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Figure 1. (a) very large (5m x 1.8m), high resolution (6144 x 2304 pixels) display; (b) visualization showing ambiguous posture 
threshold warning; (c) the hand controls pointer position and makes “click” selection with finger or thumb. 
 

ABSTRACT 
We explore the design space of freehand pointing and 
clicking interaction with very large high resolution displays 
from a distance. Three techniques for gestural pointing and 
two for clicking are developed and evaluated. In addition, 
we present subtle auditory and visual feedback techniques to 
compensate for the lack of kinesthetic feedback in freehand 
interaction, and to promote learning and use of appropriate 
postures. 
Categories and Subject Descriptors: H.5.2 [User 
Interfaces]: Interaction styles; I.3.6 [Methodology and 
Techniques]: Interaction techniques. 
General Terms: Design, Experimentation, Human Factors 
Additional Keywords and Phrases: very large displays, 
freehand gestures, whole hand interaction, pointing 

INTRODUCTION 
As displays increase in size and resolution while decreasing 
in price we will soon have entire walls providing high 
resolution visual output. These very large, high resolution 
displays will allow users to work up close with detailed 
information and also enable them to step back and 
manipulate the contents of the entire display space.  
There are some tasks that are best performed from a 
distance: for example, sorting slides/photos/pages spread 
over the large display, or presenting a large drawing to a 
group while navigating/panning/highlighting. Because of 
their size and architectural context, these displays can be 
used in a more casual manner similar to a large physical 

whiteboard or paste up design space. There are also 
circumstances where users cannot easily approach the 
display and can interact only from a distance. Consider a 
central control room used to monitor large systems like a 
railway, or a large display mounted out of reach in a public 
place like an airport.  
Direct manipulation through pointing and clicking remains 
by far the dominant interaction paradigm in conventional 
user interfaces. Although alternatives like gesture-based 
interfaces have been explored, the self-revealing nature, 
simplicity, and flexibility of the point and click metaphor is 
hard to beat. When a display surface can sense touch, 
selecting items by tapping with your finger or a pen is 
immediately appealing, as it mimics real world interaction. 
But what happens when we are farther away from the 
display? Proposed solutions to distant point and click 
interaction include using 3D input devices such as a flying 
mouse or hand-held isometric input [12, 32], and laser 
pointer-style devices [18, 20, 21]. However, relying on a 
hand-held isometric or isotonic device can make the 
transition from distant to close interaction awkward. 
Although laser pointers can become “touch pens” when used 
on the display surface, with “on again, off again” casual 
interaction, a physical device must be acquired and released, 
and may even become misplaced. 
Our work investigates potential techniques for pointing and 
clicking from a distance using only the human hand. This 
eliminates issues with acquiring a physical input device, and 
transitions very fluidly to up close touch screen interaction. 
Although we use a commercial motion tracking system with 
reflective markers on the hand for developing and evaluating 
these techniques, computer vision is approaching robust, 
real time tracking of bare hand postures and movement in 
3D space [19], thus making bare hand interaction a realistic 
possibility in the near future. 
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DESIGN CHARACTERISTICS 
Commonly available point and click input devices make 
assumptions about the user’s spatial relationship to the 
display. They assume the user is always near the display for 
pen and touch screen input, or near a stationary horizontal 
surface when using a mouse. With a very large, high 
resolution display users will be manipulating detailed 
information up close, and also stepping back to see and 
manipulate the entire display from a distance. This physical 
movement creates an interesting problem when determining 
what input technique to use, as we can no longer assume a 
reasonably fixed spatial relationship between the user and 
display. The pointing device needs to move with us and be 
instantly available to perform selections. Whatever it is, we 
not only need to carry it, but may also need to hold it up 
without the luxury of a desk to rest on. Thus, we are led to a 
set of desirable characteristics for pointing and selection 
devices suitable for very large, high resolution displays: 
1) Accuracy: The device must be able to reliably select small 
targets both from a distance and up close. Although the user 
interface could be tailored to show only large targets and 
make distant selection easier, this is not a realistic design 
because it squanders the potential benefits of high resolution 
up close interaction with the display. Also, considering that 
most states require 20/40 corrected vision to receive a 
driver’s license, most people can read an 11.6 mm symbol 
from a distance of 4 m1 [17]. Thus even from a distance of 
4m, a target size of 16 mm is quite reasonable. 
2) Acquisition Speed: The more casual “on again, off again” 
use of this type of large display means users will not 
necessarily be interacting with it for extended periods of 
time and may perform other activities in between 
interactions with the display. Zhai [32] argues that a major 
problem with 3D input devices operated from a distance is 
device acquisition. A cursor controlled by such an input 
device does not “stay put” when the device is physically 
released, unlike a conventional mouse. Thus, the acquisition 
and release of the pointing device should require minimal 
effort and be instantaneous.  
3) Pointing and Selection Speed: In spite of the large pixel 
count and physical size of the display, when used from a 
distance the device should be able to move to any location 
on the display quickly with minimal or no clutching. The 
selection (click) itself should also be easily executed.  
4) Comfortable Use: As with any device, it should be easily 
understood and simple to operate. Since we can no longer 
assume proximity to the display or a desk, the device may be 
operated with a single hand, possibly in free space. This may 
introduce fatigue and strain if not carefully designed. 
Hinckley et al. [9] caution that ergonomics for spatial 
control are quite different than typing, and an emphasis 
should be placed on techniques that avoid or reduce fatigue.  

                                                           
1 The min decipherable symbol height h given distance d:  
h = 2 d tan(Θ /2), Θ = 5’ of arc for 20/20 vision. h = 5.81mm, or 
11.64mm for 20/40 vision [17].  

5) Smooth Transition Between Interaction Distances: The 
pointing device should smoothly transition from up close 
interaction, to interaction at a distance from the display. This 
implies that the way in which the device is operated should 
be consistent regardless of its distance from the display. 
However, this consistency should also preserve direct touch 
interaction when up close to the display since the 
affordances of direct touching are so strong.  

PREVIOUS WORK 
Hand-held Indirect Pointing Devices 
Proposed solutions to distant point and click interaction 
include using 3D input devices such as isotonic flying mice 
or hand-held isometric input [12, 32]. An isometric input 
device doesn’t require the movement of the device itself in 
space, which makes it much less tiring than a freely held 
isotonic device. However, a hand-held isometric or isotonic 
device makes the transition from distant to up close 
interaction awkward because the device has no direct 
mapping when used on a touch-enabled surface.  

Laser Pointer-Style Devices 
Various researchers have explored the use of laser pointers 
as input devices for very large screen interaction [14, 15, 18, 
20, 21, 23]. Laser pointer-style devices have the advantage 
that they can become “touch pens” when used directly on the 
display surface (i.e., the ray emanating from the device nears 
zero length but is still usable). However, these ray casting 
devices are notoriously inaccurate at a distance due to hand 
jitter. Myers et al. [18] compared laser pointers to other 
devices in pointing tasks. They found laser pointers 
performed the worst, with at best 4 pixel selection accuracy 
even after predictive filtering, but had good results with their 
Semantic Snarfing technique. Oh and Stuerzlinger [20] 
designed a computer controlled laser pointer, but their 
experiments showed error rates around 40% when selecting 
relatively large 40 pixel diameter targets. Olsen and Nielsen 
[21] cleverly designed laser pointer interaction techniques 
optimized to avoid hand jitter issues as much as possible. 
Wilson and Pham [31] use relative movement of a wand to 
control a motor actuated laser beam, and discussed the 
merits of relative vs. absolute control. Parker et al. [22] 
found that laser-pointer like devices were faster than direct 
touch for large targets on a table top display and developed a 
hybrid technique called TractorBeam.  

Eye Tracking  
Researchers have investigated eye gaze to control a cursor 
and make selections in conventional interfaces [8] and on 
large displays [2, 27]. However, problems with finding a 
suitable selection “click” mechanism coupled with 
involuntary saccade movements make it difficult to use eye 
gaze effectively for precision pointing and selection. The 
EyeWindows system [6] more appropriately uses eye gaze 
for the relatively coarse pointing task of focusing a GUI 
window. The MAGIC pointing technique [33] also 
appropriately uses eye tracking for coarse contextual 
pointing combined with a regular pointing device for 
precision tasks within the context set by the eye gaze. 
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Body and Hand Tracking 
Krueger [11] explored using the entire body as an input 
device to control playful visualizations on a large display, 
while advances in computer vision bring us closer to robust, 
real time recognition of our body, hand, and finger positions 
in 2D and 3D space [19]. Vogel and Balakrishnan [28] use 
body position for coarse grained 1D pointing to provide 
context for fine-grained actions, but 2D control is difficult 
with this approach. Nickel and Stiefelhagen [19] explored 
computer vision methods to find pointing direction 
including head to hand line of sight, forearm orientation, and 
head orientation. They found head orientation to be 
important for determining pointing direction.  

Direct Hand Pointing 
Zhai [32] discussed using a hand for 6 DOF tasks and found 
problems with rotation due to limited mobility of the wrist. 
Hinckley et al. [9] surveyed different techniques for using 
hands for spatial input, mostly concentrating on 6 DOF tasks 
applied to virtual or augmented environments, but they only 
discuss physical buttons mounted on gloves for selection or 
clutching. Corradini and Cohen [4] created a free space 
finger painting system by tracking the position of a finger 
within a user defined absolute coordinate frame. They use 
speech together with pointing gestures to issue commands 
controlling the painting parameters. Bolt’s classic 
“put-that-there” system [1] combines direct pointing using a 
6 DOF magnetic tracker with voice commands to 
disambiguate context.  

Virtual Environments 
Using the hand to select objects is common in virtual 
environments (VE). Poupyrev and Ichikawa [26] gave an 
overview of several hand based object manipulation 
techniques including finger ray casting, although they use a 
button for selection. In an experimental evaluation, they 
found ray casting to be fast if accuracy is less important. An 
earlier study by Bowman and Hodges [3] found that 
naturalness is not always a necessary component of an 
effective technique, for instance although the go-go reaching 
technique is most natural, users preferred ray casting since it 
was the least effort. Pierce et al. presented a two-handed 
Voodoo doll technique to manipulate distant objects [25], 
and, most relevant to our work, a family of image plane 
selection techniques [24]. These allow selecting objects in a 
3D world by considering the 2D view plane of the user. 
Some, such as the “Head Crusher,” use finger gestures for a 
selection mechanism. 

Selection With the Hand 
Most work discussed so far uses a physical button, dwell 
time, or voice command for selection. Grossman et al. [7] 
use a thumb trigger gesture for selection in their volumetric 
display interaction techniques. Their prototype uses a 
commercial high-precision motion tracking system, which 
suggests one reason why selection gestures performed with 
the fingers have been ignored until recently: their movement 
is simply too subtle to be recognized accurately by other 
tracking technologies. 

POINTING AND CLICKING USING ONLY THE HAND 
Touching a screen with the finger is an effective way to 
interact when up close, so perhaps a bare hand can also be 
used to point when away from the display. This eliminates 
the problem of carrying a device, and provides a natural 
transition from distant to up close touch screen interaction. 
Kendon’s social anthropology research posits that we use 
seven different gestures to point when communicating [10]. 
These pointing (“deictic”) gestures are classified by the 
context of what is being pointed at. Relevant to our work is 
the gesture to indicate a specific thing, done with the index 
finger extended and palm facing down. One can imagine a 
laser beam emanating from the tip of the finger along the 
vector of the finger’s direction, resulting in a pointing 
technique that it is arguably natural and conceptually simple. 
Our survey of previous work suggests that this “ray casting” 
technique is the most obvious for distant pointing. As 
discussed earlier, this style of pointing is fast for selecting 
large targets, but prone to errors due to hand jitter. A nice 
quality of ray casting is that it is consistent with touch screen 
input – when the finger touches the display, the ray has zero 
length and it behaves like a touch screen. 
If we observe the motion of the hand when using a mouse, 
another candidate technique emerges. If the mouse is 
thought to be invisible, the motion of the hand alone can be 
used for cursor positioning. Since the very large display is a 
vertical plane, hand motion should also be in a parallel 
vertical plane (rather than horizontal) to remain consistent 
with touch screen interaction close to the display.  

Clicking and Clutching Without a Button 
A classic problem in device-free interaction is how to signal 
a selection or a clutch in the absence of any buttons. One 
solution, which has been adopted by many eye tracking 
systems [8] is to use a cursor dwell time threshold as a click 
event [31]. Although simple, this introduces a fixed, 
constant lag, and interactions may suffer from the “Midas 
Touch effect” [8] in very dense environments. Another 
approach is to use speech to signal a selection [1] but this is 
excessive for simply capturing click down and up actions.  
We explored different hand gestures and postures to clutch 
and click. Since the hand is also pointing, the click or clutch 
action should be designed to minimize hand movement side 
effects, which can be tricky due to the interconnectedness of 
tendons and ligaments in the hand. We also felt that the 
posture or gesture used to deactivate the clutch should have 
some tension, similar to the natural tension that is required 
when lifting the mouse to clutch.  
When depressing a physical button or tapping a display 
surface, we receive instant kinesthetic feedback confirming 
that the click has been triggered. Wang and MacKenzie [29] 
found that performance degraded significantly when there 
was no physical surface to touch when manipulating virtual 
objects with the hand. Thus, with free space hand gestures, 
we need to investigate other sensory replacements in an 
attempt to mitigate the effects of lost kinesthetic feedback.  
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System Protoype 
To prototype and explore different techniques we use a 
Vicon (www.vicon.com) motion tracking system to get 
accurate and fast position information for the hand. We 
place passive reflective markers on the thumb, index finger, 
ring finger, back of the palm, and wrist (Figure 1c). The 
system can uniquely identify each marker and stream its 
sub-millimetre 3D coordinates at up to 120 Hz to other 
applications. While the inconvenience of using markers and 
a specialized motion tracking system does detract from the 
implementation simplicity of our prototype, this technology 
allows us to explore advanced interaction techniques today, 
before marker-free tracking becomes widely available. As 
such, this hardware should be viewed simply as an enabling 
technology for our prototype, rather than one that would be 
used in a future real implementation of our interface ideas. 
We also use a 5m wide, 1.8m high, back projected display 
(Figure 1a), with imagery generated by 18 1024x768 
resolution projectors in a 6x3 tiling for an effective 
resolution of 6144x2304 pixels. A cluster of 18 PCs drive 
the projectors, with Chromium (chromium.sourceforge.net) 
providing distributed graphics rendering over the cluster. 
Although this display is not currently enabled for touch 
input, we also used a 50” touch-enabled plasma display to 
observe how the techniques transition from up close to 
distant usage. Our custom software was written in C++ and 
OpenGL and is capable of easily performing position and 
gesture recognition at 45 FPS, producing a maximum lag 
time of only 22 ms between a movement and screen update. 

CLICKING TECHNIQUES 
We created two clicking techniques, one using the index 
finger and the other using the thumb. Since our design goal 
is to create a selection technique wholly compatible with 
current “point and click” user interfaces, our techniques 
support click down and click up events – allowing single 
clicks, double clicks, and drags. We use visual and auditory 
feedback to replace the lost kinesthetic feedback of a 
physical button push or display tap [31]. To visually indicate 
when a click down has occurred, we show a short animated 
progression of a medium sized square shrinking and 
disappearing at the position where the event occurred. At the 
same time, a distinctive clicking sound is played 
characterized by a waveform envelope with a long attack 
and short release reminiscent of the “in” sound made by pet 
training “clickers” (Figure 2b). In a similar way, a click up is 
visualized by a small square expanding from the event point 
and a slightly different clicking sound with a slightly higher 
pitch, short attack, and long release (Figure 2d). If a click up 
event is not registered within 1000 ms, a small square is 
shown attached to the tail of the cursor arrow (Figure 2c) 
indicating a prolonged click down state used for dragging. 
This not only acts as a visual replacement for the kinesthetic 
tension normally experienced when holding a button down, 
but we also found that this aided new users in learning the 
tolerances of the click up style.  

(a)

sound visualization AirTap Thumb Trigger

(b)

(c)

(d)

 
Figure 2: Clicking Techniques, Visualizations, and Sound. 
AirTap is a “down and up” gesture of the index finger. 
ThumbTrigger is an “in and out” gesture of the thumb. Sound 
and visualization are used to make the clicking feel more 
physical in the absence of a surface or button: (a) default state 
(no clicking); (b) click down gesture displays an animated series 
of rectangles scaling down towards the click point and plays a 
distinctive click down sound; (c) holding the finger or thumb in a 
click down state displays a small square on the tail of the 
pointer; (c) click up gesture displays an animated series of 
rectangles scaling out from the click point and plays a click up 
sound.  

AirTap 
The AirTap click technique is similar to how we move our 
index finger when clicking a mouse button or tapping a 
touch screen. We found two main challenges when 
designing this technique. The first challenge is that there is 
no physical object to constrain the downward movement of 
the finger to a definite start or stop position. To deal with 
this, our click down recognition algorithm uses relative 
features of the downward finger motion, specifically 
velocity and acceleration, in addition to absolute position 
and movement axis. The second challenge is the ambiguity 
and idiosyncrasy of this style of finger movement. Other 
hand gestures and even involuntary finger movement tend to 
resemble this type of clicking action, and individuals tend to 
move their finger in distinctive, but different, ways. We 
adopted a simple calibration scheme that tuned the 
recognition parameters to a particular individual’s clicking 
style, which narrowed the space of recognized clicks and 
reduced false positives in click recognition. To calibrate, we 
record 5 seconds of index finger movement as the user 
clicks. From this data we find the principle movement axis, 
m, by fitting a Gaussian to the finger positions to get the 
dominant Eigenvector. We find a threshold position, Pup, to 
trigger a click up, and threshold distances moved in 200ms, 
Ddown and Dcancel, to begin a click down or cancel 
respectively. We also use a fixed pause velocity threshold, 
vpause of 80mm/s. 
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Let the current finger position be P with velocity v and 
distance traveled in 200ms be D (v and D are both measured 
along the principle movement axis m). Figure 3 shows the 
state machine for this recognition algorithm. 

Default

Possible

Down

Up

D > Ddown

and D < Dcancel

D > Dcancel

P > Pup

D < Dcancel

and v < vpause  
Figure 3. Recognition state machine. The current finger position 
is P with velocity v and distance traveled in 200ms, D. v and D 
are both measured along the principle movement axis m. 

ThumbTrigger 
Similar to Grossman et al. [7], we implemented a thumb 
trigger style click where the thumb is moved in and out 
towards the index finger side of the hand (Figure 2). 
Theoretically, this click style has a distinct advantage over 
the AirTap since the thumb can touch the side of hand and 
provide kinesthetic feedback when clicking, and also 
provides an absolute down position. Based on this, our first 
implementation used only distance thresholds; once the 
thumb moved past a certain point on the way towards the 
palm, a click down was triggered, and likewise when 
travelling away during a click up. However, early tests 
revealed that users found “clicking” their thumb against the 
side of their hand uncomfortable and tiring. Therefore, we 
adopted a recognition algorithm which uses a blend of 
relative features and absolute features, similar to AirTap. 

Adjusting for Intended Click Point 
When performing either of these click gestures, the 
interconnected nature of the hand’s physiology causes some 
involuntary finger and hand movement. To combat this, we 
adjust the position of the click down or up event to be the 
intended position, taken to be the point where the cursor was 
pointing when the click gesture began. 

POINTING TECHNQIUES 
We designed three pointing techniques: absolute position 
finger ray casting, relative pointing with clutching, and a 
hybrid technique using ray casting for quick absolute coarse 
pointing combined with relative pointing when more 
precision is desired. These techniques depend on simple 
hand postures to signify a clutch or ray cast point which we 
will discus now. 

Detecting and Teaching Hand Postures 
We detect whether individual tracked fingers are pointing 
out or curled into the palm based on threshold distances 
between the current finger marker position and the closed or 
open positions. For example, open and closed hand positions 
vary between individuals, so we calibrate through a simple 
10 second process. Asymmetrical thresholds are used to 
move the finger to an open or closed state; this eliminates 

“thrashing” when near an ambiguous position. To encourage 
users to adopt definite hand postures, we created an 
ambiguous posture visualization (Figure 4, Figure 1b). A red 
circle appears and becomes more intense when the posture 
nears an ambiguous position. We found this to be an 
effective teaching signal, and it appeared to be effective in 
training users to adopt clean postures.  

open closedambiguous  
Figure 4. Ambiguous Posture Visualization. Increasing intensity 
of a red disk indicates an ambiguous posture. 

RayCasting 
Drawing from previous work in interaction design and 
bolstered by social anthropological research on human 
pointing [10] we implemented a finger ray casting pointing 
technique. The cursor is placed at the point where a ray 
emanating from the index finger intersects with the display 
(Figure 5). Note that using the index finger in this way rules 
out combining the AirTap clicking gesture with Ray 
Casting. As we discussed earlier, there is a known problem 
of “jittery” cursor movement with laser pointers due to 
natural hand tremors, and this is exacerbated by the use of 
the finger to define the ray. We experimented with using the 
inner surface of the palm to define the ray, but, although this 
reduced the jittery nature somewhat, it is not how we 
actually point in the real world [10] and, more importantly, 
forced more extreme movements of the forearm, increasing 
fatigue. Researchers have explored various filters to steady 
the cursor in the case of laser pointing like Kalman filtering 
[20], a two stage mean filter based on angular velocity [31] 
and more elaborate models [14, 15]. Initially, we used a 
simple recursive low pass filter on the 2D cursor position, 
but results from our pilot evaluation led us to improve on it. 
We designed a dynamic recursive low pass filter for 3D 
marker positions that define the ray. This interpolates 
between cutoffs of .25Hz and 5Hz (with a 90Hz sample rate) 
based on marker velocity v. If v < 10mm/s then the low 
cutoff is used, if v > 200 mm/s then we use the high cutoff, 
and for values in between we use a linear interpolation of 
cutoff based on v. We found this effectively removed jitter 
when the pointer was still, yet introduced almost no lag, 
which can be detrimental to performance [30]. 

Relative Pointing with Clutching 
In this technique we use the motion of the hand projected on 
a vertical plane for cursor positioning (Figure 6a). We first 
considered using an absolute mapping. By calibrating the 
scale of the hand’s vertical coordinate frame to a 
comfortable range of movement, we found that cursor 
control was surprisingly accurate and fast. However, a 
problem emerges as the user moves: our design constraint of 
tracking only a single hand prevented us from translating the 
coordinate frame according to body movement.  
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When using whole hand spatial input, Hinckley et al. [9] 
emphasize the importance of using relative rather than 
absolute mappings. Mapping absolute hand positions 
directly to a parameter can be too abstract and they suggest 
moving relative to a physical prop instead. Since our design 
goals preclude using props, we adopted a relative technique 
where an absolute start position is chosen on a vertical plane 
using a clutching mechanism and subsequent left-right and 
up-down motion is relative to that. Hinckley et al. refer to 
this as a ratcheting recalibration mechanism [9].  

We use the neutral “safe hand" posture for pointing (Figure 
6a) and a clenched fist (“Grip Clutch”) to disengage the hand 
from the pointer and recalibrate the position (Figure 6b). We 
experimented with tense postures for pointing but found that 
clicking with the fingers or thumb is difficult if the hand is 
under tension. Also, since pointing actions are typically of 
longer duration than clutching actions, it makes sense to use 
a tense posture for clutching rather than pointing. To inform 
the user that the cursor has been disengaged from hand 
movement, we animate the standard arrow pointer icon to 
rotate so it appears to dangle from the arrow point. When the 
clutch is deactivated, the pointer rotates back to its 
customary angle. This subtle visualization suggests that 
when the hand is connected to the cursor the pointer is “held 
up by the hand” and when disengaged it swings down to a 
rest position. The ambiguous posture visualization (Figure 
4) helps the user adopt clear clutch or no clutch poses.  
To increase the range of cursor movement, we implemented 
the same variable control-display (CD) gain function used 
for pointer control in Windows XP. This adjusts the CD gain 
according to a non-linear function of velocity [16]. Once the 
hand and pointer are reasonably calibrated through 
clutching, we found this function worked well. We selected 
a scale factor of 0.7 which made it easy to traverse thousands 
of pixels from one side of the display to the other, yet did not 
introduce any loss in accuracy when selecting small targets.  

Hybrid RayToRelative Pointing 
Our third technique uses ray casting as a way to recalibrate 
the hand position while simultaneously repositioning the 
cursor near the desired target. This eliminates the cognitive 
load of the Grip Clutch’s backwards ratcheting movement, 
and takes advantage of ray casting’s ability to do rapid 
coarse grain pointing. Direct cursor control is accomplished 
using the same relative hand movement technique (Figure 
7a) discussed in the previous section but when the hand pose 
changes to a finger point, the cursor is replaced with a circle 
positioned on the display where the ray emanating from the 
finger intersects with the display (Figure 7b). The circle can 
be rapidly repositioned with very little hand movement and 
the cursor positioned at the centre when the hand returns to 
the neutral safe hand position. Returning to the neutral 
posture causes the index finger tendons to contract and jerk 
the circle upwards, positioning the cursor too high. To 
eliminate this, we adjust the cursor position to be the 
intended position, taken to be the point where the return to 
open hand is initiated. 

 
Figure 5. RayCasting. A ray extends from the tip of the finger 
and the cursor is positioned where it intersects with the large 
display surface. 

(a)

(b)

 
Figure 6. Relative Pointing with Clutching. (a) The open hand is 
used for relative cursor control, and (b) a clenched fist (“Grip 
Clutch”) is used for clutching. When the clutch is engaged, the 
cursor arrow swings to a dangling position. 

(a)

(b)

 
Figure 7 Hybrid RayToRelative Pointing. (a) The open hand is 
used for relative cursor control, and (b) recalibrating (or 
clutching) is performed with an absolute ray cast pointing 
gesture. When ray cast pointing, the cursor transforms to a large 
circle to suggest the selection of an approximate area. 

PILOT EVALUATION 
The purpose of our initial evaluation was to compare and 
refine the ThumbTrigger and AirTap click gestures when 
used with each of our three pointing techniques (except for 
the AirTap and RayCasting combination for obvious 
reasons). We used a Fitts’ [5, 13] style task requiring 
sequential clicks on different sized circular targets (10mm, 
30mm, 90mm) with varying distances (3200mm, 1600mm, 
800mm). We did not see a difference in trial performance 
time or error rate between the two different click gestures. 
Since AirTap is more consistent with touch screen 
interaction, and since the ThumbTrigger’s theoretical 
advantage of kinesthetic feedback did not materialize in 
these exploratory tests, we elected to use AirTap with the 
relative pointing technique in further studies. We found 
surprisingly high error rates for the RayCasting technique in 
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the small and medium target sizes varying from 20% to 
80%, more than twice that of the other techniques. In 
addition, users found RayCasting to be excruciatingly 
difficult and tiring due to the extra effort when attempting to 
select small targets with poor pointing precision. This 
prompted us to improve the RayCasting pointer position 
filter from a simple low-pass filter to a dynamic low-pass 
filter as discussed previously. 

EXPERIMENTAL EVALUATION 
Goals 
Our goal is to compare task completion time, error rate, 
recalibration activations, recalibration frequency and total 
recalibration time between the three pointing techniques: 
RayCasting, Relative, and RayToRelative. We expect the 
RayCasting technique to be the fastest since it requires no 
recalibration, but will have a higher error rate with small 
targets. Theoretically, the RayToRelative technique has a 
time advantage over the Relative technique since the 
recalibration mechanism simultaneously moves the cursor 
closer to the target. However, the overhead of switching 
between ray casting and relative movement, and the implicit 
target acquisition task during recalibration (i.e., the ray 
casting action must coarsely point to the approximate region 
of interest) may introduce too much delay. 

Participants 
Twelve participants, 4 women and 8 men ranging in age 
from 20 to 36 years, participated. None of the participants 
had experience with pointing tasks on large displays. 

Apparatus 
The experiment used the Vicon motion tracking system with 
passive markers attached to the hand, and the very large high 
resolution display as discussed previously. The participants 
stood at a stationary, central position 4 m away from the 
display.  

Task and Stimuli 
From our pilot evaluation, we found that participants were 
willing to move their hand to the extreme extents of their 
range of motion, adopting awkward poses to avoid the time 
penalty associated with recalibration. This behaviour is not 
characteristic of a real usage scenario where users would 
adopt a more energy conserving posture, balancing speed 
and effort. To encourage a more relaxed posture, we 
artificially constrained participant’s movement by 
introducing boundaries where hand tracking appears to fail. 
We revealed proximity to a boundary with a blue disk 
surrounding the cursor which fades in to full opacity and 
displays an ‘X’ when the boundary is reached.  
In the experiment, each set of trials begins with the cursor 
and first target hidden until the user holds their hand in a 
experimentally controlled start location for 2 seconds. This 
simulates the transition from some arbitrary hand-based task 
to a pointing task. The cursor appears at an experimentally 
manipulated distance from a circular white target. To select 
the target, the participant may have to clutch and recalibrate 
to control the cursor in a comfortable manner. We refer to 

this first trial task of starting the cursor movement and 
selecting the first target as the Transition Task.  
After the first target is selected successfully, the next target 
within a series of three targets appears. The participant must 
successfully select this target before the next appears, and so 
on. We call this the Sequence Task, which differs from the 
Transition Task in that the user is already controlling the 
cursor with the given technique from the time the target 
appears. This simulates the real interface situation where 
users might want to make several selections in a row before 
relaxing their hand and cursor. We also chose a sequence 
design to ensure that participants use the techniques in an 
ecologically sound manner, optimizing for both speed and 
comfort. In contrast, if we had used a single target per trial, 
participants could have optimized for speed while ignoring 
momentary discomfort for the short duration of each single 
task. The net result is that our design ensures to the extent 
possible that participants recalibrate their hand to cursor 
relationship when required, simulating real usage scenarios. 

Design 
A repeated measures within-participant factorial design was 
used. The independent variables were Technique (Relative, 
RayToRelative, and RayCasting), distance between targets 
D (DL = 4020mm, DM = 2680mm, DS = 1340mm) and target 
width W (WL = 144mm, WM = 48mm, WS = 16mm), where 
the subscripts L, M, and S are used to denote large, medium, 
and small respectively. The Fitts’ index of difficulty (ID) of 
our selection tasks range from 3.37 to 7.98 bits.h 
Presentation of the three techniques to the 12 participants 
was fully counter-balanced, resulting in 6 different 
presentation order groups. For each technique, participants 
had a 5 minute learning session and 1 block of practice trials. 
Then participants were asked to perform 3 blocks of 
recorded trials. For each block of trials, participants 
performed 6 series for each of the 3 W conditions. A series 
consisted of one selection in the Transition Task followed by 
3 selections in the Sequence Task. Target distances within 
the 6 series were presented randomly, with each of DL, DM, 
and DS appearing an equal number of times across the 6 
series. W was presented in a Latin square ordering across the 
three blocks. Participants had to successfully select each 
target before the next target would appear, ensuring that they 
did not race through the experiment by clicking anywhere 
just to finish quickly. Participants were allowed breaks 
between series. 
In summary, the experimental design was: 

12 participants x 
3 techniques x 
3 blocks x 
3 target widths x 
6 sets of Transition Task (1 target) followed by Sequence 
Task (3 targets) 
= 1944 series (1944 targets selected in Transition Task, 
and 5832 targets selected in Sequence Task) 
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Figure 8. Mean selection times for 
Sequence Task and Transition Task.

Figure 9. Mean error rate by width for 
Sequence Task.

Figure 10. Technique and width interaction 
on selection time for Sequence Task.

Selection Time and Error Analysis 
Results for Sequence Task 
Selection time for the Sequence Task was defined as the time 
it took to move from the previous target and successfully 
select the next target. Targets that were not selected on the 
first attempt were marked as errors, and not included in the 
timing analysis. Repeated measures analysis of variance 
showed that the order of presentation of the three techniques 
had no significant effect on selection time or error rate, 
indicating that a within-participants design is appropriate. 
There was no significant main effect for technique on 
selection time, with means of 3088, 3097, and 3128 ms for 
the Relative, RayToRelative, and RayCasting techniques 
respectively (Figure 8). Since our analysis below found 
minimal clutching in the Sequence task, this indicates that 
the relative hand movement technique used by both Relative 
and RayToRelative is equivalent in speed to the absolute 
RayCasting pointing technique.  
There was a significant interaction between technique and 
target width (F4,24 = 33.945, p < .001). Post hoc multiple 
means comparison tests showed that RayCasting was 
significantly slower than Relative and RayToRelative for WS 
(by 485 and 654 ms respectively, both p < .05) but faster for 
WL (by 447 and 449 ms respectively, both p < .05) (Figure 
10). This suggests that although there is an overhead in the 
relative hand movement techniques, the small controlled 
movements required for selecting small targets are faster for 
the relative hand movement techniques when compared to 
RayCasting. With RayCasting, the small corrective 
movements required by small targets become more difficult 
and time consuming. There was no significant interaction 
found between technique and target distance. 
There was a significant effect for technique on selection 
error rate (F2,12 = 109.212, p < 0.001). Multiple means 
comparison tests found RayCasting to be significantly more 
error prone with a mean error rate of 22.5% compared to 
3.5% and 5.7% for Relative and RayToRelative respectively 
Note that error rates for Relative and RayToRelative are 
within the typical range for Fitts’ pointing tasks. Not 
surprisingly, a significant interaction was found between 
technique and width (F4,24 = 122.413, p < 0.001). Multiple 
means comparison tests showed RayCasting had 
significantly higher errors rates of 56% for WS and 10.5% for 

WM (both p < .05). In comparison, the error rates for Relative 
was 9.6% and 1.1% and RayToRelative was 15.4% and .9% 
for WS and WM respectively. WL error rates were less than 
1.1% for all techniques (Figure 9). 

Results for Transition Task 
Selection time for the Transition Task was the length of time 
to successfully click on the first target after the cursor 
appeared. Like the Sequence Task, selection errors were not 
included in the timing analysis. There were no significant 
technique order effects for selection time or error rate. 
There was a significant main effect for technique on 
selection time (F2,12 = 20.193, p < .001). RayCasting, with a 
mean time of 2843ms, was significantly faster than Relative 
and RayToRelative, with mean times of 3926 and 3744ms 
respectively (Figure 8). Since there was no significant 
difference in mean selection time for the Sequence Task, this 
indicates that recalibration time is a significant factor in 
pointing performance. 
There was a significant interaction between technique and 
distance on selection time (F4,24 = 14.692, p < 0.001). 
Multiple means comparison tests found RayCasting to be 
significantly faster than Relative and RayToRelative for DL 
and DM (all p < .01), but not DS. The lower frequency of 
recalibrations for DL prevents the recalibration overhead 
time from slowing the two relative positioning techniques 
significantly. This reaffirms our Sequence Task results: the 
relative techniques are equivalent in speed to RayCasting 
when there is no recalibration. The remaining results for 
time and error revealed similar trends to the Sequence Task. 

Recalibration Frequency Analysis 
We designed the Transition Task to simulate a situation with 
a high likelihood of a recalibration step with the Relative and 
RayToRelative techniques (RayCasting requires no 
recalibration). Indeed, we found that a recalibration step was 
used in the Transition Task 63.1% of the time with Relative 
and 63.9% with RayToRelative; this difference in 
recalibration frequency was not significantly different.There 
was a significant main effect for target distance on 
recalibration frequency (F2,12 = 8.357, p < .001) with means 
of 91.3%, 73.9%, and 25.5% for DL,, DM; and DS. The longer 
the distance the more often users had to recalibrate, clearly 
indicating that recalibration is an important factor on large 
displays. In the Sequence Task participants recalibrated only 
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35.8% and 31.5% with Relative and RayToRelative 
respectively; no significant difference was found between 
techniques. Once reasonable calibration has been achieved, 
subsequent selection tasks require fewer calibration steps.  

Recalibration Time and Activation Analysis 
We examined metrics related to how the Relative and 
RayToRelative recalibration mechanisms were used. Our 
analysis included only trials in which a recalibration 
occurred across Transition and Selection tasks including 
only distances DL and DM (since DS had a low frequency of 
recalibration). Recalibration time is the time spent 
recalibrating in a single trial, by clutching with the Relative 
technique, or by switching to and from ray casting with 
RayToRelative. Recalibration activations are the number of 
times a user recalibrated in a single trial. There were no 
significant effects for technique presentation order on 
recalibration time or activations indicating that a 
within-subjects analysis is appropriate. 
There was a significant main effect for technique on 
recalibration time (F1,6 = 7.495, p = .034), with means of 901 
and 1536 ms for Relative and RayToRelative respectively. 
Recall that we found no significant difference in overall 
selection time between these techniques. The difference in 
recalibration time between the two techniques is interesting, 
as it clearly indicates that the overhead of switching between 
ray casting and relative pointing with RayToRelative, 
despite the smooth transition design, is higher than any 
advantage gained in bringing the cursor closer to the target 
in the ray cast action. In contrast, the clutching in the 
Relative technique only serves to reset the position of the 
cursor relative to the hand and does not move the cursor 
closer to the target, but the results clearly indicate that this is 
not a major drawback to this technique. 
There was a significant main effect for technique on 
recalibration activations (F1,6 = 16.680, p = .006), with 
means of 1.133 and 1.027 for Relative and RayToRelative 
respectively. Post hoc multiple means comparison tests of 
distance on technique found a significant difference in 
RayToRelative recalibration activations of 1.053 for DL and 
1.000 for DM, but no significant difference for Relative. 
Considering also the lower recalibration time, this 
reinforced our observations that with the Relative technique 
users performed recalibration more frequently in fast, short, 
consecutive strides independent of distance. However with 
the RayToRelative technique, users recalibrated their 
position less often, especially with medium distances, 
indicating that the coarse positioning aspect of the technique 
streamlined the interaction somewhat. 

User Feedback 
At the conclusion the experiment, we asked each participant 
to rank the techniques for speed, accuracy, and ease-of-use. 
8 felt Relative was fastest and 7 found it the most accurate 
with RayToRelative making up the balance. For ease-of-use, 
6 selected Relative, 5 RayToRelative, and 1 RayCasting. We 
found most participants liked Relative because the clutching 
action was similar to that of lifting a mouse to clutch. 

DISCUSSION and CONCLUSIONS 
We found that although RayCasting was faster in tasks 
where clutching would have been required or when selecting 
large targets, its high error rates prevent it from being a 
practical technique. We found no major significant effect 
between the Relative and RayToRelative techniques in terms 
of selection time or error rate. The relatively low error rates 
for these two techniques is reassuring, indicating that they 
are equally usable for selection of small (16mm) targets 
while standing 4m away from the display. 
The two relative hand pointing techniques differed with 
regards to the number of recalibration activations and 
recalibration time. Interestingly, the longer recalibration 
times for the RayToRelative technique did not impact its 
overall selection time as compared to the Relative technique, 
indicating that the time overhead due to the ray casting 
portion of the technique was compensated for by a reduction 
in subsequent relative movement. 
We note that our techniques currently only support actions 
equivalent to those of a single button mouse or touch screen. 
It would be interesting to explore using the thumb and index 
finger together to “left” and “right” click. 
Our design of the ambiguous clutch visualization was 
observed qualitatively to be an effective “teaching input” 
that helped users adopt more definite postures. This idea 
could be applied to click gesture recognition. When a 
click-like finger movement just missed being classified as a 
click gesture, visual feedback could be shown with a 
suggestion how to adjust finger movement so it is classified 
as a click the next time (make it faster, slower, longer, etc). 
It would be interesting to consider the other six pointing 
gestures from Kendon’s study [10], as well as additional 
body movements, in the design of future pointing 
techniques. For example, using a second hand or eye gaze or 
head position to accelerate pointing by selecting a region of 
the display within which the dominant hand can perform 
fine grained pointing and clicking.  
In summary, this research has made several contributions: 
we have motivated the need for facile pointing and clicking 
techniques for interacting with large displays from a 
distance; identified desirable characteristics for such 
techniques; and developed and evaluated new pointing and 
clutching techniques that leverage the simplicity and 
inherent human ability to point with a hand. Of particular 
interest are the subtle nuances in the design of our 
techniques. We use visual and auditory feedback in our 
clicking techniques to compensate for the lack of kinesthetic 
feedback typically present when clicking a physical button; 
provide unobtrusive but yet effective visualizations to subtly 
alert the user when postures and gestures are about to 
become ambiguous; and used various heuristics to tune the 
parameters of the clicking mechanisms such that they 
behave as users implicitly expect. Finally, our evaluations 
demonstrate the usability of relative hand base pointing 
techniques with error rates in the same low range one 
typically sees with status-quo devices like mice.  
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