
TiltText: Using Tilt for Text Input to Mobile Phones

Daniel Wigdor, Ravin Balakrishnan
Department of Computer Science

University of Toronto
dwigdor | ravin @dgp.toronto.edu

www.dgp.toronto.edu

ABSTRACT
TiltText, a new technique for entering text into a mobile
phone is described. The standard 12-button text entry
keypad of a mobile phone forces ambiguity when the 26-
letter Roman alphabet is mapped in the traditional manner
onto keys 2-9. The TiltText technique uses the orientation
of the phone to resolve this ambiguity, by tilting the phone
in one of four directions to choose which character on a
particular key to enter. We first discuss implementation
strategies, and then present the results of a controlled
experiment comparing TiltText to MultiTap, the most
common text entry technique. The experiment included 10
participants who each entered a total of 640 phrases of text
chosen from a standard corpus, over a period of about five
hours. The results show that text entry speed including
correction for errors using TiltText was 23% faster than
MultiTap by the end of the experiment, despite a higher
error rate for TiltText. TiltText is thus amongst the fastest
known language-independent techniques for entering text
into mobile phones.
Keywords: Text entry, mobile phones, tilt input

INTRODUCTION
Most mobile phones are equipped with a simple 12-button
keypad, which is an inherently poor tool for generating
phrases for a 26-letter alphabet. Using traditional text-entry
techniques, such as MultiTap, an average text message of 7
words requires roughly 70 key presses. Given estimates
(www.gsmworld.com) that in 2003 nearly 500 billion text
messages will be sent worldwide from mobile phones,
entry using current techniques will require approximately
35 trillion key presses worldwide this year. While much
research effort has gone into devising a variety of more
efficient text input techniques [9, 15] which have all shown
various improvements to the status-quo, none has yet
emerged as a new standard. As such, there remains
considerable opportunity for researchers to influence this
area by developing new techniques.

TiltText
We have developed a new text input technique, called
TiltText, which uses the standard 12-button mobile phone
keypad augmented with a low-cost tilt sensor. Similar to
TiltType described by Partridge et al. [10], TiltText uses a
combination of a button press and tilting of the device to
determine the desired letter. Our technique differs from
TiltType in the keypad used and in the sensing algorithms,
which we discuss in detail later in this paper. The standard
phone keypad mapping assigns three or four alphabetic
characters, and one number, to each key. For example, the
2 key also has the characters a, b, and c assigned to it.
TiltText assigns an additional mapping by specifying a tilt
direction for each of the characters on a key, removing any
ambiguity from the button press. The user presses a key
while simultaneously tilting the phone in one of four
directions (left, forward, right, back) to input the desired
character (Figure 1). For example, pressing the 2 key and
tilting to the left inputs the character a, while tilting to the
right inputs the character c. By requiring only a single
keypress and slight tilt to input alphanumeric characters,
the overall speed of text entry can be increased. Further,
unlike some techniques [15] that improve on the status quo,
TiltText is not language dependent, and thus can be used by
experts without visually attending to the display screen.
In this paper we first review related work, then discuss
implementation issues, then present an experiment
comparing the performance of TiltText to the most common
existing technique, MultiTap. We conclude by discussing
the characteristics of TiltText compared to other techniques,
including implications for evaluation metrics.

Figure 1. TiltText. The center picture shows the
untilted phone where pressing a key enters its
numeric value. Left picture: left tilt enters first
character on key. Top picture: forward tilt enters
second character. Right picture: right tilt enters third
character. Bottom picture: tilting towards the user
enters fourth character if one exists for that key.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
UIST ’03 Vancouver, BC, Canada
© 2003 ACM 1-58113-636-6/03/0010 $5.00

http://www.gsmworld.com/

RELATED WORK
There are two areas of research that are relevant to our
work: text input techniques for mobile phones, and the use
of tilt transducers in mobile devices.

Text Input Techniques for Mobile Phones
A small number of mobile phones today utilize QWERTY
style keypads that enable text entry with techniques similar
to typing on a regular keyboard, albeit at a much smaller
physical scale (e.g., Nokia 5510 www.nokia.com). More
recently, hybrid devices that combine phones with PDAs,
such as the Handspring Treo (www.handspring.com) and
PocketPC Phone (www.microsoft.com), utilize pen-based
text input techniques common to PDA’s such as Graffiti.
While these devices are making small inroads into the
mobile phone market, the vast majority of mobile phones
are equipped with the standard keypad (Figure 2) which has
12 keys: 0-9, *, and #.

Figure 2. Standard 12-key mobile phone keypad

Entering text from a 26 character alphabet using this
keypad forces a mapping of more than one character per
button of the keypad. A typical mapping has keys 2-9
representing either three or four characters, with space and
punctuation mapped to the other buttons. All text input
techniques that use this standard keypad have to somehow
resolve the ambiguity that arises from this multiplexed
mapping. There are three main techniques for overcoming
this ambiguity: MultiTap, two-key, and linguistic
disambiguation. We now review these techniques briefly,
and refer the reader to Soukoreff and MacKenzie [15] for a
more comprehensive review that is beyond the scope of the
present paper.

MultiTap
MultiTap works by requiring the user to make multiple
presses of each key to indicate which letter on that key is
desired. For example, the letters pqrs traditionally appear
on the 7 key. Pressing that key once yields p, twice q, etc.
A problem arises when the user attempts to enter two
consecutive letters on the same button. For example,
tapping the 2 key three times could result in either c or ab.
To overcome this, MultiTap employs a time-out on the
button presses, typically 1-2 seconds, so that not pressing a
button for the length of the timeout indicates that you are
done entering that letter. Entering ab under this scheme has
the user press the 2 key once for a, wait for the timeout,
then press 2 twice more to enter b. To overcome the time
overhead this incurs, many implementations add a “timeout
kill” button that allows the user to skip the timeout. If we
assume that 0 is the timeout kill button, this makes the
sequence of button presses to enter ab: 2,0,2,2.

MultiTap eliminates any ambiguity, but can be quite slow,
with a keystrokes per character (KSPC) rate of
approximately 2.03 [8].

Two-key Disambiguation
The two-key technique requires the user to press two keys
in quick succession to enter a character. The first keypress
selects the appropriate group of characters, while the
second identifies the position of the desired character
within that group. For example, to enter the character e, the
user presses the 3 key to select the group def, followed by
the 2 key since e is in the second position within the group.
This technique, while quite simple, has failed to gain
popularity for Roman alphabets. It has an obvious KSPC
rate of 2.

Linguistic Disambiguation
There are a number of linguistic disambiguation schemes
that utilize knowledge of the language to aid the text entry
process. One example is T9 (www.tegic.com) that renders
all possible permutations of a sequence of button presses
and looks them up in a dictionary. For example, the key
sequence 5,3,8 could indicate any of 27 possible
renderings (3x3x3 letters on each of those keys). Most of
these renderings have no meaning, and so are rejected.
Looking each of them up in a dictionary tells the system
that only jet is an English word, and so it is the one
rendered. Ambiguity can, however, arise if there is more
than one valid rendering in the language, in which case the
most common is presented. For example, the sequence 6,6
could indicate either on or no. If the system renders the
wrong word, a “next” key allows the user to cycle through
the other valid permutations. An analysis of this technique
for entering text from an English corpus found a KSPC
close to 1 [8]. Newer linguistic disambiguation techniques
such as LetterWise [9] and WordWise (www.eatoni.com)
also perform similarly well, with subtle advantages over
earlier techniques. While these all have excellent KSPC
rates, the success of linguistic-based systems depends on
the assumption that users tend to enter “English like” words
when sending text messages. As Mackenzie et al. [9] note,
users often use abbreviations, and not complete English
when text messaging. Further, users of text messaging often
communicate in acronyms or combinations of letters and
numbers (e.g., b4 for before). Another problem with
these linguistic techniques is that users have to visually
monitor the screen in order to resolve potential ambiguities,
whereas the MultiTap and two-key techniques can be
operated “eyes-free” by skilled users.
As a result of these limitations of current keypad text input
techniques, the quest for a widely applicable, low KSPC,
text input technique continues.

Using Tilt Sensors in Mobile Devices
Several researchers have recently proposed interesting
interaction techniques that are enabled by incorporating a
low-cost tilt sensor within mobile devices [3-7, 10, 12, 13].
While some of this prior art (e.g., [3-7, 12]) do not concern

http://www.nokia.com/
http://www.handspring.com/
http://www.microsoft.com/
http://www.tegic.com/
http://www.eatoni.com/

text entry techniques per se, they do add to the set of
possible interactions that could take advantage of tilt
sensors embedded in mobile devices, thus providing further
justification for the incremental cost of the sensor.
Of particular relevance to our work are two techniques for
text entry that use tilt information. Both of these techniques
focus on very small devices lacking a large number of
buttons, and were not optimized or evaluated for speed of
entry. Unigesture [13] used tilt as an alternative to button
pressing, eliminating the need for buttons for text entry.
Rather than having the user make one of 8 ambiguous
button presses (as is the present case with mobile phones),
Unigesture has the user tilt the device in one of 7 directions
to specify the group, or “zone”, of the character that is
desired. The ambiguity of the tilt is then resolved by using
dictionary-based disambiguation.
TiltType [10] refines Unigesture by adding the combination
of button pressing and tilt for entering unambiguous text.
TiltType was designed to enter text into a small, watch-like
device with 4 buttons. Pressing a button triggered an on-
screen display of the characters that could be entered by
tilting the device in one of eight directions, the appropriate
tilt was then made, and the button released. TiltType has the
same root concept as our TiltText technique, in that tilt is
used to disambiguate button presses.
Our present work builds upon TiltType in several
significant ways. First, neither TiltType nor Unigesture
were designed for use with mobile phone keypads, as we
are proposing with our TiltText technique. We believe that
using the standard mobile phone keypad will significantly
increase the viability of tilting text input as a real, usable,
technique. Second, while TiltType uses eight tilt directions,
we only use a maximum of four tilt directions, reducing the
accuracy demands on the user when tilting. Third, the
algorithm used for detecting tilt in the TiltType technique is
one which we dub key tilt, which, as is discussed later in
our paper, is not the most optimal tilt detection mechanism
for speedy text entry. We develop two alternative tilt
detection mechanisms that improve upon key tilt. Finally,
we present the results of a controlled experiment that
provides the first set of usability data with regards to using
tilt for text input.

DESIGN ISSUES
TiltText uses the orientation of the phone along two axes to
disambiguate the meaning of button presses. Tilting the
phone to the left selects the first letter of the key, away
from the body the second, to the right the third, and, if
present, towards the body the fourth (see figure 1). Pressing
a key without tilting results in entering the numeric value of
the key. Space and backspace operations are carried out by
pressing unambiguous single-function buttons (as in
MultiTap).
Supporting both lowercase and uppercase characters would
require a further disambiguation step since a total of seven
characters per key would need to be mapped for keys 2-6

and 8, and nine characters each for the 7 and 9 keys
(Figure 2). Adding case sensitivity could be done by either
requiring the pressing of a “sticky” shift-key, or
considering the magnitude of the tilt as a disambiguator
where greater magnitude tilts result in upper case letters, as
Figure 3 illustrates. The latter technique, however, would
likely make eyes-free entry more difficult.

Figure 3. Uppercase text entry with TiltText. Tilting
beyond a threshold makes the character uppercase.

Techniques for Calculating Tilt
The tilt of the phone is taken as whichever direction has the
greatest tilt relative to an initial “origin” value. After
exploring various options during our development process,
we have found that there are three main ways to determine
the tilt value: key tilt, absolute tilt, and relative tilt.

Key Tilt
With this technique, first seen in the TiltType work, the
amount of tilt is calculated as the difference in the value of
the tilt sensors at key down and key up. This requires the
user to carry out three distinct movements once the button
has been located: push the button, tilt the phone, release the
button. We conducted a pilot experiment comparing a
TiltText implementation that used key tilt, and found that
user performance with this implementation was much
slower than the traditional MultiTap technique. For this
reason, key tilt was not used in our final experiment.

Absolute Tilt
This technique compares the tilt sensor’s value at any given
time to a “fixed” absolute origin. Only two distinct
movements are required to enter a character: tilt the phone,
then press the key. In contrast, key tilt requires that the key
be pressed first, phone tilted, then key released. However,
this approach is also not ideal, since in practice users do not
maintain a constant arm posture. In order for the tilt value
to be meaningful, the fixed origin will have to be reset
every time the user’s gross arm posture changes. Further,
when using TiltText to enter two characters requiring tilt in
opposite directions, more movement is required using this
absolute approach, since the first tilt must be undone, then
the new tilt applied. For example, entering the letters ac
using the 2 key requires an initial tilt of some angle ∆ to

the left to enter the a. Then, the user has to tilt the same
angle ∆ in the reverse direction to return to the origin,
before tilting another angle θ to the right to enter the letter
c. The total amount of movement is 2∆ + θ, instead of the
smaller ∆ + θ that one may expect. However, one
advantage of this method over key tilt is that if successive
characters with the same tilt direction are to be entered,
then the user can keep the phone tilted at that direction for
the successive keypresses.

Relative Tilt
This approach calculates the tilt relative to a floating origin
that is set when a tilt gesture begins. The beginning of a
gesture is determined by continuously watching for a
change in orientation or a change in the direction of a
tilting gesture. This approach solves both problems of the
absolute tilt method. Since all tilts are relative to the
beginning of the gesture, there is no absolute origin that
need be reset when changing arm position. Further,
opposite direction tilts do not require double tilting, since
the second tilt’s origin is the end of the first tilt’s gesture.
So, entering the letters ac requires a tilt of some angle ∆ to
the left to enter a, then another tilt of angle θ to the right to
enter the c, for a total movement of ∆ + θ. Note that, just
like with absolute tilt, when entering only letters, we can
enter successive characters with the same tilt direction
without re-tilting the phone, by looking at the last
significant tilt.

EVALUATION
Goals
We sought to compare the performance of TiltText to other
techniques for text entry into mobile phones. For this first
experiment, we chose as a comparison the most commonly
implemented technique, MultiTap, because it is the
common baseline in almost every other evaluation of text
entry techniques reported to date [9, 14, 15]. As such, while
the present study only directly compares TiltText to
MultiTap, we can indirectly make comparisons of TiltText’s
performance relative to other techniques via the results
reported in the literature.

Apparatus
Hardware
We used a Motorola i95cl phone. The phone was equipped
with an Analog Devices ADXL202EB-232 2-axis
accelerometer board to enable tilt sensing, connected to the
phone via a serial cable (with the addition of an external
power line).
An implementation of a relative tilt system would require
regular sampling from the tilt sensor. Unfortunately, our
hardware allowed only a reliable rate of ~10 Hz. Pilot
studies, using a relative tilt implementation of TiltText,
showed that participants’ text entry speed increased to a
point such that our mechanism for determining origins
(repeated sampling of tilt at 10Hz) proved insufficient for
determining tilt accurately. The resulting device-caused
errors in recognition made entering text at higher speeds

frustrating. From these pilot studies, we believe that rates
of 20-50Hz would be required for a robust relative tilt
implementation. As a result, despite the limitations
discussed earlier, we had to implement an absolute tilt
approach, allowing the user to reset the origin at any time
by holding the phone at the desired orientation and pressing
“0”. The additional movement required by this approach,
however, is acceptable for our evaluation purposes because
if we can demonstrate that TiltText performs well despite
this additional movement, then any more robust
implementation using a relative tilt approach can only do
better. In other words, our evaluation is biased against our
new technique.
Because the ADXL board can detect a tilt of only fractions
of a degree, only a very small tilt of the phone is necessary
to disambiguate a button press. The maximum of the tilt in
either axis was taken to be the intended tilt, with a 10%
bias towards forward/back. This bias is included based on
our pilot studies which revealed a tendency to pitch to the
dominant side when tilting forward with the wrist.

Software
The software to read tilts and render text, as well as
conduct the experiment, was written in Java 2 Micro-
Edition (source at www.dgp.toronto.edu/research/tilttext)
using classes from both the Mobile Devices Information
Profile (MIDP 1.0) and proprietary i95cl specific classes.
The experiment was conducted entirely on the mobile
phone rather than simulating a mobile phone keypad on
some other device. All software, including those
implementing the text entry techniques, and data
presentation and collection software used in the experiment
ran on the phone. No connection to an external computing
device beyond the tilt sensor was required. Of the major
techniques for text entry into mobile phones evaluated in
the literature over the last several years, this seems to be the
first to do so on an actual mobile phone keypad / display.
We believe that this helps to more closely represent real
use, and so enhances the external validity of our
experiment.
Our MultiTap implementation used the i95cl’s built-in
MultiTap engine, with a 2 second timeout and timeout kill.
We only considered lowercase text entry in this evaluation.
As such, the MultiTap engine was modified slightly to
remove characters from the key mapping that were not on
the face of the button, so that the options available were
only the lower case letters and numeral on the key. This
matches the traditional MultiTap implementation in past
experiments, such as LetterWise [9] .

Participants
Ten participants volunteered for the experiment. They were
recruited from within the university community. There
were 5 men and 5 women of whom 3 were left-handed and
7 right-handed. Participants were pre-screened so that no
one with any experience composing text using either
technique was included. Participants did not receive any
tangible compensation for their participation.

http://www.dgp.toronto.edu/research/tilttext

Procedure Design
Participants entered short phrases of text selected from
among those in MacKenzie’s English phrase dictionary
(www.yorku.ca/mack/phrases2.txt). These phrases were
chosen because they have been used in previous text entry
studies involving MultiTap [9], allowing us to leverage this
previous work. This corpus’ high correlation of frequencies
of letters to English is a benefit, although it does not take
into account abbreviations commonly used in texting.

A within-subjects design was used. Participants were
randomly assigned to two groups of 5 participants each.
The first group performed the experiment with the
MultiTap technique first, followed by TiltText, while the
second group did it in the reverse order.
For each technique, participants were asked to complete
two sessions of 8 blocks of trials each. Each block required
the entry of 2 identical practice phrases, followed by 20
different phrases randomly selected from the corpus. The
selection of phrases for each of the 16 blocks were done
before the experiment, and presented in the same order to
each participant. Phrases were selected such that all blocks
had similar average phrase length. The same set of phrases
and blocks were used for both techniques. In other words,
all participants were required to enter identical phrases in
the same order, the only difference being which technique
they used first. Participants were asked to rest for at least 5
minutes between each block, and each session of 8 blocks
each was conducted on separate days. At least 24 hours
passed between sessions for the different techniques to
limit interference. In summary, the design was as follows:

The desired text phrases were shown to participants on the
screen on the phone. For consistency with past MultiTap
experiments, participants were instructed to enter text only
with the thumb of the hand with which they held the phone,
and not to change hands during the experiment.
Timing began when participants entered the first character
of the phrase, and ended when the phrase was entered
completely and correctly. If an erroneous character was
entered, the phone alerted the user by vibrating, and the
user was required to correct their error. With this
procedure, the end result is error-free in the sense that the
correct phrase is captured. Also, the phrase completion time
incorporates the time taken to correct for errors.

10 participants x Before beginning each treatment, participants were told to
read and understand the displayed phrase before entering it,
and were given instructions for that treatment as follows:

2 techniques (MultiTap and TiltText) x
2 sessions per technique x
8 blocks per session x

MultiTap instructions: to enter a character using the
MultiTap technique, first find the key that is labeled with
that character. Press that key repeatedly until the desired
character is reached. Press once for the first character,
twice for the second, three times for the third, and, if
present, four times for the fourth. Once you have found the
correct letter, and are ready for the next one, you simply
repeat the process. If the letter you wish to enter next is on
the same key, you must first either press the “right” arrow
on the phone or wait two seconds for the cursor to advance.

20 phrases per block (excluding practice phrases)
= 6400 phrases entered in total.

Results
Data Summary
The data collected from 10 participants took an average of
10.3 minutes per block. A total of 145360 correct
characters of input were entered for the 6400 phrases.

Physical Comfort
Some participants reported that their thumb became sore
while using both techniques. When this was reported, the
participants were encouraged to rest until they felt
comfortable to proceed. No participant reported pain or
discomfort in their wrist or arms.

TiltText instructions: The technique works by tilting the
phone in the direction of the letter you wish to enter, then
pressing the key on which it is inscribed. For the first letter,
tilt left. For the second letter, tilt forward. For the third
letter, tilt to the right. For the fourth letter, tilt towards you.
The direction of tilt is measured relative to the “centre” or
“origin” position of the phone. You can reset the origin at
any time by pressing the 0 key.

Text Entry Speed
We use the standard wpm (words-per-minute) measure to
describe text entry speed. This is traditionally calculated as
characters per second * 60 / 5. Because timing in our
experiment started only after entering the first character,
that character should not be included in calculations of
entry speed. Thus, for the purposes of these computations,
the length of a phrase is n-1 characters. Also, to signify
completion, users had to enter an extra space at the end of
each phrase. However, our timing considers the entry of the
last real character of the phrase to be the end time.

The experimenter then demonstrated the relevant
technique. To ensure that participants understood how the
technique worked, they were asked to enter a single phrase
that would require tilting in all four directions for TiltText,
or two successive letters on the same key for MultiTap.
Additional instructions were given for both techniques to
describe space and delete keys, as well as to enter an extra
space at the end of the phrase to indicate completion. The
process for error correction was also explained to them.
Participants were also directed to rest as they liked between
phrases, but to continue as quickly as possible once they
had started entering a phrase.

The average text entry speed for all blocks were 11.76 wpm
and 10.11 wpm for TiltText and MultiTap respectively.
Overall, TiltText was 16.3% faster than MultiTap.
The means for the first block of trials were 7.42 wpm and
7.53 wpm, for TiltText and MultiTap respectively.

http://www.yorku.ca/mack/phrases2.txt

Performance in both techniques increased steadily, with the
means for the last (16th) block of trials of 13.57 wpm for
TiltText and 11.04 wpm for MultiTap. While subjects
performed marginally better with MultiTap initially, they
improved considerably faster with TiltText, with the spread
between the techniques reaching 22.9% in favour of
TiltText by the end of the experiment.

y = 7.6837x0.2134

R2 = 0.9263

y = 8.0297x0.1184

R2 = 0.8963

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Block Number

Te
xt

 E
nt

ry
 S

pe
ed

 (W
P

M
)

TiltText
MultiTap
Power (TiltText)
Power (MultiTap)

Analysis of variance indicated significant main effects for
technique (F1,8 = 615.8, p < .0001), and block (F15,120 =
145.2, p < .0001). There was also a significant technique x
block interaction (F15,120 = 20.5, p < .0001), indicating that
participants improved at different rates for the different
techniques. Figure 4 illustrates these effects.
The use of a within-subjects design in our experiment
raises the possibility of transfer effects. We attempted to
balance these transfer effects by assigning subjects to two
different groups, one group using TiltText first followed by
MultiTap, and the other group doing it in the reverse order.
However, as Poulton [11] points out, for this
counterbalancing to work, any skill transfer that occurs
must be symmetric. Analysis of variance showed a
significant order x technique interaction (F15,120 = 481.5, p
< .0001), indicating that our participants exhibited
asymmetric transfer effects. This essentially means that
participants’ experience with the first technique they used
affected their performance with the second technique by
different amounts depending on whether the first technique
was TiltText or MultiTap. As such, we did additional
analyses by looking only at the data for the first technique
participants performed (i.e., half the experimental data).
This in effect results in a between-subjects design. Analysis
of this data indicated effects similar to that of the full
within-subjects data set: significant main effects for
technique (F1,8 = 120.9, p < .0001), block (F15,120 = 80.6, p
< .0001), and a significant technique x block interaction
(F15,120 = 14.5, p < .0001). Figure 5 illustrates these effects.

Figure 4. Entry speed (wpm) by technique and block
for entire experiment. Best-fit power law of learning
curve shows projected progress beyond the
measured data in the first 16 blocks.

y = 6.5786x0.2682

R2 = 0.9759

y = 8.0351x0.1195

R2 = 0.9032

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Block Number

Te
xt

 E
nt

ry
 S

pe
ed

 (W
P

M
)

TiltText
MultiTap

Figure 5. Entry speed (wpm) by technique and block,
for the first half of the experiment, before participants
switched techniques. Best-fit power law of learning
curve shows projected progress beyond the
measured data in the first 16 blocks.

From our analysis and Figure 5, we see that without prior
experience with either technique, TiltText started out
performing worse than MultiTap, only crossing over at
block 4. This is likely because TiltText required participants
to master two distinctly different motor skills: pressing the
key, and tilting the phone. Whereas MultiTap required only
a single type of motor action: multiple presses of the key.

y = 8.8598x0.1638

R2 = 0.7648

y = 8.0239x0.1172

R2 = 0.8746

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Block Number

Te
xt

 E
nt

ry
 S

pe
ed

 (W
P

M
)

TiltText
MultiTap
Power (TiltText)
Power (MultiTap)

Figure 6 shows data after participants switched techniques
(i.e., the second half of the experiment). We see here that
TiltText starts off faster than MultiTap, indicating that
participants’ were able to take advantage of and transfer
their previous experience with MultiTap in the first half of
the experiment. This is a positive indication since it means
that real users with lots of experience with MultiTap can
transfer at least some of that skill if they switch to TiltText.
Note, however, that there is quite a bit more variability in
the performance for TiltText, as indicated by the poorer fit
of the power curve as compared to Figures 4 and 5. This
indicates that participants experienced some level of
interference due to previous experience with MultiTap.

Figure 6. Entry speed (wpm) by technique and block,
for the second half of the experiment, after
participants switched techniques. Best-fit power law
of learning curve shows projected progress beyond
the measured data in the first 16 blocks.

Error Rates
Given that our experimental procedure required participants
to make corrections as they proceeded, with an end result
of a completely correctly entered phrase, the entry speed
results discussed previously incorporate the cost of error
correction. However, it is still useful to look at a more
explicit error rate. We calculate percentage error rate as the
number of characters entered that did not match the
expected character, divided by the length of the phrase. In
this case, we used the actual length of the phrase, and not
(n-1) as in the wpm rate.
Overall, error rates were much higher for TiltText (11%)
than for MultiTap (3%). This effect was statistically
significant (F1,8 = 1378.8, p < .0001). There was also a
significant effect for blocks (F15,120 = 21.1, p < .0001). A
significant technique x block interaction (F15,120 = 23.3, p <
.0001) and Figure 7 indicate that while the error rates for
MultiTap remain quite constant throughout the experiment,
the error rates for TiltText drop rapidly over the first 8
blocks, and begin to asymptote from block 9 onwards.
As with the entry time analysis, a significant order x
technique interaction (F15,120 = 168.9, p < .0001) indicates
that our participants exhibited asymmetric transfer effects.
An analysis of the first half of the data (i.e., before
participants switched techniques) indicates main effects
similar to that of the entire dataset: technique (F1,8 = 632.4,
p < .0001), blocks (F15,120 = 7.3, p < .0001), and technique x
block interaction (F15,120 = 10.4, p < .0001). Figure 8
illustrates. Interestingly, the mean TiltText error rate (8.6%)
was lower than for the entire data set, indicating that the
lack of interference from MultiTap was beneficial.
Figure 9 illustrates the data from trials in the second half of
the experiment (i.e., after participants switched techniques).
Comparing this to Figure 8, we see that the mean TiltText
error rate of 13.5% is much higher than the mean 8.6% rate
in the first half of the experiment. Further, the first 8 blocks
of trials did not exhibit a constant trend for TiltText.
Clearly, participants’ previous experience with the
MultiTap technique was having a detrimental effect on their
ability to use TiltText right after the switch in technique
occurs. This is consistent with the effect observed in the
text entry speed data illustrated earlier in Figure 6.
However, this effect wears off roughly after block 8. This is
interesting, since this is the last block completed before
participants broke for the day, resuming 24 hours later with
block 9. The interference effect drops after this break.
To examine the cause of the higher TiltText error rate, it is
useful to group errors into two categories: tilt errors and
button errors. Tilt errors are those where the participant
entered a letter that appears on the same button as the
correct letter, indicating that an erroneous tilt was made.
Button errors are those where the participant entered a
letter that appeared on a different button.
We had anticipated that button errors would have similar
rates for TiltText and MultiTap. However, the results
showed a significant difference (F1,8= 320.67, p < .0001),

where 3% of characters entered in the MultiTap trials were
button errors, but only 1.5% of characters entered in
TiltText showed this type of error.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Block

Er
ro

r r
at

e
(%

)

TiltText
MultiTap

Figure 7. Error rates (%) by technique and block for
entire experiment

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Block

Er
ro

r r
at

e
(%

)
TiltText
MultiTap

Figure 8. Error rates (%) by technique and block for
the first half of the experiment, before participants
switched techniques

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Block

Er
ro

r r
at

e(
%

)

TiltText
MultiTap

Figure 9. Error rates (%) by technique and block for
the second half of the experiment, after participants
switched techniques

Reconciling this low button error rate with the high overall
error rate for TiltText, it is clear that most of the errors
committed while using TiltText were tilt errors. Breaking
down the tilt error rate by letter shows that participants
committed significantly more errors for some letters than
others (F25,200,= 2.47, p < .001), as Figure 10 illustrates.

DISCUSSION

0

5

10

15

20

25

30

35

40

a b c d e f g h i j k l m n o p q r s t u v w x y z
Correct Letter

E
rro

r r
at

e
%

As discussed in [9], learning of text entry techniques can be
roughly divided into three stages: an initial discovery stage
where users’ performance is significantly affected by prior
experience, a second stage where users are developing their
motor skills with the new techniques, and a third stage
where expert users perform all actions reflexively.
In our experiment, it is quite clear that learning is still
continuing, even at the end of the experiment (Figures 4-9),
and thus the third stage is not reached. Most interestingly,
we found that when participants did the experiment with
MultiTap first, followed by TiltText, their experience with
MultiTap very significantly affected their ability to use
TiltText as evidenced by the higher errors rates. However,
our analysis indicated that this prior experience did not
affect the participants’ entry speed when they switched to
TiltText. Indeed, even though they made more errors, they
were able to compensate for them by higher speeds of
action. It appears from our analysis that participants move
to the second stage at around block 9, or about 180 phrases
(~4000 keystrokes).

Figure 10. Tilt error rates (%) for each letter for the
entire experiment.

Analysis of variance showed a significant main effect for
tilt direction on tilt error rate (F3,24= 37.6, p < .0001).
Pairwise means comparisons showed a significantly higher
tilt error rate for those letters requiring forward or
backward tilting than those requiring right or left tilting. In
particular, backwards tilt results in significantly higher
errors than all the other tilt directions. Figure 11 illustrates
this trend.

One of the reasons why we chose to compare TiltText to
MultiTap was because MultiTap is used as a baseline
technique in most studies of text entry techniques.
Comparing our results to that of [9], we see approximately
that the number of phrases entered per technique by block
16 in our experiment is roughly equivalent to the 6th or 7th
session in MacKenzie et al.’s experiment. At this point,
their data for MultiTap is roughly in the 11 wpm range,
which is very close to ours. At the same point in time, entry
rates for LetterWise are about 14 wpm, which is in the same
range as our experiment’s rate for TiltText of 13.57 wpm.
While the different experimental designs, number of
phrases per block, and other factors necessarily imply that
these cross-experiment comparisons are not precise, this
rough analysis does give us a ballpark sense of how
TiltText compares to techniques other than MultiTap.

0

5

10

15

20

25

30

35

40

Left Forward Right Back

Correct Direction

E
rro

r r
at

e
%

Figure 11. Error rates (%) by direction of tilt for
correct letter for the entire experiment. The increased error rate for forward/backward movements

is possibly explained by limitations of the absolute tilt
system used in our experiment. Participants tended to set
the origin, then have the phone slowly “creep” forward as
they made far more forward than back tilting gestures. As a
result, the phone was always tilted somewhat forward. This
meant that an exaggerated back gesture was required to
enter “s” or “z”, which users often failed to accomplish on
the first attempt. The tendency to hold the phone in a
forward position also explains why most tilt errors resulted
in entering the forward tilt letter on the same button. Due to
hardware constraints, we used an absolute tilt
implementation of TiltText in our experiment, instead of the
more efficient and accurate relative tilt method. We posit
that error rates could be improved if we use relative tilt,
since users would not have to tilt a specific amount past the
origin between characters as required in the absolute tilt
method, and they also would not have to exaggerate the
back tilts to overcome the forward posture. These extra

As was discussed previously, the overall TiltText error rate
decreases with practice. As such, it is possible that the high
tilt error rate for backward tilt (letters “s” and “z”) is due to
the limited amount of practice users had with entering the
letter “z”, which was only entered 3 times in the
experiment by each participant. However, the other letter
that required backward tilting, “s”, also showed a similarly
high tilt error rate, despite being entered very frequently
during the experiment. In other words, additional practice
did not seem to decrease the backward tilt error rate
significantly, indicating that users had an inherent difficulty
with backward tilting actions.
When participants committed a tilt error for a letter
requiring a left or right gesture, 82% of the time they ended
up entering the forward-tilt letter on that button. This
indicates that the 10% bias we introduced in our algorithm
seems to overcompensate. Reducing this compensation
factor may lower tilt error rate for left/right tilts.

requirements are a likely cause of errors, particularly if
users attempt to perform the technique quickly without
watching the screen. Relative tilt would be more amenable
to fast, “eyes-free”, use.
Previous work [8, 9, 15] present very detailed analyses with
regards to the various components of text entry time using
various existing techniques. We refer readers to those
papers for the details, however, it is worthwhile discussing
how TiltText differs. First, all other techniques have only a
single motor component: that of selecting the correct key
and pressing it a certain number of times. In contrast,
TiltText has two motor components: selecting and pressing
the correct key as with other techniques, and tilting the
phone in the appropriate direction. One could probably
argue that there is also an additional cognitive component
required in determining which direction to tilt, at least
during the initial discovery and skill development stages of
learning. This raises an interesting question with regards to
the applicability of the standard metric for evaluating text
entry techniques put forth by [8]: KeyStrokes Per Character
(KSPC). TiltText by definition has a KSPC of 1, not
including error correction. However, KSPC does not fully
capture the second, tilting, aspect of TiltText. While the
tilting movements required by TiltText are small,
particularly if a relative tilt implementation is used, Fitts’
law tells us that there is nevertheless a cost associated with
this movement. It is difficult to determine exactly the
parameters of the tilting movement in order to calculate a
precise estimate of its cost, however, we can say that the tilt
angle required ranges from a little more than 0 degrees to
an approximate maximum of 90 degrees. From our
observations of participants in our experiment, it appears
that the average tilt angle is probably around 30 degrees.
With a more definitive determination of this parameter or at
least a smaller bound on its range, it would be possible to
develop a model that more accurately describes TiltText
than KSPC. Since there is no fixed target that the tilt must
accomplish, a simple application of Fitts’ law is not
appropriate. However, the work of Accot and Zhai on the
“steering law” [1] and “crossing based interfaces” [2]
provide a foundation on which an analysis could be
performed. We leave the development of such a model to
future work, once a more detailed determination of the
tilting parameter is performed.

CONCLUSIONS and FUTURE WORK
We have described TiltText: a new technique for text input
to mobile phones that combines a low cost tilt sensor with
the standard numeric keypad. An initial experiment
indicates that TiltText significantly outperforms the
commonly used MultiTap technique. Comparisons to
previous work indicate that TiltText approaches the
performance of linguistically-based techniques, without the
limitation of requiring words to be from fixed language set
or requiring the constant monitoring of the visual display.
Given the huge installed base of the standard numeric
keypad, and other potential uses of tilt sensors in mobile

devices [5-7], we believe that TiltText could potentially
have a good chance of adoption.
We plan in future to develop a working relative-tilt
implementation of TiltText in an effort to demonstrate even
better speed results. We believe a relative tilt system will
also reduce errors, but other work on reducing the error rate
via possibly better sensing hardware and algorithms is
clearly needed.
We will also examine whether different tilting directions
are more natural for the wrist, and perhaps replace the
simplistic “left/right, back/forward” technique examined
here. We will also test a TiltText implementation that
groups letters to minimize the need to re-tilt between
character entries.

ACKNOWLEDGEMENTS
We thank Microsoft Research for supporting this work,
Michael McGuffin for help with the statistics, Richard
Watson for background help with software development,
all who participated in our experiment, and members of the
Dynamic Graphics Project lab (www.dgp.toronto.edu) at
the University of Toronto for valuable discussions.

REFERENCES
1. Accot, J., & Zhai, S. (1997). Beyond Fitts' Law:

Models for trajectory-based HCI tasks. ACM CHI
Conference on Human Factors in Computing Systems.
p. 295-302.

2. Accot, J., & Zhai, S. (2002). More than dotting the i's -
foundations for crossing-based interfaces. ACM CHI
Conference on Human Factors in Computing Systems.
p. 73-80.

3. Bartlett, J. (2000). Rock 'n' Scroll is here to stay. IEEE
Computer Graphics and Applications, May/June 2000.
p. 40-45.

4. Fishkin, K., Gujar, A., Harrison, B., Moran, T., &
Want, R. (2000). Embodied user interfaces for really
direct manipulation. Communications of the ACM,
43(9). p. 75-80.

5. Harrison, B., Fishkin, K., Gujar, A., Mochon, C., &
Want, R. (1998). Squeeze me, hold me, tilt me! An
exploration of manipulative user interfaces. ACM CHI
Conference on Human Factors in Computing Systems.
p. 17-24.

6. Hinckley, K., & Horvitz, E. (2001). Toward more
sensitive mobile phones. ACM UIST Symposium on
User Interface Sofware and Technology. p. 191-192.

7. Hinckley, K., Pierce, J., Sinclair, M., & Horvitz, E.
(2000). Sensing techniques for mobile interaction.
ACM UIST Symposium on User Interface Software and
Technology. p. 91-100.

8. MacKenzie, I.S. (2002). KSPC (keystrokes per
character) as a characteristic of text entry techniques.

http://www.dgp.toronto.edu/

Fourth International Symposium on Human-Computer
Interaction with Mobile Devices. p. 195-210.

12. Rekimoto, J. (1996). Tilting operations for small
screen interfaces. ACM UIST Symposium on User
Interface Software and Technology. p. 167-168. 9. MacKenzie, I.S., Kober, H., Smith, D., Jones, T., &

Skepner, E. (2001). LetterWise: Prefix-based
disambiguation for mobile text input. ACM UIST
Symposium on User Interface Software and
Technology. p. 111-120.

13. Sazawal, V., Want, R., & Borriello, G. (2002). The
Unigesture Approach. One-Handed Text Entry for
Small Devices. Mobile HCI. p. 256-270.

14. Silfverberg, M., I. Scott MacKenzie, & Korhonen, P.
(2000). Predicting text entry speeds on mobile phones.
ACM CHI Conference on Human Factors in
Computing Systems. p. 9-16.

10. Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G.,
& Want, R. (2002). TiltType: accelerometer-supported
text entry for very small devices. ACM UIST
Symposium on User Interface Software and
Technology. p. 201-204. 15. Soukoreff, W., & MacKenzie, I.S. (2002). Text entry

for mobile computing: Models and methods, theory
and practice. Human-Computer Interaction, 17. p. 147-
198.

11. Poulton, E.C., Bias in quantifying judgements. 1989,
Hillsdale, NJ: Lawrence Erlbaum.

	ABSTRACT
	INTRODUCTION
	TiltText
	RELATED WORK
	Text Input Techniques for Mobile Phones
	MultiTap
	Two-key Disambiguation
	Linguistic Disambiguation

	Using Tilt Sensors in Mobile Devices

	DESIGN ISSUES
	Techniques for Calculating Tilt
	Key Tilt
	Absolute Tilt
	Relative Tilt

	EVALUATION
	Goals
	Apparatus
	Hardware
	Software

	Participants
	Procedure
	Design
	Results
	Data Summary
	Physical Comfort
	Text Entry Speed
	Error Rates

	DISCUSSION
	CONCLUSIONS and FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

	Numbx:
	C:
	L:
	R:

	P1:
	Numb:
	Numbx:
	C: 81
	L:
	R:

	P2:
	Numb:
	Numbx:
	C: 82
	L:
	R:

	P3:
	Numb:
	Numbx:
	C: 83
	L:
	R:

	P4:
	Numb:
	Numbx:
	C: 84
	L:
	R:

	P5:
	Numb:
	Numbx:
	C: 85
	L:
	R:

	P6:
	Numb:
	Numbx:
	C: 86
	L:
	R:

	P7:
	Numb:
	Numbx:
	C: 87
	L:
	R:

	P8:
	Numb:
	Numbx:
	C: 88
	L:
	R:

	P9:
	Numb:
	Numbx:
	C: 89
	L:
	R:

	P10:
	Numb:
	Numbx:
	C: 90
	L:
	R:

