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One of the major causes of lag in interactive animation systems is the

practice of double buffering. As explained in the Introduction, a lag is

introduced which is one and a half times the frame interval under reasonable

assumptions.

It seems likely that low frame rates will disrupt task performance; the

question of theoretical interest which the present study addresses is whether

the performance decrement can be attributed to the lag caused by double

buffering or whether there is some additional performance decrement which

can be attributed simply to the low frame rate.

6.1 Method for Experiment 3

Stimuli. The background stimulus was identical to that of Experiments 1

and 2. The target and cursor were identical to that of Experiment 2.

Procedure. The base condition with minimal hand lag was combined with

17 other conditions in which hand lag was introduced in three different ways.

Head lag was 97 msec throughout.

In this experiment lag was introduced in three different ways:

(1) High frame rate: In this condition the frame rate was maintained at 60
Hz, and lag was introduced by queuing the hand-tracking device input so

that they took effect an integer number of frames later.

(2) Early sampling: In this condition lag was manipulated by varying the
frame rate. The device was always sampled immediately after the buffers

were swapped.

(3) Late sampling: In this condition lag was manipulated by varying the

frame rate. The device was always sampled l/60th of a second prior to a

buffer swap. The graphical image of the cursor and the target was

constructed in the ensuing l/60th sec interval.

Note: Between Experiments 2 and 3 we removed a source of delay in the

device driver, resulting in a shorter lag in the best case.

Base Condition: 70 msec. (frame interval = 16.7 msec)

High frame rate: 5 conditions
frame rate = 60 Hz
frame interval = 16.7 msec
hand lag (msec): 137 187 337 537 787

Early sampling (normal double buffering): 5 conditions
frame rate (Hz): 15 10 5 3 2
frame interval (msec): 67 100 200 333 500
lag (msec): 145 195 345 545 795

Late sampling (double buffering with late sampling): 7 conditions
frame rate (Hz): 10 3 2 1 0.666
frame interval (msec): :! 100 20: 333 500 1000 1500
lag (msec): 95 112 162 228 312 562 812
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Each condition was evaluated for both the X and the Z directions. This

resulted in 18*2 = 36 different lag-direction combinations. There were only

two distances (4 and 8 cm) and one size (1 cm) resulting in two distance-size

combinations and a total of 36*2 = 72 conditions. The experiment was con-

ducted in a similar manner to Experiment 1 with ten trials per experimental

condition resulting in 720 trials per subject. Practice sessions were given as

in Experiments 1 and 2.

The target acquisition task was performed in the X and Z directions. As in

Experiments 1 and 2, at the start of a trial in the X direction, the cursor

appeared 8 cm to the left of the center of the screen and in the plane of the

screen while the target appeared to the right of the cursor by the appropriate

distance for that trial. In the Z direction the cursor appeared in the center

and in front of the screen, and the target appeared behind the cursor (i.e.,

going into the screen) by the appropriate distance.

Target selection and timing was performed in an identical manner to

Experiments 1 and 2.

Subjects. Twelve computer-literate subjects from the authors’ university

served as paid volunteers. Eight of the subjects had prior experience with the

apparatus used in the experiment.

6.2 Results for Experiment 3

Figure 9 shows averaged target acquisition times with both early and late

sampling of the hand-tracking device. This shows clearly an overall advan-

tage for late sampling as should be expected. Overall, the data showed that

performance in the Z direction was 10% slower than that in the X direction

F(l, 11) = 10.7.

The following regression values were obtained for the various conditions

applying the model given in Eq. (4):

High frame rate data

In the X direction:

Mean Time = 0.78 + 1.66(0.189 + lag)lll r2 = 0.90

In the Z direction:

Mean Time = 1.25 + 1.80(0.120 + lag)l~ r2 = 0.97

EarJy sampling data

In the X direction:

Mean Time = 0.98 + 1.80(0.130 + lag)lD r2 = 0.99

In the Z direction:

Mean Time = 0.630 + 2.01(0.211 + lag)lll r2 = 0.98
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Fig. 9. Data from Experiment 3. The mean response times are plotted against frame rate for

both early and late device sampling conditions.

Late sampling data

In the X direction:

Mean Time = 0.480 + 2.29(0.204 + lag)ID r2 = 0.97

In the Z direction:

Mean Time = 0.241 + 2.32(0.292 + lag)lD r2 = 0.96

All data combined

Mean Time = 0.739 + 1.95(0.209 + lag)lll r2 = 0.89

The plots shown in Figure 10 illustrate the mean response times plotted

against index of difilculty for three methods of introducing lag (X and Z data

combined). The overall index of performance for the above data is

1/(1.95” 0.209) = 2.4 bits per second which is the same as that found for

Experiment 2 and again considerably lower than that found for the first

experiment.

The real test of the model from Eq. (4) is how well a single regression

equation accounts for the data from all three sets of conditions. As can be

seen above when we combined three sets of conditions the overall value for r 2

dropped to 0.89. This is still a respectable value, but we decided to reevaluate

one of our assumptions to see if we could do better. This is the assumption

(Eq. (9)) that an image is perceived at the middle of the frame of interval. In
the Introduction, we also alluded to the possibility that lag could also be

effectively introduced because of low device sampling rates. Consider the case
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Fig. 10. (a) The averaged results from Experiment 3 in the hand lag conditions. In these

conditions lag was introduced by queuing device values. (b) In these conditions lag was intro-

duced by reducing the frame rate and sampling the device immediately after a buffer swap. (c)In

these conditions lag was introduced by reducing the frame rate and sampling the device l/60th

of a second before a buffer swap.
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Fig. 10. Continued.

of a very low sampling rate and a long frame interval. A subject sees the

frame change and a new relative position of the cursor and the target. Based

on this observation she makes a movement toward the target. However

the movement is only sampled at the beginning of the next frame. Thus the

feedback loop can, in effect, have an additional lag to take into account the

lag between the time the movement is made and the time at which it is

sampled. In our experiment this additional lag value cannot be separated

from the perception-occurring-in-the-middle-of-the-scene lag. But the com-

bined lags might easily be greater than the 0.5 times the frame interval that

we assumed.

To determine if some value other than 0.5 is more appropriate we ran a

regression of all the data combined with different values for this lag compo-

nent from 0.1 to 1.3 in steps of 0.05. The results from this exercise are plotted

in Figure 11, and they show that the r 2 value peaks at 0.95 with a perception

plus sampling lag value of approximately 0.75 times the frame interval,

giving the following equation:

All data combined

Mean Time = 0.739 + 1.59(0.266 + lag)lD r 2 = 0.95

6.3 Discussion of Experiment 3

This last experiment contained more levels of lag and collected more data
than the other two. Therefore our best estimate of the detrimental effect of

lag is 1.59 multiplied by the index of difficulty. It is worth noting that there is
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Fig. 11. Regressions were computed for the entire set of data from Experiment 3 with adjust-

ments in the estimation of machine lag.

at least some system lag in all Fitts’ Law experiments. Those that have used

a 30 Hz update rate on the monitor should probably consider a machine lag of
at least 50 msec (1.5* I/30), even if the device lag is negligible. This factor

has undoubtedly affected previous estimates of the human component of the

processing loop.

We could have used our revised estimate of the machine lag to reanalyze

the results from the first two experiments, but we felt that this would be

taking post hoc analysis too far. Also, since the frame rates were always high

for the first two studies the change would have only resulted in a change of 4

msec (0.25/60) in the estimated machine lag.

7. CONCLUSION

We have discovered that system lag introduced between the movement of an

input device and visual feedback is a major factor in reducing the speed of

target selection.

To a first crude approximation the simple formula

Mean Time = Cl + 1.59(HumanProcessing + MachineLag) ID

accounts for most of our data. Experiment 3 suggests that the best method for
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estimating MachineLag is

MachineLag = DeviceLag + FrameInterval* 0.75

+ time between sampling of the device and the buffer swap if double

buffering is used in the main rendering loop.

The HumanProcessing constant in the above formulation represents the time

to initiate a visually guided movement correction in the control loop illus-

trated in Figure 1. The results from our study are consistent with previous

studies in suggesting that this value is between 0.1 and 0.25 seconds. Cl will

depend on the particular task since it represents a combination of initial

reaction time to start the task and the time taken to terminate the task, for

example, by means of a button press. Ill represents an index of task difllculty

as defined according to Fitts and modified by MacKenzie and Buxton [1992].

The other factors we investigated, namely, lag in the head-coupling system,

the effect of low frame rates (independent to the lag introduced), and the

direction of hand motion had relatively minor effects on performance. The

most significant of these, movement in the Z direction caused a consistent

9–10% performance decrement in all three experiments compared to move-

ment in the X direction. We also found evidence for higher error rates for

motion in the Z direction.

We can derive a number of practical recommendations from these results.

(1) Acquire input devices which have low lag, ideally less than 50 msec. Note
that even this small lag can cause an 89Z0 or more performance cost when

selecting small targets.

(2) If double buffering is used, keep the frame rate up. For example, at a
frame rate of 10 Hz an effective lag of 175 msec is introduced, and this

could add 1.2 sec to target selection times when selecting small targets.

(3) If possible, separate head lag from hand lag. In a head-coupled stereo
environment, the target to be selected and the 3D cursor may be rela-

tively small parts of the 3D graphics environment. Thus it should be

possible to sample the head-tracking device, draw most of the scene, and

at this point sample the hand-tracking device and draw the target and

the 3D cursor. This will introduce lower lags in the task-critical parts of

the scene, namely the target and the cursor.

(4) If possible create higher update rates for the target and the cursor (and
hence lower lags). Pausch et al. [1993] recently described a software

architecture that supports this kind of decoupling.

(5) Avoid designing systems that require the acquisition of small targets with
the unsupported hand.

With respect to the issue of whether 3D target acquisition is essentially

different than 2D (or lD) target acquisition, our data suggests that there is a

difference. The index of performance values were considerably lower for the
cube target than they were for the pizza box target which means that neither

of the simple extensions to Fitts’ Law given by MacKenzie and Buxton (and
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described in the Introduction) can be valid. However, this interpretation

relies on comparisons made across experiments; more substantial evidence

would come from a single experiment that combined the conditions. Never-

theless, the low bit rates and the very substantial acquisition times suggests

that reducing a three-dimensional task to a one-dimensional task is not

satisfactory for the purposes of modeling. It is also worth noting that while

the index of performance describes the information content for a one-dimen-

sional task satisfactorily, if we wish to talk about information processing in

three dimensions then the information content of task performance should

presumably relate to the ratios of the target volume to the workspace volume,

not to the linear distances (this is implicit in MacKenzie and Buxton [1992]).

With respect to the issue of lag in the head-position sampling affecting

performance, we found no effect of this variable. However, we feel that this

result only applies to the Fish Tank VR situation that we used for these

studies. In full-immersion VR with head-mounted monitors, changes in head

orientation, would, for example, result in dramatic changes in the scene that

do not occur in Fish Tank VR. These changes, coupled with lag, would be

likely to handicap performance. However, we are not equipped to evaluate

this possibility.

Last, one of the reviewers of this article commented that the use of

predictive filters on both hand and head sampling is widespread, and that

the effects of these filters on task performance is unknown. This is clearly an

important topic for further research as there is a distinct possibility that in

some circumstances (e.g., where the sampling rate is low) these filters may

cause a degradation in task performance.

APPENDIX

Measurement of Lag

In studies of this type, it is essential to measure accurately the actual system

lag. We used a modified version of the method developed by Liang et al.

[1991] to measure the lag for both the Polhemus Isotrak which we used for

hand tracking and the Lo@tech ultrasonic sensor which we used for head

tracking. We designed a stepper motor-driven pulley assembly (Figure 12)

which sat on top of the computer monitor. The sensor (the Polhemus and

Logitech in turn) was attached to the belt driven by the stepper motor and

was moved back and forth across the monitor screen at a constant speed. The

monitor displayed a graphic ruler and a cursor which reflected the position
reported by the sensor (we only used one dimension of the 3D position

information). A video camera recorded both the movement of the sensor

across the monitor and the graphic image displayed on the screen. The video

tape was later played back frame by frame, and we recorded the difference in

position between the physical sensor and the reported position as displayed

by the graphic cursor. Since we knew the amplitude and velocity of the

sensor, we could calculate the lag from this displacement. The use of a

computer-controlled stepper motor to move the sensor, instead of a pendulum
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Fig. 12. The apparatus used to measure lag in the system.

as used by Liang et al., ensured a constant predetermined linear velocity

which reduced the possibility of errors in our calculations.

In order to ensure that the lags measured using this technique reflected

accurately the lags in our three experiments, the program used for calibra-

tion closely resembled the software used in those experiments: the device

drivers were implemented using the same shared-memory client-server archi-

tecture; double buffering was used throughout, and a screen update rate of 60

Hz was maintained. The Polhemus was used in continuous binary mode with

default filter parameters, and a baud rate of 19.2 K. The Logitech was used in

demand-reporting mode also at 19.2 K baud. Not filtering was done with the

Logitech.

We found the device lags to be

—45 msec for the Polhemus Isotrak

—72 msec for the Logitech

exclusive of lags introduced by double buffering, etc. The lags that actually

occurred in the context of the experiments are given in the method sections to

the three experiments.

We are grateful to an anonymous reviewer who pointed out that because

the gain of the Polhemus device actually depends on the frequency of the

movement [Adelstein et al. 1992] our calibration was not complete. Unfortu-
nately, it is not at all clear how this information will affect human perfor-

mance characteristics for the reaching task, and this is therefore an uncon-

trolled factor in the experiments.
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