

Zliding: Fluid Zooming and Sliding for
High Precision Parameter Manipulation

Gonzalo Ramos, Ravin Balakrishnan
Department of Computer Science

University of Toronto
bonzo, ravin@dgp.toronto.edu

ABSTRACT
High precision parameter manipulation tasks typically
require adjustment of the scale of manipulation in addition
to the parameter itself. This paper introduces the notion of
Zoom Sliding, or Zliding, for fluid integrated manipulation
of scale (zooming) via pressure input while parameter
manipulation within that scale is achieved via x-y cursor
movement (sliding). We also present the Zlider (Figure 1),
a widget that instantiates the Zliding concept. We
experimentally evaluate three different input techniques for
use with the Zlider in conjunction with a stylus for x-y
cursor positioning, in a high accuracy zoom and select task.
Our results marginally favor the stylus with integrated
isometric pressure sensing tip over bimanual techniques
which separate zooming and sliding controls over the two
hands. We discuss the implications of our results and
present further designs that make use of Zliding.

Categories and Subject Descriptors: H.5.2 [User
Interfaces]: Interaction styles; I.3.6 [Methodology and
Techniques]: Interaction techniques.

General Terms: Design, Experimentation, Human Factors.

Additional Keywords and Phrases: input, pen-based
interfaces, pressure widgets, multi-scale navigation.

INTRODUCTION
The manipulation of a parameter is a fundamental task in
most user interfaces. Although high precision parameter
manipulation can be accurately achieved by simply entering
an exact numeric value with an appropriate text input
technique, from the user’s point of view this exact method
is not always the most appropriate or preferred. Interactions
such as identifying and then picking a single pixel from a
high resolution image, seeking a particular frame in a long
video stream, or adjusting a continuous image color
parameter are examples of parameter manipulation tasks
where more interactive direct manipulation techniques can
be preferable since the user may not be certain a-priori as to
what value to enter. Furthermore, the immediate feedback
that an interactive widget or technique can provide while
the user adjusts the parameter is immensely valuable as it
affords a more continuous style of interaction rather than

the discrete style that results when specific values are
entered explicitly. The challenge in designing interactive
techniques for continuous high precision parameter
manipulation is that the manipulation scale desired by the
user when adjusting parameters may differ from one
parameter to another, or even within the same parameter in
different usage scenarios. Thus, interaction techniques for
high precision parameter manipulation should support fluid
adjustment of the scale within which the manipulation
occurs, allowing users to make coarse scale manipulations
for initial adjustments followed by finer scale
manipulations for the final precise parameter specification.

In this paper, we propose and study a mechanism for use
with pressure sensitive input devices, called Zoom Sliding,
or Zliding for short, in which users use the pressure
modality to fluidly and explicitly zoom or adjust the
granularity of the parameter space, while sliding or
dragging the input device to perform high precision
parameter manipulation within that zoomed parameter
space. We review the literature, discuss our design goals,
propose and develop an interface widget for Zliding called
the Zlider (Figure 1), and present a controlled experiment
that examines how a Zlider can be used with three different
input strategies for high precision parameter manipulation
with concurrent control of adjustment granularity. We
conclude by discussing the implications of the experiment’s
results on high precision parameter manipulation and
propose design variations for alternate Zliding widgets.

Figure 1: Zliding on the Zlider widget. a) A user manipulates
a parameter at coarse granularity by sliding through the
control while applying low pressure with the pressure
transducer. b) The same x-y sliding action while pressing
harder increases the granularity of the parameter space,
allowing for more precise parameter manipulation when
desired. The graphs on the right plot pressure over time,
with the interval when the sliding occurs highlighted.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’05, October 23–27, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-59593-023-X/05/0010…$5.00.

143

RELATED WORK
Common strategies to facilitate spatial parameter selection
tasks include reducing its Fitts’ Index of Difficulty (ID) [14]
by making targets larger, or by bringing them closer to the
user’s pointer. McGuffin et al. [25] show how increasing a
target’s size even at the final stages of a pointing task can
be beneficial. Drag-and-Pop [7] reduces the distance that a
user has to travel by bringing objects closer, using the
pointer’s trajectory. Another strategy to increase the
precision of the user’s interaction is to adjust the input
device’s control-display (CD) ratio. Semantic Pointing [9]
improves the selection of objects by assigning them
different CD ratios according to their importance. However,
both these elements are fixed, which could be problematic
if the user’s assessment of what is important changes. All
these approaches are aspects of the same solution: changing
the scale of a target or the space that contains it. In some
instances, zooming occurs in the visual domain, and in
others, the motor domain [9].

There has been a consistent effort to develop controls and
interactions tailored for precise parameter selection and
manipulation tasks. The Alphaslider [2] is a compact
selector that allows users to quickly pick a single item from
a list of thousands, essentially by providing 3 sub-sliders
with different levels of granularity. The FineSlider [30]
extends the Alphaslider’s idea and lets users adjust the rate
at which the slider’s selection changes, by using a rubber-
band metaphor. The PVSlider [27] also uses a rubber-band
metaphor to adjust the granularity with which users slide
through a video stream. The issue of precise manipulation
also applies to scenarios where the input mechanism can be
imprecise by nature. Potter et al. [26] investigate how to
increase the accuracy of a bare finger on a touch screen and
show how their “take-off” approach outperforms traditional
touching techniques. With “take-off”, a target is defined not
by the position a finger lands on, but by the position it is
lifted at. This lets users adjust a cursor’s position while
their finger stays in contact with the touch screen.
However, this approach does not allow for the gain of the
finger’s movement to be changed. Albinsson and Zhai’s
Precision Handle [3] lets a user’s bare finger manipulate a
graphic handle around a pivot in order to change the
interaction’s granularity and achieve pixel-level accuracy.

Guiard et al. [19] recognize that high precision selection
tasks can be thought of as multi-scale navigation tasks. In
addition, there is a significant body of work establishing a
comprehensive theoretical framework for multi-scale tasks.
Furnas’ space-scale diagrams [16] give us the means to
understand and analyze multi-scale interactions and
interfaces. Guiard et al. [18, 19] have also shown that
multi-scale pointing still obeys Fitts’ Law. Building on this
evidence, we believe that facilitating space scaling and
manipulation operations should help users with high
precision tasks. Some of the literature suggests that panning
(i.e., equivalent to parameter manipulation) and zooming is
an integrated task [23], and recommends it be driven by an

integrated device. Igarashi and Hinckley [22] introduce
speed-dependent automatic zooming, a technique that
facilitates navigation tasks over large spaces, using a 2dof
integrated device. This technique keeps the visual flow of
the navigation constant, while scrolling at different speeds,
thus improving users’ performances over traditional scroll
and pan and zoom methods [13]. However, other results
indicate that there may be benefits in separating pan from
zoom. It has been shown how bi-manual interaction
techniques can be faster [12] than uni-manual ones, and can
permit parallelism in multi-scale tasks [10, 21, 31].

A common theme present in all the above uni-manual
designs and techniques is that both scale and parameter
values are specified as a function of the cursor’s x-y
position. Further in many of these techniques, scale
adjustments are determined by the system without giving
users much say as to what scale values to apply and when.
With bimanual techniques, the scale is often controlled by
the non-dominant hand, while parameter manipulation
within that scale is performed with the dominant hand. In
contrast, our current work focuses on how users can control
scale via a pressure transducer while simultaneously
manipulating a parameter within that scale space using a
spatial x-y cursor.
MOTIVATION and GOALS
In our research, we are motivated by the steady
technological progress in pen-enabled and touch-sensitive
platforms, where high precision manipulation tasks are
made even more challenging by very small or very large
physical form factors and interfaces. The fixed granularity
of standard GUI widgets like sliders may work reasonably
well in a desktop computing environment, but may not
scale to tiny PDAs or very large wall sized displays. On a
tabletPC or PDA with small screen and input space, for
example, the fixed relatively coarse granularity of some
GUI widgets can hinder user’s ability to make high
precision adjustments. Example scenarios where users may
need to fluidly adjust the scale of the parameter space in
order to make precise parameter adjustments include:

• Graphic applications: Users may need to quickly select a
precise pixel from a large bitmap that cannot be
displayed at pixel-visible resolution on a small screen.
Also, users may need to precisely adjust a value
controlling a visual feature, such as the blending across
several images.

• Browsing on ZUIs: Users may need to navigate through a
map both at a very large and at a very fine scale.

• Acquisition of small controls in the GUI: Elements in an
interface can present very small selection footprints,
requiring a change in CD ratio to facilitate selection.

• Analog-like controls: These controls offer a granularity
that depends on their physical size and the input device’s
CD ratio. Users interacting with such controls may need
to do fine tuning in order to attain a precise value, such
as a frequency in a radio tuner.

144

In designing a fluid interaction mechanism that facilitates
high precision parameter manipulation, we have the
following goals:

• Integrated scale and parameter manipulation. The
interaction should support zooming of the parameter’s
scale space and concurrent high precision adjustment of
the parameter within that space.

• Infinite parameter scale adjustment. It should be possible
to fluidly adjust a parameter to an infinitely small or
large value. The ability to attain virtually infinite
precision or gain is a rarely explored objective that we
believe to be worthy of attention.

• Familiar interactions. The new interaction should feel
familiar, leveraging the typical user’s vast experience
with standard GUI widgets and interaction techniques.

THE ZLIDER
The Zlider widget (Figure 1) consists of a rectangular
working area that the user can scrub in order to adjust a
parameter v ∈ [low, high], where low and high are
arbitrary limit values. There is no particular handle the user
needs to grab to use the widget. To operate the Zlider the
user taps and drags its pointer across the working area until
the desired value is reached or effect is achieved. At all
times a red needle indicates the position of the value being
adjusted relative to the possible minimum and maximum
values at the extremes of the widget. The Zlider’s scale or
granularity at time i dictates how the parameter v changes:

)./(.1 lengthscalerangevv ii ∆+= − ; where v0 = low, ∆ is the
distance between the tapping point and the pointer’s current
dragging location, range = high-low, and length is the
working area’s length. The Zlider also displays a Vernier as
suggested by Ayatsuka et al. [5]; however, the Vernier in
our Zlider adapts its grid spacing depending on the widget’s
current scale factor.

Pressure Cursor
Though not integral to the Zlider design, we use a pressure
cursor (Figure 2) across our implementations, instead of the
default cursor found in most GUIs. Our pressure cursor
provides users with a real-time indicator of the pressure
they are applying with the input transducer. The pressure
cursor has a wedge-like shape that changes its aperture with
the amount of pressure applied. The wedge’s area fills as
the pressure increases, until completely filled when the
pressure reaches the maximum level the device can sense.
The cursor’s hot spot corresponds to the wedge’s vertex.

Figure 2: Pressure cursor. The wedge increases in size and

fills up as pressure increases. (p2>p1>p0)

Integrated Zoom & Slide Control
Our default interaction design uses a pressure-sensitive
stylus as an integrated input device for fluid zooming of the
parameter’s scale space and sliding (i.e., manipulation) of
the parameter’s value within that scale space. The scale
factor of the Zlider is adjusted by changes in pressure at the
stylus’ tip, and the stylus’ x-y position enables sliding of
the parameter’s value. We use an exponential function of
the form scale=base f(p) to calculate the scale factor, where
f(p) is a function of the stylus’ reported pressure at a
particular time.

Previous research in pressure-enabled widgets [28]
highlights the difficulty users can experience in maintaining
a constant level of pressure while dragging a stylus. We
therefore utilize a combination of both signal processing
and interactive techniques to minimize unwanted changes
in the control’s scale. Raw pressure data first passes
through a low-pass filter. Then, it passes through a
hysteresis process that stabilizes the signal further. Finally,
a parabolic-sigmoid transfer function is used to account for
users’ performance when they apply force through an
isometric input device like the stylus’ tip pressure sensor.
This transfer function has been used in similar scenarios [6]
and is consistent with the effect we want to achieve. This
effect is comprised of an initial “dead zone”, slow response
at low pressure levels (where users can vary pressure
significantly without noticing), linear behavior in the mid
ranges (where users have good control of pressure), and
slow response at high levels of pressure (where the user’s
applied force can produce tremors, causing sudden pressure
variations that are magnified by the exponential scale
function). Figure 3 shows an example of how the different
pressure-stabilizing stages affect the resulting scale factor.

0

50

100

150

200

250

300

350

400

Time

Sc
al

e

Absolute Pressure
Raw Data
After Low Pass
After Hysteresis
After Parabolic-Sigmoid TF

Figure 3: Effect of the stabilization techniques. The absolute
pressure line represents the transducer’s raw signal.

Clutching the Zoom Level
The Zlider design has a clutching mechanism that enables
users to completely stabilize pressure and hence lock the
zoom level while sliding. Users clutch by sliding the cursor
away from the Zlider’s working rectangle (Figure 4.2).
While clutched, users can still slide outside the working
rectangle (Figure 4.3) but the widget maintains its scale at
the last reported value regardless of pressure variations. Re-
entering the working rectangle declutches (Figure 4.4).

145

Figure 4: Clutching the zoom level

While the widget’s scale factor is the same at the point in
time when users clutch and declutch, it is possible that the
pressure they applied at these moments is not. By design,
we use this situation to let users increase the Zlider’s scale
factor arbitrarily in a relative manner. In other words, by
clutching, users can not only stabilize scale variations, but
also achieve as much precision as needed. To go beyond
the scale value attainable when the pressure at the stylus’
tip reaches it maximum value, users can in one continuous
gesture: a) increase pressure and hence scale factor; b)
clutch; c) decrease applied pressure; d) declutch; and e)
increase pressure and hence scale beyond the value at step
(a). This process can be repeated in order to attain higher
precision levels if the user so desires. Conversely, an
inverse series of steps allows users to decrease the scale
factor from a high to a low level.

There are three ways in which the user is notified that they
are clutching or declutching: a) a very brief auditory
feedback, b) an icon that follows the Zlider’s needle (Figure
4.2), and c) a change in the physical appearance of the
pressure cursor (Figure 4.2-3). Pilot studies revealed that
while visual feedback is important, auditory feedback was
beneficial to users who were not visually focusing on the
Zlider control.

The Selection Mechanism
The Zlider design uses the release of the stylus from the
interaction surface as an indication of selection. This is
consistent with the behavior of regular slider controls, and
previous research [28] also supports lifting the stylus as a
selection technique for pressure-aware widgets. However,
some issues remain that deserve our attention. First, we
need to determine the Zlider’s behavior when the stylus is
lifted from the interaction surface (i.e. the applied pressure
becomes zero). Even though one possible design decision is
to make the scale=1, this is not always desirable. Pilot
studies revealed that users might lift the stylus because they
wanted to re-invoke the Zlider from a different point when
they found themselves sliding very close to either extreme
of the working rectangle. Users indicated that resetting the
scale to 1 was annoying, since it forced them to reacquire
the scale value. The same situation was found when users
missed the target parameter value by a small amount. In
this case, they explicitly voiced the need to perform, as one
user called it, “quick micro-adjustments”. Based on this

feedback, we modified the Zlider’s behavior so that it
maintains its last reported scale value as long as the stylus
is within sensing proximity and the widget’s working area.
This sensing or tracking capability can be found in most
modern digitizing tablets as well as in other display
technologies (such as the SmartBoard), and has started to
be used as a design element in a number of novel user-
interface widgets [8, 15]. It is possible to use time-based
techniques to simulate to some degree this behavior in
devices that lack proximity sensing. However, a full
discussion is beyond the scope of this paper. Figure 5
shows the state-transition diagram of the Zlider’s behavior.

Figure 5: Zlider’s state-transition diagram. R is the working
rectangle; x,y the cursor’s position. p<0: stylus out of range;
p=0: stylus is being tracked; p>0: stylus is touching the
tablet. Zlider’s scale is reset to 1 at the idle state.

The second issue we need to consider is estimating what the
Zlider’s last reported scale (pressure) value should be at the
time the stylus is lifted from the interaction surface. We
need to identify as accurately as we can the exact moment
when users start their lifting action. This is important as we
do not want the Zlider to accidentally change its scale
factor. In our case, looking back a fixed number of samples,
as was proposed by Buxton [11], is not sufficient because
the number of samples we need to trace back depends on
how fast users lift the stylus. Observations in our pilot
studies also revealed that users generally pause for a few
milliseconds before lifting the stylus, thus defining a very
small pressure valley. Furthermore, pressure values from
that point onwards follow a monotonically decreasing
trend. With the above information we estimate the scale
factor at the time the user starts to lift the stylus. Our
algorithm looks backwards in the device’s buffer until the
small valley is found, or the curve stops its decreasing
trend. Since the Zlider control’s scale responds in real-time
to variations, it is possible that there is a mismatch between
the estimated scale value and the scale at the point the
stylus is lifted. Sudden changes in the Zlider’s scale factor
would result in an undesired disorienting effect on the user.
In order to mitigate this effect, the Zlider’s scale smoothly
changes to the estimated last reported scale value. The same
type of smooth transitions is consistently used in the Zlider
widget when changes, otherwise too abrupt, need to occur.

146

These two design features provide functionality similar to
clutching, wherein users have another way to achieve an
arbitrarily high level of precision. In this case, to increase
the scale once no more pressure can be applied, a user can:
a) increase pressure and hence scale; b) quickly lift the
stylus from the interaction surface, staying within tracking
distance; c) touch the working area again; and d) increase
pressure until the desired magnification is achieved. Unlike
clutching, this tracking interaction does not allow users to
un-zoom in a controlled fashion. Nonetheless, we observed
that both the tracking and clutching mechanisms served
different users’ interaction styles when adjusting the zoom.

Scrolling
The Zlider is controlled by relative displacements in its
working area. However, pilot studies showed that some
users wished the familiarity of continuous scrolling found
in ordinary scroll and slide controls. Our design easily
incorporates continuous scroll zones at the extremes of its
working area (Figure 1). If, while sliding, the cursor
reaches a scroll zone the Zlider enters a scrolling mode.
Sliding has no effect in this mode and the parameter it
controls changes at a constant rate proportional to the
current scale. By adjusting pressure, scale can be changed
while in scroll mode thus affecting the scrolling speed.

ALTERNATIVES FOR DECOUPLED ZOOM CONTROL
The Zlider was designed to be operated by an integrated
pressure and position sensing input device, such as a
pressure-enabled stylus. However, our design can easily
support other ways to adjust the Zlider’s scale factor. In
particular, we can use input originating from the user’s non-
dominant hand. Decoupling the scale control from the
dominant hand has the potential to eliminate undesired
interference between zooming and panning that may occur
while using the stylus as the only input device. At the same
time, this decoupled way of controlling scale has the
potential to still allow users to perform zooming and sliding
concurrently [10]. In this section we explore two instances
of decoupled design strategies for adjusting the Zlider’s
scale: a force sensing button, and two discrete keys.

Force Button
A force button is an isometric input device that can have a
minimal footprint. This makes it an attractive design choice
that can be incorporated in many form factors such as hand-
held devices, tablets, and even in traditional input devices
such as mice or keyboards. In addition, previous research
[20] shows the potential advantages of embedding force
sensors on hand-held devices. For our exploration of this
style of input we used a phidget [17] force sensor. The
signal reported by this sensor is very similar to the one
given by the stylus’ tip and we use it in the same way.
Because of this similarity, many of the issues regarding
signal stabilization that we discussed in the previous
sections apply to this input device. However, since the
force button is decoupled from the stylus, it is easier to
determine what the scale factor is at the time users lift the
stylus. Nonetheless, we found that both the signal

stabilization techniques and clutching mode already
discussed were effective at mitigating signal instabilities
while users slide. Clutching and tracking can be used with
this input mode to achieve arbitrarily high precision levels.

Discrete Keys
The second decoupled method of controlling the Zlider’s
scale uses two discrete keys: one for increasing the scale
and another for decreasing it. This input mechanism is easy
to implement in a variety of form factors and sizes and it
can be seen as the lowest common denominator method for
changing the scale in many scenarios. We implement this
input mode using the Shift and Crtl keys found in most
computer keyboards. Users tap on Shift and Ctrl in order to
respectively increase or decrease the scale factor by a
constant increment. Also, users can tap and hold on either
key in order to zoom or un-zoom at a continuous rate. The
signal from this input is stable, making it easy for users to
slide at constant scales. Consequently, we neither need to
filter the input, nor use the parabolic-sigmoid transfer
function. Also, finding the scale value when the stylus is
lifted becomes trivial. Though clutching and tracking are
still available, users can use the keys alone to reach
arbitrarily high precision levels. However, this discrete
input has a drawback in the amount of time a user requires
to reach a determined scale factor. This time depends both
on the mechanical properties of a key that needs to be
pressed and released, and the rate at which scale is adjusted
when a key is held. This rate needs to be carefully
considered. A rate that is too fast will make the interaction
quicker, yet difficult to control (i.e. users will overshoot the
desired scale). Conversely, a slow rate will make the
interaction more controllable, yet unacceptably sluggish.
Equally important is the choice of the step the scale should
change for each keypress. For our experiments we updated
the scale every 30ms after a key was held for 400ms.

EXPERIMENT
Our experiment investigates how three different scale
adjusting strategies: Stylus, Force Button, and Keys affect
people’s interactions and performance in a high precision
selection task that uses the Zlider. We are particularly
interested in investigating how these strategies compare to
one another. In particular, we believe that the simplicity of
the Keys and Force Button techniques could outperform the
Stylus technique where the combination of linear x-y
movement and pressure control with the stylus tip might
interfere with one another. On the other hand, the integrated
nature of the Stylus technique has the advantage in that
users will likely conceive of the zoom and sliding task as a
conceptual whole, rather than two separate subtasks as with
the Keys and Force Button techniques where zooming and
sliding control are separated across the two hands. Because
each technique has its own idiosyncrasies, the experiment’s
results can help both designers and users to choose the best
solution for a given situation. In addition, the experiment
will provide us with valuable user feedback regarding the
Zlider control and the overall experience of Zliding.

147

Apparatus
We used a Wacom Cintiq 18SX interactive LCD graphics
display tablet with a wireless stylus that has a pressure-
sensitive isometric tip. The stylus reports 1024 levels of
pressure, and has a binary button on its barrel. The stylus
does not provide any distinguishable haptic feedback in
relation to the pressure applied. The tablet’s active area was
mapped onto the display’s visual area in an absolute one-to-
one manner. To implement the Force Button condition we
use a phidget [17] interface board that read data from a
force sensor. Users applied force on the sensor through a
thin layer of hard rubber protecting them from its
uncomfortable original profile. Although this force sensor
reports up to 1000 levels of force, we only use the first 2/3
of them, as in our pilot studies users showed discomfort
when reaching values above 2/3 of the way. The Keys
condition was implemented using the Shift and Ctrl key on
a regular PC keyboard. The experimental software ran on a
1.4GHz P4 PC with Windows XP Professional.

Participants
Four female and eight male volunteers, 18-44 years old,
participated in the experiment. Ten were right-handed. All
had little or no prior experience with tablets like the one
used in the experiment. No compensation was provided.

Task and Stimuli
A serial target acquisition and selection task was used. The
stylus was used to control the sliding behavior of a Zlider
widget with its scrolling zones disabled and its clutching
and hover mechanisms enabled. The experimental trials
simulate a pan and zoom task on a reduced interaction
footprint, like the ones found in hand-held computers or
dialog windows. In each trial the user controls the Zlider in
order to locate and select a target in a workspace area 1500
pixels long, shown through a viewport 256 pixels long
(Figure 6). The target to be selected is represented as a
green rectangle and can have three possible widths: 1/10,
1/1,000 and 1/100,000 of the workspace’s length. In turn,
the target can be located at a near, mid or far distance from
the top of the workspace. Distance is chosen according to
the target’s width so that distance=n.width, where n is an
integer, width is the target’s width, and distance belongs to
either the intervals [150, 450), [600, 900) or [1050, 1350).
Besides the target, the workspace contains a horizontal grid
that increases in density in the vicinity of the target, helping
users locate it. As the user scrubs across the Zlider the
workspace scrolls accordingly under the viewport in the
same way a document scrolls in a text editor. During the
trials users can adjust the interaction scale through one of
three methods: Stylus, Force Button and Keys. Changes in
the scale are reflected by magnification changes on the
working area and on the stylus’ C:D ratio. This scaling
operation makes accessible targets that otherwise would be
too small to select. Users are instructed to scroll through
until the target is inside the viewport, visible, and covering
the selection line (Figure 6). When this happens the target
changes its color from green to red, and users finish the
selection by lifting the stylus from the interaction surface.

The workspace has a textured background, which helps
users to be aware of the current scale factor they are at, thus
alleviating desert fog [24] effects in the scale space.

Figure 6: Elements in the experimental setup.

Procedure and Design
A within-participants full factorial design with repeated
measures was used. The independent variables were
Technique (Stylus, Force Button and Keys), Width (large,
small, smallest), and Distance (near, mid, far). The order in
which techniques were presented to users was included as a
between-subjects factor. The dependent variables were
Selection Time – defined as the time from the moment the
stylus touches the tablet’s surface until the moment the user
selects the target; and Crossings – defined as the number of
times the selection line enters and leaves the target per trial
(e.g., this value is equal to 1 when a participant does not
overshoot the target). Crossings gives us information about
the degree of control shown by participants during a trial,
as well as hints about their strategy during trials. For each
experimental trial, we collected all the stylus, force button,
and key data events. Also, since each trial can only be
completed successfully, we end with a set of error-free
selections. Participants were randomly assigned to 6 groups
of 2 participants each. In each group, participants were
exposed to all 3 Technique conditions, whose order of
appearance was counterbalanced across groups to minimize
ordering effects. For each Technique, participants were
asked to complete 4 blocks each. Each block consisted of 9
selection trials (3 Distances x 3 Widths), repeated 5 times.
Presentation of trials within a block was randomized. In
summary, the experiment consisted of:

12 participants x
3 technique conditions x
4 blocks x
3 width conditions x
3 distance conditions x
5 repetitions
= 6480 target selection trials.

Prior to performing the trials for each Technique, the
experimenter explained to the participant how the Zlider
worked with a particular technique. Then participants did a
warm-up block of 45 trials to practice with the
corresponding technique. Participants were instructed to

148

perform the upcoming tasks as quickly and accurately as
possible. While participants could take breaks between
blocks, we enforced a 5 minutes break between techniques.
A short questionnaire was administered at the end of the
experiment to gather the participants’ opinions.

RESULTS
The experiment took an average of 1.25 hours per
participant. A trial was considered an outlier when Time
was beyond 2 standard deviations from the mean per
participant. A total of 245 outliers (3.7%) were removed
from our analysis. There were no main effects or
interactions for the Order condition on either Selection
Time or Crossings. While our data logs did record instances
of clutching and hover, a detailed analysis at this level of
interaction granularity is beyond the scope of this paper.

Selection Time
As might be expected from Fitts’ law, analysis of variance
revealed a significant main effect on Selection Time for
Width (F2,14 = 392.8, p < .0001), and Distance (F2,14 =
13.23, p < .001). However, there were no significant main
effect on Selection Time for Technique (F2,14 = 0.31, p =
0.738), or Technique*Width (F4,28 = 1.53, p = 0.22), and
Technique*Distance (F4,28 = 0.693, p = 0.6) interactions.
Also, post-hoc pairwise comparisons did not show any
main effects between Techniques for all levels of the Width
condition. This is an interesting finding because we did not
expect users to perform statistically similarly with such
distinct techniques. Figure 7-8 illustrate these results.

27
18

.52

28
07

.56

27
38

.91

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Force Button Keys Stylus

Technique

A
vg

. T
im

e
(m

s)

Figure 7: Average selection time per technique.

13
81

.73

28
25

.15

39
48

.67

13
41

.35

30
30

.57

40
50

.76

12
60

.16

28
30

.28

41
26

.29

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

large small smallest

Width

A
vg

. T
im

e
(m

s)

Force Button Keys Stylus

Figure 8: Average selection time per technique*width.

An analysis of Selection Time across experimental blocks
(Figure 9) shows participants improving marginally as the
experiment progressed for both the Force Button and Stylus
conditions. For the smallest condition, participants’
performance degraded and then recovered when using
Keys, suggesting it may have taken longer for users using
this technique to find a good strategy to complete a trial.
Variations on the last experimental block suggest that
fatigue effects may be present.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4

Block

A
vg

. T
im

e

Force Button Keys Stylus

Figure 9: Average selection time per block*technique.

Crossings
We found that participants crossed a target more than once
for a number of reasons: a) they were sliding too fast and
the target passed under the selection line without them
noticing; b) they tried to acquire the target when it was
visible, yet unreachable because the CD ratio was not high
enough; c) fluctuations in their control of the scale caused
the target to move; and d) a combination of all of the above.
Our analysis shows a significant main effect for Width (F2,4
= 357, p < .0001) on Crossings. Pairwise comparisons
indicate that Crossings at mid distances were significantly
higher than crossings at near distances (p < .03). There was
no main effect for Distance (F2,4 = 5.46, p = .07). However,
we observe for the large condition that crossings increase
as distance decreases. Post-hoc comparisons indicate that
near targets are crossed more often than mid ones (p < .03).
Figure 10 illustrates these effects.

1

1.5

2

2.5

3

3.5

4

far mid near
Distance

Av
g.

 #
 C

ro
ss

in
gs

large small smallest

Figure 10: Average crossings per distance*width.

149

There was no main effect for Technique (F2,4 = 2.24, p =
.22) on Crossings. However, analysis of variance shows a
Technique*Width interaction (F4,8 = 4.49, p < .04) a closer
inspection of the means shows Stylus resulting in fewer
crossings than the other techniques for the small and
smallest conditions. Figure 11 illustrates these effects.

1

1.5

2

2.5

3

3.5

4

large small smallest

Width

A
vg

. #
 C

ro
ss

in
gs

Stylus Keys Force Button

Figure 11: Average crossings per width*technique.

Figure 12 illustrates the number of crossings as the
experiment progressed for each of the techniques. While
participants do not seem to do better or worse with the
Stylus, there is some improvement in participants’ control
for the Force Button with practice.

1

1.5

2

2.5

3

3.5

4

0 1 2 3
Block

Av
g.

 #
 C

ro
ss

in
gs

Stylus Keys Force Button

Figure 12: Average crossings per block*technique.

Qualitative Results: User Preferences
At the end of the experiment, we asked participants to rank
each of the techniques presented to them. Their responses
revealed mixed opinions. While some participants preferred
and showed more skill with the Stylus, others preferred the
Force Button or the Keys. This was interesting, as the
experimenter heard how much a participant “loved” a
technique not long after another participant expressed her
dislike for it.

Six participants ranked Keys as their 1st preferable method
to use and ten people as their 1st to 2nd

 choice. Users gave
several reasons for their ranking, e.g., “it was easy to
learn”, “it was simple to use”, “it was predictable”, “I could
keep the scale stable”. However, more than half the people
in that group expressed that for many scenarios they would

probably like to use the stylus alone, because it requires
“only one hand” and “does not need a keyboard”. It was not
surprising to hear from some participants that “using the
keys was slow”, although the quantitative data does not
support this claim. Only two participants ranked Stylus as
their 1st choice and eight as their 1st to 2nd choice. Even
though “it took longer to get used to” people expressed that
once they “got it” the selecting task had a “cool fluid
feeling” to it. While people in this group commented that it
felt “quite natural” to zoom, they also expressed that it was
challenging not to affect the pressure they are applying
when sliding over long distances. This was a nuisance, if
users did not want to alter the Zlider’s scale while browsing
for the target. One participant expressed that using the
stylus alone was “incredibly fast when the target area was
on sight”. Four participants ranked the Force Button as
their 1st choice, and six did so as their 1st to 2nd one. There
was a mixed set of responses for this condition. While some
people exhibited very good control, others did not. As was
observed with the Keys condition, people in this group liked
the fact that zooming and sliding were decoupled.
However, people who did not like this condition
complained about difficulties coordinating both zooming
and sliding with separate hands. For example, we observed
how users inadvertently accompanied the selection lifting
action with a quick release of the Force Button as well.

DISCUSSION
We had the opportunity to both assess a widget of our
design, and to observe people using it to fluidly and
successfully perform selection and micro-adjustment tasks
in sizes that ranged from the large to the almost
infinitesimal. The fact that we found no significant
differences in terms of average Selection Time for the three
scale adjusting Technique conditions we studied is both
unexpected and remarkable. This result shows that the
Zlider’s design can be used in different scenarios and
hardware configurations without any performance
degradation.

Nevertheless, our results prompt us to consider metrics
other than Selection Time in order to identify if a Technique
is preferable. Our analysis of the number of Crossings per
Technique favors the Stylus condition, which results in
fewer crossings for small targets. This conclusion is
reinforced by the participants’ qualitative feedback, which
not only helps us identify what works well with the Stylus,
but also what can be improved. We believe that a critical
area of Zliding requiring improvement is supporting users’
ability to zoom only when they want to. Our Zlider design
supports this feature with its clutching mechanism and by
making use of the tracking capability of its input device.
However it may be that Zliding needs to occur without an
explicit physical area, or widget that can act as a clutching
delimiter. Examples of these cases are a widget with no
area, such as a crossing widget [4], or panning and zooming
on a 2D map. It is then necessary to think of alternate
strategies to achieve this design goal. Since most of the
undesired scale changes were observed while the user was

150

dragging the stylus, one solution is to alter the rate at which
the interaction’s scale is allowed to change, based on the
speed at which the stylus moves. This solution can include
extreme cases such as disabling scale changes when the
pointer moves above a certain threshold speed, or allowing
scale changes only when the stylus is not moving in x-y
space. Our current implementation is but a particular case
of this general strategy. In addition, this solution provides
users with an interaction style that models tasks that are
purely serial (e.g., pan then zoom), purely coordinated (e.g.,
pan while zoom), or in-between.

Other Designs: The Zliding Wheel
The Zliding Wheel (Figure 13) operates by the same
principle as a knob control with the exception that one can
control the granularity of the wheel’s increments. This
control provides functionality similar to the Zlider’s, but
with a potentially smaller footprint and no boundaries on
the parameter it controls. With the Zliding wheel, in
addition to using the curvature of the arc being drawn to
regulate the granularity, users can also adjust it through a
degree of freedom other than a cursor’s position, such as
the pressure applied with a stylus input device. We consider
two main variations of the Zliding wheel: a fixed version
(Figure 13-a), and a floating one (Figure 13-b).

Figure 13: Zliding Wheels.

The fixed version (Figure 13-a) consists of a circular disk
that users can rotate by scrubbing on its surface. A red
needle inside the disk indicates the absolute rotation the
disk is subjected to. The fixed Zliding wheel is very similar
in its behavior to the Zlider widget: users can modify the
wheel’s granularity while they are rotating it, as well as
access a clutching zone when they drag the pointer outside
the disk’s area. A scale ring is displayed above the wheel
when its scale factor > 1, and provides a “gear-like
feedback”, which helps users understand the differences
between the wheel’s and the pointer’s absolute motion.

The floating or “drifter” wheel (Figure 13-b) follows a
pointer’s circular motion, which is not necessarily centered
on a fixed point, and works under the same principles of the
control described in [29]. This drifting is usually the result
of the user not focusing visually on the control but instead
paying attention to the changes the control causes. Because
of this, the floating wheel has a lightweight visual design
that consists of two concentric rings: an internal one that
provides the absolute rotation the wheel is subjected to; and

an external one that keeps track of the pointer’s current
motion. The floating wheel provides minimal feedback
about its granularity by altering the thickness of its outer
ring. As it stands, this design cannot incorporate a clutching
zone, and because of this, it would be appropriate to use the
pointer’s speed to determine when scale adjustments should
be permitted.

It is worth mentioning that unlike other similar wheel
controls, the Zliding wheel has the advantage of providing a
way to adjust its granularity even in scenarios where it is
not possible to move beyond the control’s boundaries (e.g.,
a notebook’s touchpad, or an iPod’s scroll wheel).

CONCLUSIONS AND FUTURE WORK
We believe that high precision parameter manipulation
tasks can be greatly facilitated by allowing users to fluidly
zoom and slide, or zlide, as they interact. Our results show
that even though different scale adjusting strategies seem
comparable in terms of elapsed time, there are advantages
in the use of an integrated input device, such as the
pressure-enabled stylus available in Tablet PCs. This is
particularly useful in scenarios where a keyboard is not
available or accessible. Users commented on how
performing a selection using only one hand was appealing
to them and “felt right”. We also found that there is room
for improvement in our interaction design. In particular, it
is possible to develop more sophisticated filtering
techniques in order to obtain a stable input signal from the
stylus’ pressure-sensitive tip. Nevertheless, we found it
remarkable that, in spite of our simple signal filtering
scheme, the stylus emerged as a reasonable alternative
when compared with the other simpler decoupled input
strategies. This result has implications that apply not only
to pen-based systems, but also to a diverse set of devices
and form factors capable of touch-based input.

Other Technologies, Other Directions
There are other technologies that have the potential to be
used to zoom and slide. For example, capacitive touchpads
are becoming widespread as a means of input for notebook
computers, portable music players, and handheld devices.
Even tough capacitive touchpads have been traditionally
used to sense a finger’s position, some are capable of also
sensing the amount of pressure that is applied to them. In
other types of touch-sensitive surfaces, it is possible to
estimate the contact area of a touching finger, thus
estimating the applied pressure.

It is possible to leverage devices with decoupled continuous
degrees of freedom such as Microsoft’s Digital Media Pro
keyboard or Wacom’s Cintiq 21UX tablet, to facilitate the
acquisition of very small targets in current GUIs. For
example, in a fashion similar to the map application
presented in [21], a user can apply scaling operations on a
window’s manager using a pointer’s current location as a
center of magnification. In this way, users can browse the
GUI until a desired scale or CD ratio is reached. In a
similar fashion, the “take-off” technique [26] can be greatly
enhanced by Zliding. We imagine such interactions

151

becoming commonplace in new environments that use
resolution-independent graphics as their rendering engine.

Future work includes additional interactions and widget
designs that can take advantage of Zliding to facilitate high
precision manipulation tasks. In particular, we would like to
see how crossing widgets [1, 4] can incorporate Zliding
techniques. Finally, we are interested in studying, in the
context of Zliding tasks, the degree of coordination people
exhibit when using both coupled and decoupled input
strategies for a variety of form factors.

ACKNOWLEDGMENTS
We thank all our experiment participants, and members of
the DGP Lab (www.dgp.toronto.edu).

REFERENCES
1. Accot, J., & Zhai, S. (2002). More Than Dotting the I's -

Foundations for Crossing-Based Interfaces. CHI, p. 73-
80.

2. Ahlberg, C., & Shneiderman, B. (1994). The
Alphaslider: A Compact and Rapid Selector. CHI, p.
365-371.

3. Albinsson, P.-A., & Zhai, S. (2003). High Precision
Touch Screen Interaction. CHI, p. 105-112.

4. Apitz, G., & Guimbretiere, F. (2004). Crossy: A
Crossing-Based Drawing Application. UIST, p. 3-12.

5. Ayatsuka, Y., Rekimoto, J., & Matsuoka, S. (1998).
Popup Vernier: A Tool for Sub-Pixel-Pitch Dragging
with Smooth Mode Transition. UIST, p. 39-48.

6. Barrett, R., Olyha, J., Robert S., & Rutledge, J. (1996).
Graphical User Interface Cursor Positioning Device
Having a Negative Inertia Transfer Function. Patent #
5,570,111, IBM Corp.

7. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P., Bederson, B., & Zierlinger, A. (2003).
Drag-and-Pop and Drag-and-Pick: Techniques for
Accessing Remote Screen Content on Touch- and Pen-
Operated Systems. Interact, p. 57-64.

8. Bezerianos, A., & Balakrishnan, R. (in press - 2005).
The Vacuum: Facilitating the Manipulation of Distant
Objects. CHI.

9. Blanch, R., Guiard, Y., & Beaudouin-Lafon, M. (2004).
Semantic Pointing: Improving Target Acquisition with
Control-Display Ratio Adaptation. CHI, p. 519-526.

10. Bourgeois, F., Guiard, Y., & Beaudouin-Lafon, M.
(2001). Pan-Zoom Coordination in Multi-Scale
Pointing. CHI Extended Abstracts, p. 157-158.

11. Buxton, W., Hill, R., & Rowley, P. (1985). Issues and
Techniques in Touch Sensitive Tablet Input.
SIGGRAPH, p. 215-224.

12. Buxton, W., & Myers, B. (1986). A Study in Two-
Handed Input. CHI, p. 321-326.

13. Cockburn, A., & Savage, J. (2003). Comparing Speed-
Dependent Automatic Zooming with Traditional Scroll,
Pan and Zoom Methods. British HCI, p. 87-102.

14. Fitts, P. (1954). The Information Capacity of the Human
Motor System in Controlling the Amplitude of
Movement. Journal of Exp. Psychology, 47, p. 381-391.

15. Fitzmaurice, G., Khan, A., Pieké, R., Buxton, B., &
Kurtenbach, G. (2003). Tracking Menus. UIST, p. 71-
79.

16. Furnas, G., & Bederson, B. (1995). Space-Scale
Diagrams: Understanding Multiscale Interfaces. CHI, p.
234-241.

17. Greenberg, S., & Fitchett, C. (2001). Phidgets: Easy
Development of Physical Interfaces through Physical
Widgets. UIST, p. 209-218.

18. Guiard, Y., Beaudouin-Lafon, M., Bastin, J., Pasveer,
D., & Zhai, S. (2004). View Size and Pointing
Difficulty in Multi-Scale Navigation. AVI, p. 117-124.

19. Guiard, Y., Beaudouin-Lafon, M., & Mottet, D. (1999).
Navigation as Multiscale Pointing: Extending Fitts'
Model to Very High Precision Tasks. CHI, p. 450-457.

20. Harrison, B., Fishkin, K., Gujar, A., Mochon, C., &
Want, R. (1998). Squeeze Me, Hold Me, Tilt Me! An
Exploration of Manipulative User Interfaces. CHI, p.
17-24.

21. Hinckley, K., Czerwinski, M., & Sinclair, M. (1998).
Interaction and Modeling Techniques for Desktop Two-
Handed Input. UIST, p. 49-58.

22. Igarashi, T., & Hinckley, K. (2000). Speed-Dependent
Automatic Zooming for Browsing Large Documents.
UIST, p. 139-148.

23. Jacob, R., Sibert, L., McFarlane, D., & Mullen, M.
(1994). Integrality and Separability of Input Devices.
TOCHI, 1(1), p. 3-26.

24. Jul, S. & Furnas, G. (1998). Critical Zones in Desert
Fog: Aids to Multiscale Navigation. UIST, p. 97-106.

25. McGuffin, M., & Balakrishnan, R. (2002). Acquisition
of Expanding Targets. CHI, p. 57-64.

26. Potter, R., Weldon, L., & Shneiderman, B. (1998).
Improving the Accuracy of Touch Screens: An
Experimental Evaluation of Three Strategies. CHI, p.
27-32.

27. Ramos, G., & Balakrishnan, R. (2003). Fluid Interaction
Techniques for the Control and Annotation of Digital
Video. UIST, p. 105-114.

28. Ramos, G., Boulos, M., & Balakrishnan, R. (2004).
Pressure Widgets. CHI, p. 487-494.

29. Tomer, M., & John, F. (2004). Navigating Documents
with the Virtual Scroll Ring. UIST, p. 57-60.

30. Toshiyuki, M., Kouichi, K., & Borden, G. (1995).
Elastic Graphical Interfaces to Precise Data
Manipulation. CHI, p. 143-144.

31. Zhai, S., & Smith, B. (1999). Multi-Stream Input: An
Experimental Study of Document Scrolling Methods.
IBM Systems Journal, 38(4), p. 642-651.

152

