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ABSTRACT 
TiltText, a new technique for entering text into a mobile 
phone is described. The standard 12-button text entry 
keypad of a mobile phone forces ambiguity when the 26-
letter Roman alphabet is mapped in the traditional manner 
onto keys 2-9. The TiltText technique uses the orientation 
of the phone to resolve this ambiguity, by tilting the phone 
in one of four directions to choose which character on a 
particular key to enter. We first discuss implementation 
strategies, and then present the results of a controlled 
experiment comparing TiltText to MultiTap, the most 
common text entry technique. The experiment included 10 
participants who each entered a total of 640 phrases of text 
chosen from a standard corpus, over a period of about five 
hours. The results show that text entry speed including 
correction for errors using TiltText was 23% faster than 
MultiTap by the end of the experiment, despite a higher 
error rate for TiltText. TiltText is thus amongst the fastest 
known language-independent techniques for entering text 
into mobile phones. 
Keywords: Text entry, mobile phones, tilt input 

INTRODUCTION 
Most mobile phones are equipped with a simple 12-button 
keypad, which is an inherently poor tool for generating 
phrases for a 26-letter alphabet. Using traditional text-entry 
techniques, such as MultiTap, an average text message of 7 
words requires roughly 70 key presses. Given estimates 
(www.gsmworld.com) that in 2003 nearly 500 billion text 
messages will be sent worldwide from mobile phones, 
entry using current techniques will require approximately 
35 trillion key presses worldwide this year. While much 
research effort has gone into devising a variety of more 
efficient text input techniques [9, 15] which have all shown 
various improvements to the status-quo, none has yet 
emerged as a new standard. As such, there remains 
considerable opportunity for researchers to influence this 
area by developing new techniques.  
 
 
 
 
  

 
 
 

TiltText 
We have developed a new text input technique, called 
TiltText, which uses the standard 12-button mobile phone 
keypad augmented with a low-cost tilt sensor. Similar to 
TiltType described by Partridge et al. [10], TiltText uses a 
combination of a button press and tilting of the device to 
determine the desired letter. Our technique differs from 
TiltType in the keypad used and in the sensing algorithms, 
which we discuss in detail later in this paper. The standard 
phone keypad mapping assigns three or four alphabetic 
characters, and one number, to each key. For example, the 
2 key also has the characters a, b, and c assigned to it. 
TiltText assigns an additional mapping by specifying a tilt 
direction for each of the characters on a key, removing any 
ambiguity from the button press. The user presses a key 
while simultaneously tilting the phone in one of four 
directions (left, forward, right, back) to input the desired 
character (Figure 1). For example, pressing the 2 key and 
tilting to the left inputs the character a, while tilting to the 
right inputs the character c. By requiring only a single 
keypress and slight tilt to input alphanumeric characters, 
the overall speed of text entry can be increased. Further, 
unlike some techniques [15] that improve on the status quo, 
TiltText is not language dependent, and thus can be used by 
experts without visually attending to the display screen. 
In this paper we first review related work, then discuss 
implementation issues, then present an experiment 
comparing the performance of TiltText to the most common 
existing technique, MultiTap. We conclude by discussing 
the characteristics of TiltText compared to other techniques, 
including implications for evaluation metrics. 

 
Figure 1. TiltText. The center picture shows the 
untilted phone where pressing a key enters its 
numeric value. Left picture: left tilt enters first 
character on key. Top picture: forward tilt enters 
second character. Right picture: right tilt enters third 
character. Bottom picture: tilting towards the user 
enters fourth character if one exists for that key. 

 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage, and that copies bear this notice and the full citation on the 
first page. To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
UIST ’03 Vancouver, BC, Canada 
© 2003 ACM  1-58113-636-6/03/0010 $5.00

http://www.gsmworld.com/


RELATED WORK 
There are two areas of research that are relevant to our 
work: text input techniques for mobile phones, and the use 
of tilt transducers in mobile devices. 

Text Input Techniques for Mobile Phones 
A small number of mobile phones today utilize QWERTY 
style keypads that enable text entry with techniques similar 
to typing on a regular keyboard, albeit at a much smaller 
physical scale (e.g., Nokia 5510 www.nokia.com). More 
recently, hybrid devices that combine phones with PDAs, 
such as the Handspring Treo (www.handspring.com) and 
PocketPC Phone (www.microsoft.com), utilize pen-based 
text input techniques common to PDA’s such as Graffiti. 
While these devices are making small inroads into the 
mobile phone market, the vast majority of mobile phones 
are equipped with the standard keypad (Figure 2) which has 
12 keys: 0-9, *, and #.  

 
Figure 2. Standard 12-key mobile phone keypad 

Entering text from a 26 character alphabet using this 
keypad forces a mapping of more than one character per 
button of the keypad. A typical mapping has keys 2-9 
representing either three or four characters, with space and 
punctuation mapped to the other buttons. All text input 
techniques that use this standard keypad have to somehow 
resolve the ambiguity that arises from this multiplexed 
mapping. There are three main techniques for overcoming 
this ambiguity: MultiTap, two-key, and linguistic 
disambiguation. We now review these techniques briefly, 
and refer the reader to Soukoreff and MacKenzie [15] for a 
more comprehensive review that is beyond the scope of the 
present paper. 

MultiTap 
MultiTap works by requiring the user to make multiple 
presses of each key to indicate which letter on that key is 
desired. For example, the letters pqrs traditionally appear 
on the 7 key. Pressing that key once yields p, twice q, etc. 
A problem arises when the user attempts to enter two 
consecutive letters on the same button. For example, 
tapping the 2 key three times could result in either c or ab. 
To overcome this, MultiTap employs a time-out on the 
button presses, typically 1-2 seconds, so that not pressing a 
button for the length of the timeout indicates that you are 
done entering that letter. Entering ab under this scheme has 
the user press the 2 key once for a, wait for the timeout, 
then press 2 twice more to enter b. To overcome the time 
overhead this incurs, many implementations add a “timeout 
kill” button that allows the user to skip the timeout. If we 
assume that 0 is the timeout kill button, this makes the 
sequence of button presses to enter ab: 2,0,2,2. 

MultiTap eliminates any ambiguity, but can be quite slow, 
with a keystrokes per character (KSPC) rate of 
approximately 2.03 [8]. 

Two-key Disambiguation 
The two-key technique requires the user to press two keys 
in quick succession to enter a character. The first keypress 
selects the appropriate group of characters, while the 
second identifies the position of the desired character 
within that group. For example, to enter the character e, the 
user presses the 3 key to select the group def, followed by 
the 2 key since e is in the second position within the group. 
This technique, while quite simple, has failed to gain 
popularity for Roman alphabets. It has an obvious KSPC 
rate of 2. 

Linguistic Disambiguation 
There are a number of linguistic disambiguation schemes 
that utilize knowledge of the language to aid the text entry 
process. One example is T9 (www.tegic.com) that renders 
all possible permutations of a sequence of button presses 
and looks them up in a dictionary. For example, the key 
sequence 5,3,8 could indicate any of 27 possible 
renderings (3x3x3 letters on each of those keys). Most of 
these renderings have no meaning, and so are rejected. 
Looking each of them up in a dictionary tells the system 
that only jet is an English word, and so it is the one 
rendered. Ambiguity can, however, arise if there is more 
than one valid rendering in the language, in which case the 
most common is presented. For example, the sequence 6,6 
could indicate either on or no. If the system renders the 
wrong word, a “next” key allows the user to cycle through 
the other valid permutations. An analysis of this technique 
for entering text from an English corpus found a KSPC 
close to 1 [8]. Newer linguistic disambiguation techniques 
such as LetterWise [9] and WordWise (www.eatoni.com) 
also perform similarly well, with subtle advantages over 
earlier techniques. While these all have excellent KSPC 
rates, the success of linguistic-based systems depends on 
the assumption that users tend to enter “English like” words 
when sending text messages. As Mackenzie et al. [9] note, 
users often use abbreviations, and not complete English 
when text messaging. Further, users of text messaging often 
communicate in acronyms or combinations of letters and 
numbers (e.g., b4 for before). Another problem with 
these linguistic techniques is that users have to visually 
monitor the screen in order to resolve potential ambiguities, 
whereas the MultiTap and two-key techniques can be 
operated “eyes-free” by skilled users. 
As a result of these limitations of current keypad text input 
techniques, the quest for a widely applicable, low KSPC, 
text input technique continues. 

Using Tilt Sensors in Mobile Devices 
Several researchers have recently proposed interesting 
interaction techniques that are enabled by incorporating a 
low-cost tilt sensor within mobile devices [3-7, 10, 12, 13]. 
While some of this prior art (e.g., [3-7, 12]) do not concern 
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text entry techniques per se, they do add to the set of 
possible interactions that could take advantage of tilt 
sensors embedded in mobile devices, thus providing further 
justification for the incremental cost of the sensor.  
Of particular relevance to our work are two techniques for 
text entry that use tilt information. Both of these techniques 
focus on very small devices lacking a large number of 
buttons, and were not optimized or evaluated for speed of 
entry. Unigesture [13] used tilt as an alternative to button 
pressing, eliminating the need for buttons for text entry. 
Rather than having the user make one of 8 ambiguous 
button presses (as is the present case with mobile phones), 
Unigesture has the user tilt the device in one of 7 directions 
to specify the group, or “zone”, of the character that is 
desired. The ambiguity of the tilt is then resolved by using 
dictionary-based disambiguation. 
TiltType [10] refines Unigesture by adding the combination 
of button pressing and tilt for entering unambiguous text. 
TiltType was designed to enter text into a small, watch-like 
device with 4 buttons. Pressing a button triggered an on-
screen display of the characters that could be entered by 
tilting the device in one of eight directions, the appropriate 
tilt was then made, and the button released. TiltType has the 
same root concept as our TiltText technique, in that tilt is 
used to disambiguate button presses.  
Our present work builds upon TiltType in several 
significant ways. First, neither TiltType nor Unigesture 
were designed for use with mobile phone keypads, as we 
are proposing with our TiltText technique. We believe that 
using the standard mobile phone keypad will significantly 
increase the viability of tilting text input as a real, usable, 
technique. Second, while TiltType uses eight tilt directions, 
we only use a maximum of four tilt directions, reducing the 
accuracy demands on the user when tilting. Third, the 
algorithm used for detecting tilt in the TiltType technique is 
one which we dub key tilt, which, as is discussed later in 
our paper, is not the most optimal tilt detection mechanism 
for speedy text entry. We develop two alternative tilt 
detection mechanisms that improve upon key tilt. Finally, 
we present the results of a controlled experiment that 
provides the first set of usability data with regards to using 
tilt for text input. 

DESIGN ISSUES 
TiltText uses the orientation of the phone along two axes to 
disambiguate the meaning of button presses. Tilting the 
phone to the left selects the first letter of the key, away 
from the body the second, to the right the third, and, if 
present, towards the body the fourth (see figure 1). Pressing 
a key without tilting results in entering the numeric value of 
the key. Space and backspace operations are carried out by 
pressing unambiguous single-function buttons (as in 
MultiTap). 
Supporting both lowercase and uppercase characters would 
require a further disambiguation step since a total of seven 
characters per key would need to be mapped for keys 2-6 

and 8, and nine characters each for the 7 and 9 keys 
(Figure 2). Adding case sensitivity could be done by either 
requiring the pressing of a “sticky” shift-key, or 
considering the magnitude of the tilt as a disambiguator 
where greater magnitude tilts result in upper case letters, as 
Figure 3 illustrates. The latter technique, however, would 
likely make eyes-free entry more difficult. 

 
Figure 3. Uppercase text entry with TiltText. Tilting 
beyond a threshold makes the character uppercase. 

Techniques for Calculating Tilt 
The tilt of the phone is taken as whichever direction has the 
greatest tilt relative to an initial “origin” value. After 
exploring various options during our development process, 
we have found that there are three main ways to determine 
the tilt value: key tilt, absolute tilt, and relative tilt. 

Key Tilt 
With this technique, first seen in the TiltType work, the 
amount of tilt is calculated as the difference in the value of 
the tilt sensors at key down and key up. This requires the 
user to carry out three distinct movements once the button 
has been located: push the button, tilt the phone, release the 
button. We conducted a pilot experiment comparing a 
TiltText implementation that used key tilt, and found that 
user performance with this implementation was much 
slower than the traditional MultiTap technique. For this 
reason, key tilt was not used  in our final experiment. 

Absolute Tilt 
This technique compares the tilt sensor’s value at any given 
time to a “fixed” absolute origin. Only two distinct 
movements are required to enter a character: tilt the phone, 
then press the key. In contrast, key tilt requires that the key 
be pressed first, phone tilted, then key released. However, 
this approach is also not ideal, since in practice users do not 
maintain a constant arm posture. In order for the tilt value 
to be meaningful, the fixed origin will have to be reset 
every time the user’s gross arm posture changes. Further, 
when using TiltText to enter two characters requiring tilt in 
opposite directions, more movement is required using this 
absolute approach, since the first tilt must be undone, then 
the new tilt applied. For example, entering the letters ac 
using the 2 key requires an initial tilt of some angle ∆ to 

 



the left to enter the a. Then, the user has to tilt the same 
angle ∆ in the reverse direction to return to the origin, 
before tilting another angle θ to the right to enter the letter 
c. The total amount of movement is 2∆ + θ, instead of the 
smaller ∆ + θ that one may expect. However, one 
advantage of this method over key tilt is that if successive 
characters with the same tilt direction are to be entered, 
then the user can keep the phone tilted at that direction for 
the successive keypresses. 

Relative Tilt 
This approach calculates the tilt relative to a floating origin 
that is set when a tilt gesture begins. The beginning of a 
gesture is determined by continuously watching for a 
change in orientation or a change in the direction of a 
tilting gesture. This approach solves both problems of the 
absolute tilt method. Since all tilts are relative to the 
beginning of the gesture, there is no absolute origin that 
need be reset when changing arm position. Further, 
opposite direction tilts do not require double tilting, since 
the second tilt’s origin is the end of the first tilt’s gesture. 
So, entering the letters ac requires a tilt of some angle ∆ to 
the left to enter a, then another tilt of angle θ to the right to 
enter the c, for a total movement of ∆ + θ. Note that, just 
like with absolute tilt, when entering only letters, we can 
enter successive characters with the same tilt direction 
without re-tilting the phone, by looking at the last 
significant tilt. 

EVALUATION 
Goals 
We sought to compare the performance of TiltText to other 
techniques for text entry into mobile phones. For this first 
experiment, we chose as a comparison the most commonly 
implemented technique, MultiTap, because it is the 
common baseline in almost every other evaluation of text 
entry techniques reported to date [9, 14, 15]. As such, while 
the present study only directly compares TiltText to 
MultiTap, we can indirectly make comparisons of TiltText’s 
performance relative to other techniques via the results 
reported in the literature.  

Apparatus 
Hardware 
We used a Motorola i95cl phone. The phone was equipped 
with an Analog Devices ADXL202EB-232 2-axis 
accelerometer board to enable tilt sensing, connected to the 
phone via a serial cable (with the addition of an external 
power line).  
An implementation of a relative tilt system would require 
regular sampling from the tilt sensor. Unfortunately, our 
hardware allowed only a reliable rate of ~10 Hz. Pilot 
studies, using a relative tilt implementation of TiltText, 
showed that participants’ text entry speed increased to a 
point such that our mechanism for determining origins 
(repeated sampling of tilt at 10Hz) proved insufficient for 
determining tilt accurately. The resulting device-caused 
errors in recognition made entering text at higher speeds 

frustrating. From these pilot studies, we believe that rates 
of 20-50Hz would be required for a robust relative tilt 
implementation. As a result, despite the limitations 
discussed earlier, we had to implement an absolute tilt 
approach, allowing the user to reset the origin at any time 
by holding the phone at the desired orientation and pressing 
“0”. The additional movement required by this approach, 
however, is acceptable for our evaluation purposes because 
if we can demonstrate that TiltText performs well despite 
this additional movement, then any more robust 
implementation using a relative tilt approach can only do 
better. In other words, our evaluation is biased against our 
new technique. 
Because the ADXL board can detect a tilt of only fractions 
of a degree, only a very small tilt of the phone is necessary 
to disambiguate a button press. The maximum of the tilt in 
either axis was taken to be the intended tilt, with a 10% 
bias towards forward/back. This bias is included based on 
our pilot studies which revealed a tendency to pitch to the 
dominant side when tilting forward with the wrist. 

Software 
The software to read tilts and render text, as well as 
conduct the experiment, was written in Java 2 Micro-
Edition (source at www.dgp.toronto.edu/research/tilttext) 
using classes from both the Mobile Devices Information 
Profile (MIDP 1.0) and proprietary i95cl specific classes.  
The experiment was conducted entirely on the mobile 
phone rather than simulating a mobile phone keypad on 
some other device. All software, including those 
implementing the text entry techniques, and data 
presentation and collection software used in the experiment 
ran on the phone. No connection to an external computing 
device beyond the tilt sensor was required. Of the major 
techniques for text entry into mobile phones evaluated in 
the literature over the last several years, this seems to be the 
first to do so on an actual mobile phone keypad / display. 
We believe that this helps to more closely represent real 
use, and so enhances the external validity of our 
experiment. 
Our MultiTap implementation used the i95cl’s built-in 
MultiTap engine, with a 2 second timeout and timeout kill. 
We only considered lowercase text entry in this evaluation. 
As such, the MultiTap engine was modified slightly to 
remove characters from the key mapping that were not on 
the face of the button, so that the options available were 
only the lower case letters and numeral on the key. This 
matches the traditional MultiTap implementation in past 
experiments, such as LetterWise [9] .  

Participants 
Ten participants volunteered for the experiment. They were 
recruited from within the university community. There 
were 5 men and 5 women of whom 3 were left-handed and 
7 right-handed. Participants were pre-screened so that no 
one with any experience composing text using either 
technique was included. Participants did not receive any 
tangible compensation for their participation. 
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Procedure Design 
Participants entered short phrases of text selected from 
among those in MacKenzie’s English phrase dictionary 
(www.yorku.ca/mack/phrases2.txt). These phrases were 
chosen because they have been used in previous text entry 
studies involving MultiTap [9], allowing us to leverage this 
previous work. This corpus’ high correlation of frequencies 
of letters to English is a benefit, although it does not take 
into account abbreviations commonly used in texting. 

A within-subjects design was used. Participants were 
randomly assigned to two groups of 5 participants each. 
The first group performed the experiment with the 
MultiTap technique first, followed by TiltText, while the 
second group did it in the reverse order. 
For each technique, participants were asked to complete 
two sessions of 8 blocks of trials each. Each block required 
the entry of 2 identical practice phrases, followed by 20 
different phrases randomly selected from the corpus. The 
selection of phrases for each of the 16 blocks were done 
before the experiment, and presented in the same order to 
each participant. Phrases were selected such that all blocks 
had similar average phrase length. The same set of phrases 
and blocks were used for both techniques. In other words, 
all participants were required to enter identical phrases in 
the same order, the only difference being which technique 
they used first. Participants were asked to rest for at least 5 
minutes between each block, and each session of 8 blocks 
each was conducted on separate days. At least 24 hours 
passed between sessions for the different techniques to 
limit interference. In summary, the design was as follows: 

The desired text phrases were shown to participants on the 
screen on the phone. For consistency with past MultiTap 
experiments, participants were instructed to enter text only 
with the thumb of the hand with which they held the phone, 
and not to change hands during the experiment.  
Timing began when participants entered the first character 
of the phrase, and ended when the phrase was entered 
completely and correctly. If an erroneous character was 
entered, the phone alerted the user by vibrating, and the 
user was required to correct their error. With this 
procedure, the end result is error-free in the sense that the 
correct phrase is captured. Also, the phrase completion time 
incorporates the time taken to correct for errors.  

10 participants x Before beginning each treatment, participants were told to 
read and understand the displayed phrase before entering it, 
and were given instructions for that treatment as follows: 

2 techniques (MultiTap and TiltText) x 
2 sessions per technique x 
8 blocks per session x 

MultiTap instructions: to enter a character using the 
MultiTap technique, first find the key that is labeled with 
that character. Press that key repeatedly until the desired 
character is reached. Press once for the first character, 
twice for the second, three times for the third, and, if 
present, four times for the fourth. Once you have found the 
correct letter, and are ready for the next one, you simply 
repeat the process. If the letter you wish to enter next is on 
the same key, you must first either press the “right” arrow 
on the phone or wait two seconds for the cursor to advance. 

20 phrases per block (excluding practice phrases) 
= 6400 phrases entered in total. 

Results  
Data Summary 
The data collected from 10 participants took an average of 
10.3 minutes per block. A total of 145360 correct 
characters of input were entered for the 6400 phrases. 

Physical Comfort 
Some participants reported that their thumb became sore 
while using both techniques. When this was reported, the 
participants were encouraged to rest until they felt 
comfortable to proceed. No participant reported pain or 
discomfort in their wrist or arms. 

TiltText instructions: The technique works by tilting the 
phone in the direction of the letter you wish to enter, then 
pressing the key on which it is inscribed. For the first letter, 
tilt left. For the second letter, tilt forward. For the third 
letter, tilt to the right. For the fourth letter, tilt towards you. 
The direction of tilt is measured relative to the “centre” or 
“origin” position of the phone. You can reset the origin at 
any time by pressing the 0 key.  

Text Entry Speed 
We use the standard wpm (words-per-minute) measure to 
describe text entry speed. This is traditionally calculated as 
characters per second * 60 / 5. Because timing in our 
experiment started only after entering the first character, 
that character should not be included in calculations of 
entry speed. Thus, for the purposes of these computations, 
the length of a phrase is n-1 characters. Also, to signify 
completion, users had to enter an extra space at the end of 
each phrase. However, our timing considers the entry of the 
last real character of the phrase to be the end time. 

The experimenter then demonstrated the relevant 
technique. To ensure that participants understood how the 
technique worked, they were asked to enter a single phrase 
that would require tilting in all four directions for TiltText, 
or two successive letters on the same key for MultiTap. 
Additional instructions were given for both techniques to 
describe space and delete keys, as well as to enter an extra 
space at the end of the phrase to indicate completion. The 
process for error correction was also explained to them. 
Participants were also directed to rest as they liked between 
phrases, but to continue as quickly as possible once they 
had started entering a phrase. 

The average text entry speed for all blocks were 11.76 wpm 
and 10.11 wpm for TiltText and MultiTap respectively. 
Overall, TiltText was 16.3% faster than MultiTap.  
The means for the first block of trials were 7.42 wpm and 
7.53 wpm, for TiltText and MultiTap respectively. 
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Performance in both techniques increased steadily, with the 
means for the last (16th) block of trials of 13.57 wpm for 
TiltText and 11.04 wpm for MultiTap. While subjects 
performed marginally better with MultiTap initially, they 
improved considerably faster with TiltText, with the spread 
between the techniques reaching 22.9% in favour of 
TiltText by the end of the experiment.  
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Analysis of variance indicated significant main effects for 
technique (F1,8 = 615.8, p < .0001), and block (F15,120 = 
145.2, p < .0001). There was also a significant technique x 
block interaction (F15,120 = 20.5, p < .0001), indicating that 
participants improved at different rates for the different 
techniques. Figure 4 illustrates these effects. 
The use of a within-subjects design in our experiment 
raises the possibility of transfer effects. We attempted to 
balance these transfer effects by assigning subjects to two 
different groups, one group using TiltText first followed by 
MultiTap, and the other group doing it in the reverse order. 
However, as Poulton [11] points out, for this 
counterbalancing to work, any skill transfer that occurs 
must be symmetric. Analysis of variance showed a 
significant order x technique interaction (F15,120 = 481.5, p 
< .0001), indicating that our participants exhibited 
asymmetric transfer effects. This essentially means that 
participants’ experience with the first technique they used 
affected their performance with the second technique by 
different amounts depending on whether the first technique 
was TiltText or MultiTap. As such, we did additional 
analyses by looking only at the data for the first technique 
participants performed (i.e., half the experimental data). 
This in effect results in a between-subjects design. Analysis 
of this data indicated effects similar to that of the full 
within-subjects data set: significant main effects for 
technique (F1,8 = 120.9, p < .0001), block (F15,120 = 80.6, p 
< .0001), and a significant technique x block interaction 
(F15,120 = 14.5, p < .0001). Figure 5 illustrates these effects.  

Figure 4. Entry speed (wpm) by technique and block 
for entire experiment. Best-fit power law of learning 
curve shows projected progress beyond the 
measured data in the first 16 blocks. 
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Figure 5. Entry speed (wpm) by technique and block, 
for the first half of the experiment, before participants 
switched techniques. Best-fit power law of learning 
curve shows projected progress beyond the 
measured data in the first 16 blocks. 

From our analysis and Figure 5, we see that without prior 
experience with either technique, TiltText started out 
performing worse than MultiTap, only crossing over at 
block 4. This is likely because TiltText required participants 
to master two distinctly different motor skills: pressing the 
key, and tilting the phone. Whereas MultiTap required only 
a single type of motor action:  multiple presses of the key. 
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Figure 6 shows data after participants switched techniques 
(i.e., the second half of the experiment). We see here that 
TiltText starts off faster than MultiTap, indicating that 
participants’ were able to take advantage of and transfer 
their previous experience with MultiTap in the first half of 
the experiment. This is a positive indication since it means 
that real users with lots of experience with MultiTap can 
transfer at least some of that skill if they switch to TiltText. 
Note, however, that there is quite a bit more variability in 
the performance for TiltText, as indicated by the poorer fit 
of the power curve as compared to Figures 4 and 5. This 
indicates that participants experienced some level of 
interference due to previous experience with MultiTap. 

Figure 6. Entry speed (wpm) by technique and block, 
for the second half of the experiment, after 
participants switched techniques. Best-fit power law 
of learning curve shows projected progress beyond 
the measured data in the first 16 blocks. 

 



Error Rates 
Given that our experimental procedure required participants 
to make corrections as they proceeded, with an end result 
of a completely correctly entered phrase, the entry speed 
results discussed previously incorporate the cost of error 
correction. However, it is still useful to look at a more 
explicit error rate. We calculate percentage error rate as the 
number of characters entered that did not match the 
expected character, divided by the length of the phrase. In 
this case, we used the actual length of the phrase, and not 
(n-1) as in the wpm rate. 
Overall, error rates were much higher for TiltText (11%) 
than for MultiTap (3%). This effect was statistically 
significant (F1,8 = 1378.8, p < .0001). There was also a 
significant effect for blocks (F15,120 = 21.1, p < .0001). A 
significant technique x block interaction (F15,120 = 23.3, p < 
.0001) and Figure 7 indicate that while the error rates for 
MultiTap remain quite constant throughout the experiment, 
the error rates for TiltText drop rapidly over the first 8 
blocks, and begin to asymptote from block 9 onwards. 
As with the entry time analysis, a significant order x 
technique interaction (F15,120 = 168.9, p < .0001) indicates 
that our participants exhibited asymmetric transfer effects. 
An analysis of the first half of the data (i.e., before 
participants switched techniques) indicates main effects 
similar to that of the entire dataset: technique (F1,8 = 632.4, 
p < .0001), blocks (F15,120 = 7.3, p < .0001), and technique x 
block interaction (F15,120 = 10.4, p < .0001). Figure 8 
illustrates. Interestingly, the mean TiltText error rate (8.6%) 
was lower than for the entire data set, indicating that the 
lack of interference from MultiTap  was beneficial. 
Figure 9 illustrates the data from trials in the second half of 
the experiment (i.e., after participants switched techniques). 
Comparing this to Figure 8, we see that the mean TiltText 
error rate of 13.5% is much higher than the mean 8.6% rate 
in the first half of the experiment. Further, the first 8 blocks 
of trials did not exhibit a constant trend for TiltText. 
Clearly, participants’ previous experience with the 
MultiTap technique was having a detrimental effect on their 
ability to use TiltText right after the switch in technique 
occurs. This is consistent with the effect observed in the 
text entry speed data illustrated earlier in Figure 6. 
However, this effect wears off roughly after block 8. This is 
interesting, since this is the last block completed before 
participants broke for the day, resuming 24 hours later with 
block 9. The interference effect drops after this break. 
To examine the cause of the higher TiltText error rate, it is 
useful to group errors into two categories: tilt errors and 
button errors. Tilt errors are those where the participant 
entered a letter that appears on the same button as the 
correct letter, indicating that an erroneous tilt was made. 
Button errors are those where the participant entered a 
letter that appeared on a different button. 
We had anticipated that button errors would have similar 
rates for TiltText and MultiTap. However, the results 
showed a significant difference (F1,8= 320.67, p < .0001), 

where 3% of characters entered in the MultiTap trials were 
button errors, but only 1.5% of characters entered in 
TiltText showed this type of error. 
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Figure 7. Error rates (%) by technique and block for 
entire experiment 
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Figure 8. Error rates (%) by technique and block for 
the first half of the experiment, before participants 
switched techniques 
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Figure 9. Error rates (%) by technique and block for 
the second half of the experiment, after participants 
switched techniques 

Reconciling this low button error rate with the high overall 
error rate for TiltText, it is clear that most of the errors 
committed while using TiltText were tilt errors. Breaking 
down the tilt error rate by letter shows that participants 
committed significantly more errors for some letters than 
others (F25,200,= 2.47, p < .001), as Figure 10 illustrates. 

 



DISCUSSION 
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As discussed in [9], learning of text entry techniques can be 
roughly divided into three stages: an initial discovery stage 
where users’ performance is significantly affected by prior 
experience, a second stage where users are developing their 
motor skills with the new techniques, and a third stage 
where expert users perform all actions reflexively.  
In our experiment, it is quite clear that learning is still 
continuing, even at the end of the experiment (Figures 4-9), 
and thus the third stage is not reached. Most interestingly, 
we found that when participants did the experiment with 
MultiTap first, followed by TiltText, their experience with 
MultiTap very significantly affected their ability to use 
TiltText as evidenced by the higher errors rates. However, 
our analysis indicated that this prior experience did not 
affect the participants’ entry speed when they switched to 
TiltText. Indeed, even though they made more errors, they 
were able to compensate for them by higher speeds of 
action. It appears from our analysis that participants move 
to the second stage at around block 9, or about 180 phrases 
(~4000 keystrokes). 

Figure 10. Tilt error rates (%) for each letter for the 
entire experiment. 

Analysis of variance showed a significant main effect for 
tilt direction on tilt error rate (F3,24= 37.6, p < .0001). 
Pairwise means comparisons showed a significantly higher 
tilt error rate for those letters requiring forward or 
backward tilting than those requiring right or left tilting. In 
particular, backwards tilt results in significantly higher 
errors than all the other tilt directions. Figure 11 illustrates 
this trend.  

One of the reasons why we chose to compare TiltText to 
MultiTap was because MultiTap is used as a baseline 
technique in most studies of text entry techniques. 
Comparing our results to that of [9], we see approximately 
that the number of phrases entered per technique by block 
16 in our experiment is roughly equivalent to the 6th or 7th 
session in MacKenzie et al.’s experiment. At this point, 
their data for MultiTap is roughly in the 11 wpm range, 
which is very close to ours. At the same point in time, entry 
rates for LetterWise are about 14 wpm, which is in the same 
range as our experiment’s rate for TiltText of 13.57 wpm. 
While the different experimental designs, number of 
phrases per block, and other factors necessarily imply that 
these cross-experiment comparisons are not precise, this 
rough analysis does give us a ballpark sense of how 
TiltText compares to techniques other than MultiTap.  
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Figure 11. Error rates (%) by direction of tilt for 
correct letter for the entire experiment. The increased error rate for forward/backward movements 

is possibly explained by limitations of the absolute tilt 
system used in our experiment. Participants tended to set 
the origin, then have the phone slowly “creep” forward as 
they made far more forward than back tilting gestures. As a 
result, the phone was always tilted somewhat forward. This 
meant that an exaggerated back gesture was required to 
enter “s” or “z”, which users often failed to accomplish on 
the first attempt. The tendency to hold the phone in a 
forward position also explains why most tilt errors resulted 
in entering the forward tilt letter on the same button. Due to 
hardware constraints, we used an absolute tilt 
implementation of TiltText in our experiment, instead of the 
more efficient and accurate relative tilt method. We posit 
that error rates could be improved if we use relative tilt, 
since users would not have to tilt a specific amount past the 
origin between characters as required in the absolute tilt 
method, and they also would not have to exaggerate the 
back tilts to overcome the forward posture. These extra 

As was discussed previously, the overall TiltText error rate 
decreases with practice. As such, it is possible that the high 
tilt error rate for backward tilt (letters “s” and “z”) is due to 
the limited amount of practice users had with entering the 
letter “z”, which was only entered 3 times in the 
experiment by each participant. However, the other letter 
that required backward tilting, “s”, also showed a similarly 
high tilt error rate, despite being entered very frequently 
during the experiment. In other words, additional practice 
did not seem to decrease the backward tilt error rate 
significantly, indicating that users had an inherent difficulty 
with backward tilting actions. 
When participants committed a tilt error for a letter 
requiring a left or right gesture, 82% of the time they ended 
up entering the forward-tilt letter on that button. This 
indicates that the 10% bias we introduced in our algorithm 
seems to overcompensate. Reducing this compensation 
factor may lower tilt error rate for left/right tilts. 

 



requirements are a likely cause of errors, particularly if 
users attempt to perform the technique quickly without 
watching the screen. Relative tilt would be more amenable 
to fast, “eyes-free”, use. 
Previous work [8, 9, 15] present very detailed analyses with 
regards to the various components of text entry time using 
various existing techniques. We refer readers to those 
papers for the details, however, it is worthwhile discussing 
how TiltText differs. First, all other techniques have only a 
single motor component: that of selecting the correct key 
and pressing it a certain number of times. In contrast, 
TiltText has two motor components: selecting and pressing 
the correct key as with other techniques, and tilting the 
phone in the appropriate direction. One could probably 
argue that there is also an additional cognitive component 
required in determining which direction to tilt, at least 
during the initial discovery and skill development stages of 
learning. This raises an interesting question with regards to 
the applicability of the standard metric for evaluating text 
entry techniques put forth by [8]: KeyStrokes Per Character 
(KSPC). TiltText by definition has a KSPC of 1, not 
including error correction. However, KSPC does not fully 
capture the second, tilting, aspect of TiltText. While the 
tilting movements required by TiltText are small, 
particularly if a relative tilt implementation is used, Fitts’ 
law tells us that there is nevertheless a cost associated with 
this movement. It is difficult to determine exactly the 
parameters of the tilting movement in order to calculate a 
precise estimate of its cost, however, we can say that the tilt 
angle required ranges from a little more than 0 degrees to 
an approximate maximum of 90 degrees. From our 
observations of participants in our experiment, it appears 
that the average tilt angle is probably around 30 degrees. 
With a more definitive determination of this parameter or at 
least a smaller bound on its range, it would be possible to 
develop a model that more accurately describes TiltText 
than KSPC. Since there is no fixed target that the tilt must 
accomplish, a simple application of Fitts’ law is not 
appropriate. However, the work of Accot and Zhai on the 
“steering law” [1] and “crossing based interfaces” [2] 
provide a foundation on which an analysis could be 
performed. We leave the development of such a model to 
future work, once a more detailed determination of the 
tilting parameter is performed. 

CONCLUSIONS and FUTURE WORK 
We have described TiltText: a new technique for text input 
to mobile phones that combines a low cost tilt sensor with 
the standard numeric keypad. An initial experiment 
indicates that TiltText significantly outperforms the 
commonly used MultiTap technique. Comparisons to 
previous work indicate that TiltText approaches the 
performance of linguistically-based techniques, without the 
limitation of requiring words to be from fixed language set 
or requiring the constant monitoring of the visual display. 
Given the huge installed base of the standard numeric 
keypad, and other potential uses of tilt sensors in mobile 

devices [5-7], we believe that TiltText could potentially 
have a good chance of adoption. 
We plan in future to develop a working relative-tilt 
implementation of TiltText in an effort to demonstrate even 
better speed results. We believe a relative tilt system will 
also reduce errors, but other work on reducing the error rate 
via possibly better sensing hardware and algorithms is 
clearly needed. 
We will also examine whether different tilting directions 
are more natural for the wrist, and perhaps replace the 
simplistic “left/right, back/forward” technique examined 
here. We will also test a TiltText implementation that 
groups letters to minimize the need to re-tilt between 
character entries. 
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