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ABSTRACT 
High precision parameter manipulation tasks typically 
require adjustment of the scale of manipulation in addition 
to the parameter itself. This paper introduces the notion of 
Zoom Sliding, or Zliding, for fluid integrated manipulation 
of scale (zooming) via pressure input while parameter 
manipulation within that scale is achieved via x-y cursor 
movement (sliding). We also present the Zlider (Figure 1), 
a widget that instantiates the Zliding concept. We 
experimentally evaluate three different input techniques for 
use with the Zlider in conjunction with a stylus for x-y 
cursor positioning, in a high accuracy zoom and select task. 
Our results marginally favor the stylus with integrated 
isometric pressure sensing tip over bimanual techniques 
which separate zooming and sliding controls over the two 
hands. We discuss the implications of our results and 
present further designs that make use of Zliding. 

Categories and Subject Descriptors: H.5.2 [User 
Interfaces]: Interaction styles; I.3.6 [Methodology and 
Techniques]: Interaction techniques. 

General Terms: Design, Experimentation, Human Factors. 

Additional Keywords and Phrases: input, pen-based 
interfaces, pressure widgets, multi-scale navigation. 

INTRODUCTION 
The manipulation of a parameter is a fundamental task in 
most user interfaces. Although high precision parameter 
manipulation can be accurately achieved by simply entering 
an exact numeric value with an appropriate text input 
technique, from the user’s point of view this exact method 
is not always the most appropriate or preferred. Interactions 
such as identifying and then picking a single pixel from a 
high resolution image, seeking a particular frame in a long 
video stream, or adjusting a continuous image color 
parameter are examples of parameter manipulation tasks 
where more interactive direct manipulation techniques can 
be preferable since the user may not be certain a-priori as to 
what value to enter. Furthermore, the immediate feedback 
that an interactive widget or technique can provide while 
the user adjusts the parameter is immensely valuable as it 
affords a more continuous style of interaction rather than 

the discrete style that results when specific values are 
entered explicitly. The challenge in designing interactive 
techniques for continuous high precision parameter 
manipulation is that the manipulation scale desired by the 
user when adjusting parameters may differ from one 
parameter to another, or even within the same parameter in 
different usage scenarios. Thus, interaction techniques for 
high precision parameter manipulation should support fluid 
adjustment of the scale within which the manipulation 
occurs, allowing users to make coarse scale manipulations 
for initial adjustments followed by finer scale 
manipulations for the final precise parameter specification.  

In this paper, we propose and study a mechanism for use 
with pressure sensitive input devices, called Zoom Sliding, 
or Zliding for short, in which users use the pressure 
modality to fluidly and explicitly zoom or adjust the 
granularity of the parameter space, while sliding or 
dragging the input device to perform high precision 
parameter manipulation within that zoomed parameter 
space. We review the literature, discuss our design goals, 
propose and develop an interface widget for Zliding called 
the Zlider (Figure 1), and present a controlled experiment 
that examines how a Zlider can be used with three different 
input strategies for high precision parameter manipulation 
with concurrent control of adjustment granularity. We 
conclude by discussing the implications of the experiment’s 
results on high precision parameter manipulation and 
propose design variations for alternate Zliding widgets.  

 
Figure 1: Zliding on the Zlider widget. a) A user manipulates 
a parameter at coarse granularity by sliding through the 
control while applying low pressure with the pressure 
transducer. b) The same x-y sliding action while pressing 
harder increases the granularity of the parameter space, 
allowing for more precise parameter manipulation when 
desired. The graphs on the right plot pressure over time, 
with the interval when the sliding occurs highlighted. 
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RELATED WORK 
Common strategies to facilitate spatial parameter selection 
tasks include reducing its Fitts’ Index of Difficulty (ID) [14] 
by making targets larger, or by bringing them closer to the 
user’s pointer. McGuffin et al. [25] show how increasing a 
target’s size even at the final stages of a pointing task can 
be beneficial. Drag-and-Pop [7] reduces the distance that a 
user has to travel by bringing objects closer, using the 
pointer’s trajectory. Another strategy to increase the 
precision of the user’s interaction is to adjust the input 
device’s control-display (CD) ratio. Semantic Pointing [9] 
improves the selection of objects by assigning them 
different CD ratios according to their importance. However, 
both these elements are fixed, which could be problematic 
if the user’s assessment of what is important changes. All 
these approaches are aspects of the same solution: changing 
the scale of a target or the space that contains it. In some 
instances, zooming occurs in the visual domain, and in 
others, the motor domain [9]. 

There has been a consistent effort to develop controls and 
interactions tailored for precise parameter selection and 
manipulation tasks. The Alphaslider [2] is a compact 
selector that allows users to quickly pick a single item from 
a list of thousands, essentially by providing 3 sub-sliders 
with different levels of granularity. The FineSlider [30] 
extends the Alphaslider’s idea and lets users adjust the rate 
at which the slider’s selection changes, by using a rubber-
band metaphor. The PVSlider [27] also uses a rubber-band 
metaphor to adjust the granularity with which users slide 
through a video stream. The issue of precise manipulation 
also applies to scenarios where the input mechanism can be 
imprecise by nature. Potter et al. [26] investigate how to 
increase the accuracy of a bare finger on a touch screen and 
show how their “take-off” approach outperforms traditional 
touching techniques. With “take-off”, a target is defined not 
by the position a finger lands on, but by the position it is 
lifted at. This lets users adjust a cursor’s position while 
their finger stays in contact with the touch screen. 
However, this approach does not allow for the gain of the 
finger’s movement to be changed. Albinsson and Zhai’s 
Precision Handle [3] lets a user’s bare finger manipulate a 
graphic handle around a pivot in order to change the 
interaction’s granularity and achieve pixel-level accuracy.  

Guiard et al. [19] recognize that high precision selection 
tasks can be thought of as multi-scale navigation tasks. In 
addition, there is a significant body of work establishing a 
comprehensive theoretical framework for multi-scale tasks. 
Furnas’ space-scale diagrams [16] give us the means to 
understand and analyze multi-scale interactions and 
interfaces. Guiard et al. [18, 19] have also shown that 
multi-scale pointing still obeys Fitts’ Law. Building on this 
evidence, we believe that facilitating space scaling and 
manipulation operations should help users with high 
precision tasks. Some of the literature suggests that panning 
(i.e., equivalent to parameter manipulation) and zooming is 
an integrated task [23], and recommends it be driven by an 

integrated device. Igarashi and Hinckley [22] introduce 
speed-dependent automatic zooming, a technique that 
facilitates navigation tasks over large spaces, using a 2dof 
integrated device. This technique keeps the visual flow of 
the navigation constant, while scrolling at different speeds, 
thus improving users’ performances over traditional scroll 
and pan and zoom methods [13]. However, other results 
indicate that there may be benefits in separating pan from 
zoom. It has been shown how bi-manual interaction 
techniques can be faster [12] than uni-manual ones, and can 
permit parallelism in multi-scale tasks [10, 21, 31]. 

A common theme present in all the above uni-manual 
designs and techniques is that both scale and parameter 
values are specified as a function of the cursor’s x-y 
position. Further in many of these techniques, scale 
adjustments are determined by the system without giving 
users much say as to what scale values to apply and when. 
With bimanual techniques, the scale is often controlled by 
the non-dominant hand, while parameter manipulation 
within that scale is performed with the dominant hand. In 
contrast, our current work focuses on how users can control 
scale via a pressure transducer while simultaneously 
manipulating a parameter within that scale space using a 
spatial x-y cursor. 
MOTIVATION and GOALS 
In our research, we are motivated by the steady 
technological progress in pen-enabled and touch-sensitive 
platforms, where high precision manipulation tasks are 
made even more challenging by very small or very large 
physical form factors and interfaces. The fixed granularity 
of standard GUI widgets like sliders may work reasonably 
well in a desktop computing environment, but may not 
scale to tiny PDAs or very large wall sized displays. On a 
tabletPC or PDA with small screen and input space, for 
example, the fixed relatively coarse granularity of some 
GUI widgets can hinder user’s ability to make high 
precision adjustments. Example scenarios where users may 
need to fluidly adjust the scale of the parameter space in 
order to make precise parameter adjustments include: 

• Graphic applications: Users may need to quickly select a 
precise pixel from a large bitmap that cannot be 
displayed at pixel-visible resolution on a small screen. 
Also, users may need to precisely adjust a value 
controlling a visual feature, such as the blending across 
several images. 

• Browsing on ZUIs: Users may need to navigate through a 
map both at a very large and at a very fine scale. 

• Acquisition of small controls in the GUI: Elements in an 
interface can present very small selection footprints, 
requiring a change in CD ratio to facilitate selection. 

• Analog-like controls: These controls offer a granularity 
that depends on their physical size and the input device’s 
CD ratio. Users interacting with such controls may need 
to do fine tuning in order to attain a precise value, such 
as a frequency in a radio tuner. 
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In designing a fluid interaction mechanism that facilitates 
high precision parameter manipulation, we have the 
following goals: 

• Integrated scale and parameter manipulation. The 
interaction should support zooming of the parameter’s 
scale space and concurrent high precision adjustment of 
the parameter within that space. 

• Infinite parameter scale adjustment. It should be possible 
to fluidly adjust a parameter to an infinitely small or 
large value. The ability to attain virtually infinite 
precision or gain is a rarely explored objective that we 
believe to be worthy of attention. 

• Familiar interactions. The new interaction should feel 
familiar, leveraging the typical user’s vast experience 
with standard GUI widgets and interaction techniques. 

THE ZLIDER 
The Zlider widget (Figure 1) consists of a rectangular 
working area that the user can scrub in order to adjust a 
parameter v ∈  [low, high], where low and high are 
arbitrary limit values. There is no particular handle the user 
needs to grab to use the widget. To operate the Zlider the 
user taps and drags its pointer across the working area until 
the desired value is reached or effect is achieved. At all 
times a red needle indicates the position of the value being 
adjusted relative to the possible minimum and maximum 
values at the extremes of the widget. The Zlider’s scale or 
granularity at time i dictates how the parameter v changes: 

)./(.1 lengthscalerangevv ii ∆+= − ; where v0 = low, ∆ is the 
distance between the tapping point and the pointer’s current 
dragging location, range = high-low, and length is the 
working area’s length. The Zlider also displays a Vernier as 
suggested by Ayatsuka et al. [5]; however, the Vernier in 
our Zlider adapts its grid spacing depending on the widget’s 
current scale factor. 

Pressure Cursor 
Though not integral to the Zlider design, we use a pressure 
cursor (Figure 2) across our implementations, instead of the 
default cursor found in most GUIs. Our pressure cursor 
provides users with a real-time indicator of the pressure 
they are applying with the input transducer. The pressure 
cursor has a wedge-like shape that changes its aperture with 
the amount of pressure applied. The wedge’s area fills as 
the pressure increases, until completely filled when the 
pressure reaches the maximum level the device can sense. 
The cursor’s hot spot corresponds to the wedge’s vertex. 

  
Figure 2: Pressure cursor. The wedge increases in size and 

fills up as pressure increases. (p2>p1>p0) 

Integrated Zoom & Slide Control 
Our default interaction design uses a pressure-sensitive 
stylus as an integrated input device for fluid zooming of the 
parameter’s scale space and sliding (i.e., manipulation) of 
the parameter’s value within that scale space. The scale 
factor of the Zlider is adjusted by changes in pressure at the 
stylus’ tip, and the stylus’ x-y position enables sliding of 
the parameter’s value. We use an exponential function of 
the form scale=base f(p) to calculate the scale factor, where 
f(p) is a function of the stylus’ reported pressure at a 
particular time. 

Previous research in pressure-enabled widgets [28] 
highlights the difficulty users can experience in maintaining 
a constant level of pressure while dragging a stylus. We 
therefore utilize a combination of both signal processing 
and interactive techniques to minimize unwanted changes 
in the control’s scale. Raw pressure data first passes 
through a low-pass filter. Then, it passes through a 
hysteresis process that stabilizes the signal further. Finally, 
a parabolic-sigmoid transfer function is used to account for 
users’ performance when they apply force through an 
isometric input device like the stylus’ tip pressure sensor. 
This transfer function has been used in similar scenarios [6] 
and is consistent with the effect we want to achieve. This 
effect is comprised of an initial “dead zone”, slow response 
at low pressure levels (where users can vary pressure 
significantly without noticing), linear behavior in the mid 
ranges (where users have good control of pressure), and 
slow response at high levels of pressure (where the user’s 
applied force can produce tremors, causing sudden pressure 
variations that are magnified by the exponential scale 
function). Figure 3 shows an example of how the different 
pressure-stabilizing stages affect the resulting scale factor. 
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Figure 3: Effect of the stabilization techniques. The absolute 
pressure line represents the transducer’s raw signal. 

 
Clutching the Zoom Level 
The Zlider design has a clutching mechanism that enables 
users to completely stabilize pressure and hence lock the 
zoom level while sliding. Users clutch by sliding the cursor 
away from the Zlider’s working rectangle (Figure 4.2). 
While clutched, users can still slide outside the working 
rectangle (Figure 4.3) but the widget maintains its scale at 
the last reported value regardless of pressure variations. Re-
entering the working rectangle declutches (Figure 4.4).  
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Figure 4: Clutching the zoom level 

 
While the widget’s scale factor is the same at the point in 
time when users clutch and declutch, it is possible that the 
pressure they applied at these moments is not. By design, 
we use this situation to let users increase the Zlider’s scale 
factor arbitrarily in a relative manner. In other words, by 
clutching, users can not only stabilize scale variations, but 
also achieve as much precision as needed. To go beyond 
the scale value attainable when the pressure at the stylus’ 
tip reaches it maximum value, users can in one continuous 
gesture: a) increase pressure and hence scale factor; b) 
clutch; c) decrease applied pressure; d) declutch; and e) 
increase pressure and hence scale beyond the value at step 
(a). This process can be repeated in order to attain higher 
precision levels if the user so desires. Conversely, an 
inverse series of steps allows users to decrease the scale 
factor from a high to a low level.  

There are three ways in which the user is notified that they 
are clutching or declutching: a) a very brief auditory 
feedback, b) an icon that follows the Zlider’s needle (Figure 
4.2), and c) a change in the physical appearance of the 
pressure cursor (Figure 4.2-3). Pilot studies revealed that 
while visual feedback is important, auditory feedback was 
beneficial to users who were not visually focusing on the 
Zlider control.  

The Selection Mechanism 
The Zlider design uses the release of the stylus from the 
interaction surface as an indication of selection. This is 
consistent with the behavior of regular slider controls, and 
previous research [28] also supports lifting the stylus as a 
selection technique for pressure-aware widgets. However, 
some issues remain that deserve our attention. First, we 
need to determine the Zlider’s behavior when the stylus is 
lifted from the interaction surface (i.e. the applied pressure 
becomes zero). Even though one possible design decision is 
to make the scale=1, this is not always desirable. Pilot 
studies revealed that users might lift the stylus because they 
wanted to re-invoke the Zlider from a different point when 
they found themselves sliding very close to either extreme 
of the working rectangle. Users indicated that resetting the 
scale to 1 was annoying, since it forced them to reacquire 
the scale value. The same situation was found when users 
missed the target parameter value by a small amount. In 
this case, they explicitly voiced the need to perform, as one 
user called it, “quick micro-adjustments”. Based on this 

feedback, we modified the Zlider’s behavior so that it 
maintains its last reported scale value as long as the stylus 
is within sensing proximity and the widget’s working area. 
This sensing or tracking capability can be found in most 
modern digitizing tablets as well as in other display 
technologies (such as the SmartBoard), and has started to 
be used as a design element in a number of novel user-
interface widgets [8, 15]. It is possible to use time-based 
techniques to simulate to some degree this behavior in 
devices that lack proximity sensing. However, a full 
discussion is beyond the scope of this paper. Figure 5 
shows the state-transition diagram of the Zlider’s behavior. 

  
Figure 5: Zlider’s state-transition diagram. R is the working 
rectangle; x,y the cursor’s position. p<0: stylus out of range; 
p=0: stylus is being tracked; p>0: stylus is touching the 
tablet. Zlider’s scale is reset to 1 at the idle state. 

 
The second issue we need to consider is estimating what the 
Zlider’s last reported scale (pressure) value should be at the 
time the stylus is lifted from the interaction surface. We 
need to identify as accurately as we can the exact moment 
when users start their lifting action. This is important as we 
do not want the Zlider to accidentally change its scale 
factor. In our case, looking back a fixed number of samples, 
as was proposed by Buxton [11], is not sufficient because 
the number of samples we need to trace back depends on 
how fast users lift the stylus. Observations in our pilot 
studies also revealed that users generally pause for a few 
milliseconds before lifting the stylus, thus defining a very 
small pressure valley. Furthermore, pressure values from 
that point onwards follow a monotonically decreasing 
trend. With the above information we estimate the scale 
factor at the time the user starts to lift the stylus. Our 
algorithm looks backwards in the device’s buffer until the 
small valley is found, or the curve stops its decreasing 
trend. Since the Zlider control’s scale responds in real-time 
to variations, it is possible that there is a mismatch between 
the estimated scale value and the scale at the point the 
stylus is lifted. Sudden changes in the Zlider’s scale factor 
would result in an undesired disorienting effect on the user. 
In order to mitigate this effect, the Zlider’s scale smoothly 
changes to the estimated last reported scale value. The same 
type of smooth transitions is consistently used in the Zlider 
widget when changes, otherwise too abrupt, need to occur. 
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These two design features provide functionality similar to 
clutching, wherein users have another way to achieve an 
arbitrarily high level of precision. In this case, to increase 
the scale once no more pressure can be applied, a user can: 
a) increase pressure and hence scale; b) quickly lift the 
stylus from the interaction surface, staying within tracking 
distance; c) touch the working area again; and d) increase 
pressure until the desired magnification is achieved. Unlike 
clutching, this tracking interaction does not allow users to 
un-zoom in a controlled fashion. Nonetheless, we observed 
that both the tracking and clutching mechanisms served 
different users’ interaction styles when adjusting the zoom. 

Scrolling 
The Zlider is controlled by relative displacements in its 
working area. However, pilot studies showed that some 
users wished the familiarity of continuous scrolling found 
in ordinary scroll and slide controls. Our design easily 
incorporates continuous scroll zones at the extremes of its 
working area (Figure 1). If, while sliding, the cursor 
reaches a scroll zone the Zlider enters a scrolling mode. 
Sliding has no effect in this mode and the parameter it 
controls changes at a constant rate proportional to the 
current scale. By adjusting pressure, scale can be changed 
while in scroll mode thus affecting the scrolling speed. 

ALTERNATIVES FOR DECOUPLED ZOOM CONTROL 
The Zlider was designed to be operated by an integrated 
pressure and position sensing input device, such as a 
pressure-enabled stylus. However, our design can easily 
support other ways to adjust the Zlider’s scale factor. In 
particular, we can use input originating from the user’s non-
dominant hand. Decoupling the scale control from the 
dominant hand has the potential to eliminate undesired 
interference between zooming and panning that may occur 
while using the stylus as the only input device. At the same 
time, this decoupled way of controlling scale has the 
potential to still allow users to perform zooming and sliding 
concurrently [10]. In this section we explore two instances 
of decoupled design strategies for adjusting the Zlider’s 
scale: a force sensing button, and two discrete keys. 

Force Button 
A force button is an isometric input device that can have a 
minimal footprint. This makes it an attractive design choice 
that can be incorporated in many form factors such as hand-
held devices, tablets, and even in traditional input devices 
such as mice or keyboards. In addition, previous research 
[20] shows the potential advantages of embedding force 
sensors on hand-held devices. For our exploration of this 
style of input we used a phidget [17] force sensor. The 
signal reported by this sensor is very similar to the one 
given by the stylus’ tip and we use it in the same way. 
Because of this similarity, many of the issues regarding 
signal stabilization that we discussed in the previous 
sections apply to this input device. However, since the 
force button is decoupled from the stylus, it is easier to 
determine what the scale factor is at the time users lift the 
stylus. Nonetheless, we found that both the signal 

stabilization techniques and clutching mode already 
discussed were effective at mitigating signal instabilities 
while users slide. Clutching and tracking can be used with 
this input mode to achieve arbitrarily high precision levels. 

Discrete Keys 
The second decoupled method of controlling the Zlider’s 
scale uses two discrete keys: one for increasing the scale 
and another for decreasing it. This input mechanism is easy 
to implement in a variety of form factors and sizes and it 
can be seen as the lowest common denominator method for 
changing the scale in many scenarios. We implement this 
input mode using the Shift and Crtl keys found in most 
computer keyboards. Users tap on Shift and Ctrl in order to 
respectively increase or decrease the scale factor by a 
constant increment. Also, users can tap and hold on either 
key in order to zoom or un-zoom at a continuous rate. The 
signal from this input is stable, making it easy for users to 
slide at constant scales. Consequently, we neither need to 
filter the input, nor use the parabolic-sigmoid transfer 
function. Also, finding the scale value when the stylus is 
lifted becomes trivial. Though clutching and tracking are 
still available, users can use the keys alone to reach 
arbitrarily high precision levels. However, this discrete 
input has a drawback in the amount of time a user requires 
to reach a determined scale factor. This time depends both 
on the mechanical properties of a key that needs to be 
pressed and released, and the rate at which scale is adjusted 
when a key is held. This rate needs to be carefully 
considered. A rate that is too fast will make the interaction 
quicker, yet difficult to control (i.e. users will overshoot the 
desired scale). Conversely, a slow rate will make the 
interaction more controllable, yet unacceptably sluggish. 
Equally important is the choice of the step the scale should 
change for each keypress. For our experiments we updated 
the scale every 30ms after a key was held for 400ms. 

EXPERIMENT 
Our experiment investigates how three different scale 
adjusting strategies: Stylus, Force Button, and Keys affect 
people’s interactions and performance in a high precision 
selection task that uses the Zlider. We are particularly 
interested in investigating how these strategies compare to 
one another. In particular, we believe that the simplicity of 
the Keys and Force Button techniques could outperform the 
Stylus technique where the combination of linear x-y 
movement and pressure control with the stylus tip might 
interfere with one another. On the other hand, the integrated 
nature of the Stylus technique has the advantage in that 
users will likely conceive of the zoom and sliding task as a 
conceptual whole, rather than two separate subtasks as with 
the Keys and Force Button techniques where zooming and 
sliding control are separated across the two hands. Because 
each technique has its own idiosyncrasies, the experiment’s 
results can help both designers and users to choose the best 
solution for a given situation. In addition, the experiment 
will provide us with valuable user feedback regarding the 
Zlider control and the overall experience of Zliding.  
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Apparatus 
We used a Wacom Cintiq 18SX interactive LCD graphics 
display tablet with a wireless stylus that has a pressure-
sensitive isometric tip. The stylus reports 1024 levels of 
pressure, and has a binary button on its barrel. The stylus 
does not provide any distinguishable haptic feedback in 
relation to the pressure applied. The tablet’s active area was 
mapped onto the display’s visual area in an absolute one-to-
one manner. To implement the Force Button condition we 
use a phidget [17] interface board that read data from a 
force sensor. Users applied force on the sensor through a 
thin layer of hard rubber protecting them from its 
uncomfortable original profile. Although this force sensor 
reports up to 1000 levels of force, we only use the first 2/3 
of them, as in our pilot studies users showed discomfort 
when reaching values above 2/3 of the way. The Keys 
condition was implemented using the Shift and Ctrl key on 
a regular PC keyboard. The experimental software ran on a 
1.4GHz P4 PC with Windows XP Professional. 

Participants 
Four female and eight male volunteers, 18-44 years old, 
participated in the experiment. Ten were right-handed. All 
had little or no prior experience with tablets like the one 
used in the experiment. No compensation was provided. 

Task and Stimuli 
A serial target acquisition and selection task was used. The 
stylus was used to control the sliding behavior of a Zlider 
widget with its scrolling zones disabled and its clutching 
and hover mechanisms enabled. The experimental trials 
simulate a pan and zoom task on a reduced interaction 
footprint, like the ones found in hand-held computers or 
dialog windows. In each trial the user controls the Zlider in 
order to locate and select a target in a workspace area 1500 
pixels long, shown through a viewport 256 pixels long 
(Figure 6). The target to be selected is represented as a 
green rectangle and can have three possible widths: 1/10, 
1/1,000 and 1/100,000 of the workspace’s length. In turn, 
the target can be located at a near, mid or far distance from 
the top of the workspace. Distance is chosen according to 
the target’s width so that distance=n.width, where n is an 
integer, width is the target’s width, and distance belongs to 
either the intervals [150, 450), [600, 900) or [1050, 1350). 
Besides the target, the workspace contains a horizontal grid 
that increases in density in the vicinity of the target, helping 
users locate it. As the user scrubs across the Zlider the 
workspace scrolls accordingly under the viewport in the 
same way a document scrolls in a text editor. During the 
trials users can adjust the interaction scale through one of 
three methods: Stylus, Force Button and Keys. Changes in 
the scale are reflected by magnification changes on the 
working area and on the stylus’ C:D ratio. This scaling 
operation makes accessible targets that otherwise would be 
too small to select. Users are instructed to scroll through 
until the target is inside the viewport, visible, and covering 
the selection line (Figure 6). When this happens the target 
changes its color from green to red, and users finish the 
selection by lifting the stylus from the interaction surface. 

The workspace has a textured background, which helps 
users to be aware of the current scale factor they are at, thus 
alleviating desert fog [24] effects in the scale space. 

 
Figure 6: Elements in the experimental setup. 

 
Procedure and Design 
A within-participants full factorial design with repeated 
measures was used. The independent variables were 
Technique (Stylus, Force Button and Keys), Width (large, 
small, smallest), and Distance (near, mid, far). The order in 
which techniques were presented to users was included as a 
between-subjects factor. The dependent variables were 
Selection Time – defined as the time from the moment the 
stylus touches the tablet’s surface until the moment the user 
selects the target; and Crossings – defined as the number of 
times the selection line enters and leaves the target per trial 
(e.g., this value is equal to 1 when a participant does not 
overshoot the target). Crossings gives us information about 
the degree of control shown by participants during a trial, 
as well as hints about their strategy during trials. For each 
experimental trial, we collected all the stylus, force button, 
and key data events. Also, since each trial can only be 
completed successfully, we end with a set of error-free 
selections. Participants were randomly assigned to 6 groups 
of 2 participants each. In each group, participants were 
exposed to all 3 Technique conditions, whose order of 
appearance was counterbalanced across groups to minimize 
ordering effects. For each Technique, participants were 
asked to complete 4 blocks each. Each block consisted of 9 
selection trials (3 Distances x 3 Widths), repeated 5 times. 
Presentation of trials within a block was randomized. In 
summary, the experiment consisted of: 

12 participants x  
3 technique conditions x 
4 blocks x  
3 width conditions x 
3 distance conditions x 
5 repetitions 
= 6480 target selection trials. 

Prior to performing the trials for each Technique, the 
experimenter explained to the participant how the Zlider 
worked with a particular technique. Then participants did a 
warm-up block of 45 trials to practice with the 
corresponding technique. Participants were instructed to 

148



 

perform the upcoming tasks as quickly and accurately as 
possible. While participants could take breaks between 
blocks, we enforced a 5 minutes break between techniques. 
A short questionnaire was administered at the end of the 
experiment to gather the participants’ opinions.  

RESULTS 
The experiment took an average of 1.25 hours per 
participant. A trial was considered an outlier when Time 
was beyond 2 standard deviations from the mean per 
participant. A total of 245 outliers (3.7%) were removed 
from our analysis. There were no main effects or 
interactions for the Order condition on either Selection 
Time or Crossings. While our data logs did record instances 
of clutching and hover, a detailed analysis at this level of 
interaction granularity is beyond the scope of this paper. 

Selection Time 
As might be expected from Fitts’ law, analysis of variance 
revealed a significant main effect on Selection Time for 
Width (F2,14 = 392.8, p < .0001), and Distance (F2,14 = 
13.23, p < .001). However, there were no significant main 
effect on Selection Time for Technique (F2,14 = 0.31, p = 
0.738), or Technique*Width (F4,28 = 1.53, p = 0.22), and 
Technique*Distance (F4,28 = 0.693, p = 0.6) interactions. 
Also, post-hoc pairwise comparisons did not show any 
main effects between Techniques for all levels of the Width 
condition. This is an interesting finding because we did not 
expect users to perform statistically similarly with such 
distinct techniques. Figure 7-8 illustrate these results. 
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Figure 7: Average selection time per technique. 
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Figure 8: Average selection time per technique*width. 

An analysis of Selection Time across experimental blocks 
(Figure 9) shows participants improving marginally as the 
experiment progressed for both the Force Button and Stylus 
conditions. For the smallest condition, participants’ 
performance degraded and then recovered when using 
Keys, suggesting it may have taken longer for users using 
this technique to find a good strategy to complete a trial. 
Variations on the last experimental block suggest that 
fatigue effects may be present. 
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Figure 9: Average selection time per block*technique. 

 
Crossings 
We found that participants crossed a target more than once 
for a number of reasons: a) they were sliding too fast and 
the target passed under the selection line without them 
noticing; b) they tried to acquire the target when it was 
visible, yet unreachable because the CD ratio was not high 
enough; c) fluctuations in their control of the scale caused 
the target to move; and d) a combination of all of the above. 
Our analysis shows a significant main effect for Width (F2,4 
= 357, p < .0001) on Crossings. Pairwise comparisons 
indicate that Crossings at mid distances were significantly 
higher than crossings at near distances (p < .03). There was 
no main effect for Distance (F2,4 = 5.46, p = .07). However, 
we observe for the large condition that crossings increase 
as distance decreases. Post-hoc comparisons indicate that 
near targets are crossed more often than mid ones (p < .03). 
Figure 10 illustrates these effects. 
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Figure 10: Average crossings per distance*width. 

 

149



 

There was no main effect for Technique (F2,4 = 2.24, p = 
.22) on Crossings. However, analysis of variance shows a 
Technique*Width interaction (F4,8 = 4.49, p < .04) a closer 
inspection of the means shows Stylus resulting in fewer 
crossings than the other techniques for the small and 
smallest conditions. Figure 11 illustrates these effects. 
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Figure 11: Average crossings per width*technique. 
 

Figure 12 illustrates the number of crossings as the 
experiment progressed for each of the techniques. While 
participants do not seem to do better or worse with the 
Stylus, there is some improvement in participants’ control 
for the Force Button with practice. 
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Figure 12: Average crossings per block*technique. 

 
Qualitative Results: User Preferences 
At the end of the experiment, we asked participants to rank 
each of the techniques presented to them. Their responses 
revealed mixed opinions. While some participants preferred 
and showed more skill with the Stylus, others preferred the 
Force Button or the Keys. This was interesting, as the 
experimenter heard how much a participant “loved” a 
technique not long after another participant expressed her 
dislike for it.  

Six participants ranked Keys as their 1st preferable method 
to use and ten people as their 1st to 2nd

 choice. Users gave 
several reasons for their ranking, e.g., “it was easy to 
learn”, “it was simple to use”, “it was predictable”, “I could 
keep the scale stable”. However, more than half the people 
in that group expressed that for many scenarios they would 

probably like to use the stylus alone, because it requires 
“only one hand” and “does not need a keyboard”. It was not 
surprising to hear from some participants that “using the 
keys was slow”, although the quantitative data does not 
support this claim. Only two participants ranked Stylus as 
their 1st choice and eight as their 1st to 2nd choice. Even 
though “it took longer to get used to” people expressed that 
once they “got it” the selecting task had a “cool fluid 
feeling” to it. While people in this group commented that it 
felt “quite natural” to zoom, they also expressed that it was 
challenging not to affect the pressure they are applying 
when sliding over long distances. This was a nuisance, if 
users did not want to alter the Zlider’s scale while browsing 
for the target. One participant expressed that using the 
stylus alone was “incredibly fast when the target area was 
on sight”. Four participants ranked the Force Button as 
their 1st choice, and six did so as their 1st to 2nd one. There 
was a mixed set of responses for this condition. While some 
people exhibited very good control, others did not. As was 
observed with the Keys condition, people in this group liked 
the fact that zooming and sliding were decoupled. 
However, people who did not like this condition 
complained about difficulties coordinating both zooming 
and sliding with separate hands. For example, we observed 
how users inadvertently accompanied the selection lifting 
action with a quick release of the Force Button as well. 

DISCUSSION 
We had the opportunity to both assess a widget of our 
design, and to observe people using it to fluidly and 
successfully perform selection and micro-adjustment tasks 
in sizes that ranged from the large to the almost 
infinitesimal. The fact that we found no significant 
differences in terms of average Selection Time for the three 
scale adjusting Technique conditions we studied is both 
unexpected and remarkable. This result shows that the 
Zlider’s design can be used in different scenarios and 
hardware configurations without any performance 
degradation. 

Nevertheless, our results prompt us to consider metrics 
other than Selection Time in order to identify if a Technique 
is preferable. Our analysis of the number of Crossings per 
Technique favors the Stylus condition, which results in 
fewer crossings for small targets. This conclusion is 
reinforced by the participants’ qualitative feedback, which 
not only helps us identify what works well with the Stylus, 
but also what can be improved. We believe that a critical 
area of Zliding requiring improvement is supporting users’ 
ability to zoom only when they want to. Our Zlider design 
supports this feature with its clutching mechanism and by 
making use of the tracking capability of its input device. 
However it may be that Zliding needs to occur without an 
explicit physical area, or widget that can act as a clutching 
delimiter. Examples of these cases are a widget with no 
area, such as a crossing widget [4], or panning and zooming 
on a 2D map. It is then necessary to think of alternate 
strategies to achieve this design goal. Since most of the 
undesired scale changes were observed while the user was 
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dragging the stylus, one solution is to alter the rate at which 
the interaction’s scale is allowed to change, based on the 
speed at which the stylus moves. This solution can include 
extreme cases such as disabling scale changes when the 
pointer moves above a certain threshold speed, or allowing 
scale changes only when the stylus is not moving in x-y 
space. Our current implementation is but a particular case 
of this general strategy. In addition, this solution provides 
users with an interaction style that models tasks that are 
purely serial (e.g., pan then zoom), purely coordinated (e.g., 
pan while zoom), or in-between. 

Other Designs: The Zliding Wheel 
The Zliding Wheel (Figure 13) operates by the same 
principle as a knob control with the exception that one can 
control the granularity of the wheel’s increments. This 
control provides functionality similar to the Zlider’s, but 
with a potentially smaller footprint and no boundaries on 
the parameter it controls. With the Zliding wheel, in 
addition to using the curvature of the arc being drawn to 
regulate the granularity, users can also adjust it through a 
degree of freedom other than a cursor’s position, such as 
the pressure applied with a stylus input device. We consider 
two main variations of the Zliding wheel: a fixed version 
(Figure 13-a), and a floating one (Figure 13-b).  

 
Figure 13: Zliding Wheels. 

 
The fixed version (Figure 13-a) consists of a circular disk 
that users can rotate by scrubbing on its surface. A red 
needle inside the disk indicates the absolute rotation the 
disk is subjected to. The fixed Zliding wheel is very similar 
in its behavior to the Zlider widget: users can modify the 
wheel’s granularity while they are rotating it, as well as 
access a clutching zone when they drag the pointer outside 
the disk’s area. A scale ring is displayed above the wheel 
when its scale factor > 1, and provides a “gear-like 
feedback”, which helps users understand the differences 
between the wheel’s and the pointer’s absolute motion.  

The floating or “drifter” wheel (Figure 13-b) follows a 
pointer’s circular motion, which is not necessarily centered 
on a fixed point, and works under the same principles of the 
control described in [29]. This drifting is usually the result 
of the user not focusing visually on the control but instead 
paying attention to the changes the control causes. Because 
of this, the floating wheel has a lightweight visual design 
that consists of two concentric rings: an internal one that 
provides the absolute rotation the wheel is subjected to; and 

an external one that keeps track of the pointer’s current 
motion. The floating wheel provides minimal feedback 
about its granularity by altering the thickness of its outer 
ring. As it stands, this design cannot incorporate a clutching 
zone, and because of this, it would be appropriate to use the 
pointer’s speed to determine when scale adjustments should 
be permitted.  

It is worth mentioning that unlike other similar wheel 
controls, the Zliding wheel has the advantage of providing a 
way to adjust its granularity even in scenarios where it is 
not possible to move beyond the control’s boundaries (e.g., 
a notebook’s touchpad, or an iPod’s scroll wheel). 

CONCLUSIONS AND FUTURE WORK 
We believe that high precision parameter manipulation 
tasks can be greatly facilitated by allowing users to fluidly 
zoom and slide, or zlide, as they interact. Our results show 
that even though different scale adjusting strategies seem 
comparable in terms of elapsed time, there are advantages 
in the use of an integrated input device, such as the 
pressure-enabled stylus available in Tablet PCs. This is 
particularly useful in scenarios where a keyboard is not 
available or accessible. Users commented on how 
performing a selection using only one hand was appealing 
to them and “felt right”. We also found that there is room 
for improvement in our interaction design. In particular, it 
is possible to develop more sophisticated filtering 
techniques in order to obtain a stable input signal from the 
stylus’ pressure-sensitive tip. Nevertheless, we found it 
remarkable that, in spite of our simple signal filtering 
scheme, the stylus emerged as a reasonable alternative 
when compared with the other simpler decoupled input 
strategies. This result has implications that apply not only 
to pen-based systems, but also to a diverse set of devices 
and form factors capable of touch-based input. 

Other Technologies, Other Directions 
There are other technologies that have the potential to be 
used to zoom and slide. For example, capacitive touchpads 
are becoming widespread as a means of input for notebook 
computers, portable music players, and handheld devices. 
Even tough capacitive touchpads have been traditionally 
used to sense a finger’s position, some are capable of also 
sensing the amount of pressure that is applied to them. In 
other types of touch-sensitive surfaces, it is possible to 
estimate the contact area of a touching finger, thus 
estimating the applied pressure.  

It is possible to leverage devices with decoupled continuous 
degrees of freedom such as Microsoft’s Digital Media Pro 
keyboard or Wacom’s Cintiq 21UX tablet, to facilitate the 
acquisition of very small targets in current GUIs. For 
example, in a fashion similar to the map application 
presented in [21], a user can apply scaling operations on a 
window’s manager using a pointer’s current location as a 
center of magnification. In this way, users can browse the 
GUI until a desired scale or CD ratio is reached. In a 
similar fashion, the “take-off” technique [26] can be greatly 
enhanced by Zliding. We imagine such interactions 
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becoming commonplace in new environments that use 
resolution-independent graphics as their rendering engine.  

Future work includes additional interactions and widget 
designs that can take advantage of Zliding to facilitate high 
precision manipulation tasks. In particular, we would like to 
see how crossing widgets [1, 4] can incorporate Zliding 
techniques. Finally, we are interested in studying, in the 
context of Zliding tasks, the degree of coordination people 
exhibit when using both coupled and decoupled input 
strategies for a variety of form factors. 
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