11). The circu-
lar menu fades in accompanied by a sound effect to en-
hance the experience. Similar to the interaction concept of
i-ball2 [3], this gesture is designed to evoke the feeling of
interaction with a fortune-telling magic crystal ball. While
playful and magic-like, this gesture is highly memorable,
easy to repeat, and relatively hard to invoke inadvertently.
The size of the two contacts (palm-sized contact is substan-
tially larger than most other touch contacts) and the particu-
lar symmetric arrangement of this gesture ensure that the
menu is not easily triggered in error.
By combining the orb-like invocation with selection by
rotation rather than direct touching, we enabled task
switching to occur in one continuous interaction (place
hands to invoke, rotate into place, and lift-off to select).

Sphere Omni-Directional Data Viewer
Omni-directional images – such as cylindrical maps of any
spherical object or 360° panoramic images – are well suited
for display on Sphere. To explore user interaction with such
data we designed Sphere Omni-Directional Data Viewer.
Examples used were a live-stream from an omni-directional
video conferencing camera (Figure 2b), omni-directional
images of a city captured by a camera mounted on a car
roof (Figure 12a), and the Earth’s surface (Figure 12b).
The fact that omni-directional data usually spans the entire
display surface presents interesting implications for multi-
user, multi-touch collaboration scenarios. Allowing more
than one person to touch the data often results in conflict
(e.g., multiple people trying to spin the globe in multiple
directions at the same time). While restricting interactions
to a single touch does mitigate some of the problems (e.g.,
the first touch assumes control), such a solution is often
confusing to the other Sphere users. While this issue should
be investigated further, in our current system users are left
to socially mitigate such situations: either taking turns or
allowing one person to “drive” the interaction
Tether: We allow the user to rotate and inspect omni-
directional data; however, this often causes data to be left
in an orientation potentially confusing to others. To miti-

gate this problem, we implemented a tether behavior. Teth-
er allows free manipulation of data via touch contacts, but
upon release of all contacts the object animates back to its
“natural” orientation (Figure 13). Since all of our omni-
directional images have a clear up direction, we use the top
of the sphere as the tether axis; however, any arbitrary axis
can be specified as the tether axis.

Sphere Paint and Sphere Pong
In addition to multi-point interactions that rely on tracking
individual contact points, we explored interactions that use
the entire touch area as input. We designed two concept
applications: Sphere Paint and Sphere Pong (Figure 14). In
Sphere Paint, the user can paint on Sphere with a finger or
any available object (Figure 14a). Exploiting its spherical
shape, we allow Sphere to spin slightly (similar behavior to
a potter’s wheel), thus offering interesting artistic possibili-
ties to the user. Sphere Pong is a game prototype in which
users can use their hands or any other object to bounce sev-
eral balls around the spherical surface and score points
(Figure 14b). As with the classic game Battleship, not be-
ing able to see other users’ actions adds an exciting dimen-
sion to an otherwise standard pong game.

Figure 14: Two concept applications that use the
entire surface contact area as input: (a) Sphere
Paint, and (b) Sphere Pong.

Figure 13: Tether interaction: The user can freely
manipulate omni-directional video. Upon contact re-
lease, the video returns to its horizontal state.

Figure 12: Examples of Sphere omni-directional vi-
sualizations: (a) panoramic walk down Seattle city
street; (b) visualization of the Earth as a globe.

Figure 11: Orb-like Invocation: a bimanual gesture
that invokes a circular task-switching menu.

84

INITIAL USER OBSERVATIONS
We exhibited Sphere on three occasions at high-traffic lo-
cations in our organization (Figure 15). While these events
were not formal user evaluations, they presented us with an
opportunity to observe hundreds of people interacting with
Sphere in an informal manner with little to no instructions.
We now discuss our observations of multi-user interactions
during these sessions.
Sphere’s unusual shape, large size, and visibility from all
directions attracted large crowds. People frequently de-
scribed their experience as “magical” and “like interacting
with a crystal ball.” Photos and videos were easily browsed
by several people independently, shared with others when
desired, and moved to the unused space on the display for
“storage of unwanted items” (usually the bottom hemis-
phere). This use pattern suggests that the territoriality con-
cepts introduced by Scott et al. [20] are applicable on
Sphere, but more formal evaluation is clearly needed to
explore differences caused by the form factor.
Omni-directional data spanning the entire display proved
more difficult to handle when many people tried to interact
with Sphere at the same time. Because a given user cannot
see other users touch Sphere in the other hemisphere, users
often either fought for control or became confused by
movement that they did not initiate.
We also observed that people were much more inclined to
start touching and interacting with Sphere if the objects
were left in a disorganized, “messy” arrangement by pre-
vious users. In contrast, when the interface was reset and
displayed objects were realigned, we usually had to demon-
strate and explain that Sphere is indeed touch-sensitive and
interactive. This observation is especially important with
respect to public interactive displays which rely on an “at-
tract mode” to solicit public touch and interaction. We sug-
gest placing objects in a non-perfectly aligned arrangement
to draw users into interaction.
During our demo sessions, we logged all touches and
created radial heat maps for further analysis. These heat
maps confirm that spherical displays have no master user
position. While a heat map of a 15-minute single user ses-
sion (Figure 16a) suggests that a user assumes a particular
position and does not move extensively around Sphere, the
3-hour log of a number of different users shows no clear
orientation preference (Figure 16b). In total, we examined
logs of 21 hours of high-traffic use, all of which show simi-
lar user behavior. While promising, these results are clearly
preliminary observations. We are planning to conduct more
formal evaluations to confirm and extend these findings.
Users viewing the Earth’s surface on Sphere often re-
quested high magnification (zoom) capability. In addition
to scaling problems already discussed in this paper, high
zoom level effectively results in a transformation of a
spherical surface data into a mostly flat map-like data,
which is not well suited for display on Sphere. We plan to
further investigate zooming on Sphere and to study its im-
plications for interactivity and collaboration.

DISCUSSION AND CONCLUSIONS
We have presented Sphere, a novel hardware and software
solution that enables multi-touch sensing on a spherical
display. Our unique solution creates a self-enclosed device,
capable of displaying and sensing data on a spherical sur-
face, without occlusions and shadowing problems. To al-
low for rich user interaction, we implemented four concept
applications and a set of multi-touch interaction techniques
that account for the unique characteristics of the spherical
form and assist multi-user collaboration. We also contribute
several interesting observations of Sphere being used by
hundreds of people in three high traffic locations.
The interactions and concepts presented in this paper form
the building blocks for interactive spherical displays, but
much research remains to be done. We are curious about
the effect the Sphere size has on interaction as we believe
that different sizes will yield different interaction para-
digms (e.g., a handheld Sphere vs. a room-sized one). Col-
laborative scenarios interest us the most, given the clear
collaborative potential of this form factor. How do people
align themselves around the display to best accomplish a
task? How can user-interaction conflicts resulting from
omni-directional data be effectively handled? How does
sphere size affect collaboration? We believe all of these
questions are worthy of further research.
In addition, we are investigating using Sphere as a display-
able input device for navigational control of a remote robot
or of an avatar in a synthetic virtual world. A similar sens-
ing mechanism to the one developed for Sphere could also
be used to enable touch-sensing on different convex form
factors (e.g., hemispheres, cylinders, cuboids).
While the work described in this paper focused on Sphere
being used as a single primary device integrating both dis-

Figure 16: Radial heat maps of user touches around
the 24” Sphere: (a) a single user’s 15-minute session;
(b) more than 50 users during a 3-hour demo session.

Figure 15: Collaboration on Sphere in high-traffic lo-
cations: (a) 5 adults browsing videos; (b) 7 children
interacting with a globe.

85

play and input sensing, it is important to not restrict our
thinking to only solitary device usage scenarios. Indeed, it
is highly likely that future use of Sphere will be within a
broader heterogeneous ecology of displays and input tech-
nologies [6]. Rather than the “one size fits all” approach of
current desktop computing, having different devices, each
well suited to particular tasks, will likely as a whole pro-
vide a richer and more appropriate “workshop” for infor-
mation access and manipulation. We see Sphere as an
integral element in such an information workshop of the
future, and resulting issues such as information transfer
between display formats of vastly different form factors
will continue to provide interesting research challenges.
ACKNOWLEDGMENTS
We thank Mike Foody from Global Imagination for loaning
us two units of the Magic Planet display, Billy Chen and
Eyal Ofek for their feedback and the omni-directional data,
Mike Sinclair for his help with hardware, and Eric Horvitz
and Patrick Baudisch for their brainstorming ideas.
REFERENCES
1. Bowman, D.A., Kruijff, E., LaViola, J.J., and Poupyrev,

I. (2004). 3D User Interfaces: Theory and Practice.
Addison-Wesley, Boston.

2. Companje, R., van Dijk, N., Hogenbirk, H. and Mast,
D. (2007). Globe4D, Time-Traveling with an Interac-
tive Four-Dimensional Globe. ACM MULTIMEDIA. p.
959−960.

3. Chan, L.-W., Chuang, Y.-F., Yu, M.-C., Chao, Y.-L.,
Lee, M.-S., Hung, Y.-P. and Hsu, J. (2007). Gesture-
based Interaction for a Magic Crystal Ball. ACM VRST
Virtual Reality Software and Technology. p. 157−164.

4. Chen, Y., Au, J., Kazlas, P., Ritenour, A., Gates, H. and
McCreary, M. (2003). Flexible Active-Matrix Electron-
ic Ink Display. Nature. 423. p. 136.

5. Dietz, P. and Leigh, D. (2001). DiamondTouch: A Mul-
ti-User Touch Technology. ACM UIST. p. 219−226.

6. Fitzmaurice, G., Khan, A., Buxton, W., Kurtenbach, G.,
and Balakrishnan, R. (2003). Sentient data access via a
diverse society of devices. ACM Queue. p. 53-62.

7. Grossman, T., Wigdor, D. and Balakrishnan, R. (2004).
Multi-Finger Gestural Interaction with 3D Volumetric
Displays. ACM UIST. p. 61–70.

8. Grossman, T. and Balakrishnan, R. (2006). The design
and evaluation of selection techniques for 3D volume-
tric displays. ACM UIST. p. 3–12.

9. Han, J. (2005). Low-cost multi-touch sensing through
frustrated total internal reflection. ACM UIST. p. 115–
118.

10. Kettner, S., Madden, C. and Ziegler, R. (2004). Direct
Rotational Interaction with a Spherical Projection.
Creativity & Cognition Symposium on Interaction: Sys-
tems, Practice and Theory.

11. Kruger, R., Carpendale, S., Scott, S. and Greenberg, S.
(2003). How People Use Orientation on Tables: Com-
prehension, Coordination and Communication. ACM
SIGGROUP Conference on Supporting Group Work. p.
369–378.

12. Liang, J. and Green, M. (2004). JDCAD: A Highly In-
teractive 3D Modeling System. Computers and Graph-
ics. 18(4). p. 499–506.

13. Magic Planet by Global Imagination.
www.globalimagination.com.

14. Marchese, F. and Rose, J. (2006). Projected Hemispher-
ical Display with a Gestural Interface. ACM SIG-
GRAPH Research Posters.

15. Matsushita, N. and Rekimoto, J. (1997). HoloWall:
Designing a Finger, Hand, Body, and Object Sensitive
Wall. ACM UIST. p. 209–210.

16. Morris, M., Ryall, K., Shen, C., Forlines, C. and Ver-
nier, F. (2004). Beyond "Social Protocols": Multi-User
Coordination Policies for Co-located Groupware. ACM
CSCW. p. 262–265.

17. OmniGlobe by ARC Science Simulations.
www.arcscience.com.

18. PufferSphere by Pufferfish.
www.pufferfishdisplays.co.uk.

19. Rekimoto, J. (2002). SmartSkin: An Infrastructure for
Free-hand Manipulation on Interactive Surfaces. ACM
CHI. p. 113−120.

20. Scott, S., Sheelagh, M., Carpandale, T. and Inkpen, K.
(2004). Territoriality in Collaborative Tabletop Work-
spaces. ACM CSCW. p. 294–303.

21. Shen, C., Vernier, F., Forlines, C. and Ringel, M.
(2004). DiamondSpin: An Extensible Toolkit for
Around-the-Table Interaction. ACM CHI. p. 167–174.

22. Shoemake, K. (1985). Animating Rotation with Quater-
nion Curves. ACM SIGGRAPH. p. 245–253.

23. Shoemake, K. (1992). ARCBALL: A User Interface for
Specifying Three-Dimensional Orientation Using a
Mouse. Graphics Interface. p. 151–156.

24. Ushida, K., Harashima, H., and Ishikawa, J. (2003). i-
ball2: An Interaction Platform with a Crystal-ball-like
Display for Multiple Users. International Conference
on Artificial Reality and Teleexistence.

25. Wilson, A. (2004). TouchLight: An Imaging Touch
Screen and Display for Gesture-Based Interaction.
ICMI Conference on Multimodal Interfaces. p. 69–76.

26. Wilson, A. (2005). PlayAnywhere: A Compact Table-
top Computer Vision System. ACM UIST. p. 83–92.

27. Wu, M. and Balakrishnan, R. (2003). Multi-Finger and
Whole Hand Gestural Interaction Techniques for Multi-
User Tabletop Displays. ACM UIST. p. 193–202.

86

