
Interactive Visualization of Genealogical Graphs

Michael J. McGuffin∗ Ravin Balakrishnan†

Department of Computer Science, University of Toronto, http://www.dgp.toronto.edu

ABSTRACT

The general problem of visualizing “family trees”, or genealogi-
cal graphs, in 2D, is considered. A graph theoretic analysis is
given, which identifies why genealogical graphs can be difficult to
draw. This motivates some novel graphical representations, includ-
ing one based on a dual-tree, a subgraph formed by the union of
two trees. Dual-trees can be drawn in various styles, including an
indented outline style, and allow users to browse general multitrees
in addition to genealogical graphs, by transitioning between dif-
ferent dual-tree views. A software prototype for such browsing is
described, that supports smoothly animated transitions, automatic
camera framing, rotation of subtrees, and a novel interaction tech-
nique for expanding or collapsing subtrees to any depth with a sin-
gle mouse drag.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—interaction techniques; G.2.2 [Discrete Mathemat-
ics]: graph theory

Keywords: genealogy, genealogies, family trees, kinship, multi-
trees, graph drawing, graph theory, graph browsing and navigation

1 INTRODUCTION

Genealogy, the study of “family trees”, plays a significant role in
history (e.g. of royal families, and of human migration), genetics,
evolutionary biology, and in some cases, religion. It also shows
no sign of waning as a hobby of the public, especially given new
software tools, databases, and means of communication and sharing
made available by the internet.

Unfortunately, the depiction of relationships in a large family is
challenging, as is generally the case with large graphs. The diagram
in Figure 1, for example, contains many long edges, and doesn’t
clearly show which nodes are all in the same generation. Although
there are a few hundred nodes in the diagram, these are organized
around just a few lineages and nuclear families — many lines of
ancestry and descent have been omitted. In addition, family trees
(or genealogical graphs, as we will call them) are not arbitrary or
unconstrained graphs — they have special structural properties that
can be exploited for the purposes of drawing and interactive visu-
alization. Interestingly, other than Furnas and Zacks [5], we have
been unable to find previous work in the mathematical, graph the-
ory, or graph drawing communities that analyzes the graph theoretic
properties of genealogical graphs.

Although genealogical graphs are often referred to as family
trees, this is misleading. Every individual has a tree of ancestors
(sometimes called a pedigree), as well as a tree of descendants (Fig-
ure 2, left), each of which can be drawn in familiar and easily under-
stood ways. A drawing of both of these trees is sometimes called an
hourglass chart in the genealogical community, and has been called

∗e-mail: mjmcguff@cs.toronto.edu
†e-mail: ravin@dgp.toronto.edu

Figure 1: Portion of a genealogical graph for an actual family, laid out
manually, containing well over 600 individuals and spanning almost
400 years. (Sample data set supplied with GenoPro [7]).

a centrifugal view [5] in the literature. (It is also similar to [21].)
Hourglass charts only show some information, however. Each an-
cestor has themself a tree of descendants, and each descendant has
a tree of ancestors (each of whom has a tree of descendants, etc.). It
is not uncommon for users to experience frustration with diagram-
ming software, where the user must repeatedly and manually move
increasingly large subsets of nodes to create room for new data. It
is also not obvious that the underlying structure is best described as
a topological tree. Finally, trying to automatically draw such graphs
leads to problems and design tradeoffs.

Figure 2: Left: Node x has a tree of ancestors (parents, grandparents,
etc.) and a tree of descendants (children, grandchildren, etc.), both
of which may be drawn with conventional tree-drawing techniques.
Right: It is more challenging, however, to also show the descendants
of y, or worse still, to show the descendants of every ancestor of x,
and the ancestors of every descendant of x. Note: in this and other
figures, squares represent males, circles females.

We present a brief analysis of genealogical graphs and identify
how and why it is difficult to draw them. This motivates an in-
vestigation of alternative graphical depictions, leading to the de-
velopment of a dual-tree scheme that generalizes hourglass charts,
and that may be used for visualizing any multitree [5]. We de-
scribe a software prototype that implements this scheme, that sup-
ports smoothly-animated rotations and transitions between dual-
trees, and that uses a novel interaction technique for expanding or
collapsing subtrees to any depth with a single mouse drag. Al-
though this work is geared toward genealogy, some of the design
principles and techniques used are also applicable in other domains.



2 BACKGROUND

Genealogical relationships have been recorded and depicted for
centuries, however the traditional charts appearing in books tend to
be simple, usually showing at most a few dozen individuals, and are
often organized around simple patterns such as lineages (e.g. one’s
father, paternal grandfather, etc.), or a single tree of ancestors, or a
single tree of descendants. Commercial software packages enable
the compilation of datasets with hundreds to thousands of individ-
uals, but are not designed to automatically visualize such large data
sets. They either require the user to arrange data manually, or have
automatic layout algorithms that only operate on a subset of the data
or that don’t work well in all cases.

Yet, there is a significant demand for automatic visualization of
data. The documentation for [7] states “GenoPro wrote the AutoAr-
range routine to import Gedcom files, but noticed many are using
the AutoArrange to layout their genealogy tree. This routine took
several months to write, debug and test, yet generated more emails
than all the other features combined. About 95% of all the geneal-
ogy trees GenoPro received by email were AutoArranged.”

In addition, whether automatically generated or not, conven-
tional charts of large, extended families inevitably contain at least
some long edges or nodes displaced far away from their close rel-
atives, to make room for other nodes (e.g. Figures 1 and 5). Thus,
even given a robust automatic layout algorithm, it is not clear that
displaying entire genealogical graphs of thousands of nodes would
be ideal, since numerous long edges or edge crossings would make
navigation and interpretation difficult.1 A better solution may be
to display subgraphs that are automatically laid out, and allow the
user to flexibly transition between subgraphs.

Bertin [2] mentions an elegant way of drawing genealogical
graphs, where each individual is a single line segment (thick for
men, thin for women) and where nuclear families are points. Each
line segment may connect two nuclear families: one in which the
individual is a parent, and one in which they are a child (this is sim-
ilar to p-graphs [22]). Although such diagrams are much simpler
looking than traditional ones, they ultimately suffer from the same
exponential crowding (see § 3.4).

Ted Nelson has proposed zzstructures (the generic name for
ZigZag R©) as a general structure for storing information. It has
been shown [12] that zzstructures are equivalent to a kind of di-
rected graph. Nelson has demonstrated that genealogical graphs
can be encoded within zzstructures, using the scheme in Figure 4,
D. The choice of this scheme, however, is due more to its com-
patibility with typical zzstructure visualizations, rather than due to
an inherent appropriateness for genealogical graphs. For example,
many visualizations of zzstructures are based on a 2D cursor cen-
tric view (described in [12]), which can show one nuclear family
at a focal point (parents and children arranged along perpendicular
directions), surrounded by some extended family nodes. Unfortu-
nately, such visualizations make it difficult to see which nodes are
all within the same generation.

Multitrees [5] are a kind of directed acyclic graph (DAG) where
any two nodes are either connected by zero or 1 directed paths. In
other words, multitrees are diamond-free DAGs, where a diamond
is a pair of distinct directed paths from one node to another node.
As a consequence, every node x in a multitree has a tree D(x) of de-
scendants and a tree A(x) of ancestors (Figure 3). Furthermore, the
trees in a multitree can overlap: given nodes x and y in a multitree,
D(x) and D(y) may share one or more subtrees, and if not, then
A(x) and A(y) may share one or more subtrees. Furnas and Zacks
[5] explain how genealogical graphs constructed according to Fig-

1One anecdote concerning a family reunion recounts how participants
exceeded the area of four picnic tables in trying to layout their genealog-
ical information. Another story reports the existence of a single data set
containing 30000 interconnected individuals.

ure 4, C can correspond to multitrees, if there is no intermarriage
(i.e. diamonds). They also propose two visualization techniques
for multitrees: a centrifugal view (essentially Figure 2, left) and a
view of a directed path (“lineage”) between two nodes along with
children and parents of the path [5].

Figure 3: Left: an example multitree. Observe that the two trees
of descendants rooted at nodes A and C, respectively, share two
subtrees, rooted at nodes F and P, respectively. Right: Node M is
highlighted, along with its tree of ancestors and tree of descendants.

Anthropologists have studied systems of kinship, examining, for
example, how family structures and terminology for describing
one’s kin vary across cultures, and how these relate to genealogy
(e.g. [15]). The current work focuses instead on issues relevant to
graph drawing and visualization.

Our research differs from the previous work by analyzing in
more detail some of the properties specific to genealogical graphs,
and by proposing some novel graphical depictions of them. In par-
ticular, our dual-tree scheme generalizes the Furnas-Zacks centrifu-
gal view/hourglass chart, and also generalizes the “lineage” view of
the same authors [5]. We investigate novel ways of displaying and
interacting with dual-trees.

3 ANALYSIS OF GENEALOGICAL GRAPHS

In the following, some of the observations and concepts generalize
to various non-traditional family arrangements, such as individu-
als having multiple spouses, or having more than two parents (e.g.
adoptive in addition to biological). However, a traditional family
model is a useful one to keep in mind, at least initially. Also, for
convenience, the word “marriage” is used in a loose sense, to refer
to the relationship between the parents of one or more children.

Some in the genealogical community [6] have called for the abil-
ity to encode richer information and more kinds of relationships,
e.g. foster children, family friends, etc. Increased freedom in a
genealogical system would make it approach a general hyperme-
dia system, with a correspondingly general interface. However, we
have found that the constraints imposed by first following a tradi-
tional family model inspire interesting design and visualization pos-
sibilities. Future work may possibly extend or adapt our designs to
include more kinds of family relationships.

3.1 Preliminaries

We first establish some terminology to describe relationships be-
tween individuals. Beyond the familiar relationships of parent,
child, ancestor, and descendant, we also consider consanguine rel-
atives, i.e. individuals with a common ancestor (also called “blood
relatives”) such as siblings and cousins. In addition, we define
conjugal relatives as individuals connected by an undirected path
through one or more marriages. For example, brothers-in-law are
conjugal relatives, as would be x and any of x’s spouse’s consan-
guine relatives.

Cousins are consanguine relatives whose most recent common
ancestor occurs at n generations prior to the cousins, and in which
case the cousins are (n−1)th cousins (i.e. 1st cousins if they share



a grandparent, 2nd cousins if they share a great-grandparent, etc.).
Note that the cousin relationship is not transitive: individual x may
have a cousin y on x’s maternal side, and another cousin z on x’s pa-
ternal side, however y and z are not, generally, cousins, though they
are related conjugally through the marriage of x’s parents. More
generally, consanguine relationships are not transitive, but conjugal
relationships are, since our definition allows them to pass through
multiple marriages.

Finally, we use the term nuclear family to refer to (noramlly two)
parents and their children.

3.2 Intermarriage and Pedigree Collapse

Intermarriage corresponds to an undirected cycle (i.e. a cycle in the
underlying undirected graph) in a genealogical graph. We distin-
guish between two kinds of intermarriage: Type 1 intermarriage
is between consanguine spouses, e.g. spouses who are also (possi-
bly distant) cousins. Type 2 intermarriage is between spouses who
are conjugal relatives via a path going through one or more mar-
riages other than their own marriage. Examples of type 2 intermar-
riage include two sisters (or cousins) from one family marrying two
brothers (or cousins) from another family not initially related to the
first family. In the graphs we consider, all marriages are modelled
— even those that are eventually dissolved. Thus, if a woman di-
vorces a man x and marries his brother y, this constitutes type 2
intermarriage, because the woman was already conjugally related
to y through her first marriage to x.

Assuming that the ancestry of an individual x is free of type 1
intermarriage, then x has 2n ancestors at the nth generation prior to
x. At a conservative 30 years per generation, this exponential num-
ber of ancestors exceeds the physical capacity of the earth at less
than 2000 years into the past. We can therefore conclude that the
ancestry of x must contain type 1 intermarriage. The phenomenon
of encountering type 1 intermarriage in every individual’s ancestry,
when traced back far enough, is called pedigree collapse [18].

In addition, statistical modelling suggests that all humans alive
today share a (not necessarily unique) common ancestor who lived
just a few thousand years ago [17], implying that all living humans
are “blood relatives”.

Pedigree collapse guarantees that type 1 intermarriage occurs in
every real-life genealogical graph, if extended back far enough in
time. The presence of such diamonds in one’s “tree” of ancestors
obviously creates problems for drawing such a graph. Fortunately,
many genealogical data sets are free of intermarriage because they
do not extend back far enough in time, and in any case are usually
locally free of intermarriage. Furthermore, algorithms and visual-
ization techniques designed for acyclic graphs may be adapted to
genealogical graphs containing intermarriage, by creating virtual
duplicates of individuals to “hide” the cycles.

3.3 Conditions Resulting in Trees, Multitrees, and DAGs

When are genealogical graphs really trees, or multitrees, or neither?
This depends on the presence of type 1 and type 2 intermarriage,
and on which scheme is used to construct the genealogical graph.

Let G be a genealogical directed graph (digraph) constructed ac-
cording to one of the schemes B–E in Figure 4. If scheme B or C
or E is used, then edges are always incident from younger to older
nodes, thus G is a DAG. If scheme B or C or E is used, and there is
no type 1 intermarriage (which would correspond to a diamond in
G), then G is a multitree. If scheme B or D or E is used, and there
is no type 1 or type 2 intermarriage, then the underlying undirected
graph G′ is a free tree (also called a topological tree).

In many cases, then, a genealogical graph may be a free tree,
or at least a DAG. Trees are planar, and many techniques exist for
drawing them with no edge crossings. However, it is often desir-
able to see the nodes in a genealogical graph ordered by time, to

Figure 4: A: conventional notation for a nuclear family: squares are
male, circles female, and children extend downward from an edge
connecting the parents. B–E show different ways of modelling such
a family within a directed graph. B: the ⊕ symbol denotes a “spousal
union” node. C: alternative scheme that avoids any special, inter-
mediate node, but requires more edges when there are 3 or more
children. D: Nelson’s scheme for encoding families within zzstruc-
tures. Each child links to its next older sibling, and the eldest child
links to the “spousal union” node. E: a variation on D that prevents
cycles in the directed graph.

make the generations in the graph apparent. Such an ordering is
impossible to achieve in general without edge crossings. Partially
relaxing the ordering by generation, so that each node is only “lo-
cally ordered”2 with respect to its parents and children, allows edge
crossings to be eliminated in a free tree. However, long edges are
still generally unavoidable (Figure 5).

Figure 5: Example situation where a long edge cannot be avoided,
even if some branches are rotated. Also, the vertical ordering of
nodes by generation is broken: it is not immediately apparent that
nodes x and y are of the same generation — they are 3rd cousins.
The ordering by generation could be restored by introducing edge-
crossings, but at least one edge would still be long.

DAGs can be drawn automatically using standard algorithms,
such as Sugiyama et al.’s [19]. In this case, however, edge cross-
ings and long edges are both unavoidable, and as with any auto-
mated graph drawing technique, the output from a 2D DAG em-
bedder is increasingly difficult to use and understand as the size of
the graph becomes very large. It is also possible that new algo-
rithms designed with the specific properties of genealogical graphs
in mind may scale better than generic DAG embedders.

The “bushiness” apparent in Figure 5 illustrates a core problem
in genealogical graphs, of nodes quickly becoming crowded as the
graph is extended in various directions. The next section examines
and quantifies this problem in more detail.

3.4 Crowding Within Genealogical Graphs

We now consider an idealized, simplified genealogical graph G∗,
and show that problems arise in trying to draw even this idealized
graph. This motivates some non-traditional visual representations.

Let G∗ be a genealogical graph, constructed according to Fig-
ure 4, B, where every node has two parents, one sibling of the op-
posite gender, one spouse of the opposite gender, and where every

2In graph drawing terminology, locally ordered means upward, and
(globally) ordered by generation means upward and layered by generation.



marriage produces one child of each gender. Also assume that gen-
erations are well-defined, e.g. births are synchronized within each
generation. Furthermore, G∗ contains no intermarriage, hence the
underlying undirected graph is a free tree, and thus G∗ is planar.

Assume we want to draw a connected subset of G∗ such that
nodes are all allocated the same size, and nodes in the same gen-
eration have the same vertical coordinate, so that each generation
corresponds to a single row of nodes.

Figure 6 shows such a drawing, for 9 nuclear families span-
ning 4 generations. Ellipses indicate the directions in which G∗

extends. Intuitively, extending the portion of G∗ shown in all direc-
tions would require not only crossing edges (to maintain alignment
of generations), but also lengthening certain edges to make room
for expansion, causing certain spouses and/or siblings to become
distant from each other.

Figure 6: A portion of an idealized genealogical graph, G∗. Nine
nuclear families are shown (each outlined in pink), labelled n0, . . . ,n8.
Ellipses indicate the many directions in which this diagram could be
extended, suggesting that nodes would rapidly become crowded.

To reinforce this intuition, consider the set S of nuclear fam-
ilies at the same generational level as n0. Figure 6 shows S =
{n0,n5,n6,n7,n8, . . .}. Notice that n0 is connected (via the inter-
mediary families n1,n2,n3,n4) to 4 other families n5,n6,n7,n8 in
S. Following the ellipses, each of n5,n6,n7,n8 is connected (again
through intermediaries) to 3 other nuclear families in S, each of
which is in turn connected to another 3, etc. Even though S cor-
responds to a single generation of nuclear families, the paths con-
necting families in S correspond to a free tree, and the number of
nuclear families in S that are r edges away from n0 grows expo-
nentially with r. Similarly, if we consider connections through in-
creasingly distant ancestors, each node has 1 sibling, 4 first cousins,
16 second cousins, and 4n nth cousins. Unfortunately, these nodes
must be fit within a 1-dimensional row, where the space available
only grows linearly with the geometric distance from the centre of
the diagram. The consequence is that the edge-length-to-node-size
ratio becomes arbitrarily high.

This is reminiscent of Munzner’s observation [13] that, when
embedding a tree in a Euclidean space of any dimensionality, the
number of nodes grows exponentially with the level, but the space
available only grows geometrically. The case in Figure 6 is qualita-
tively worse, however, because the “exponential crowding” occurs
within each and every generation as more and more of G∗ is dis-
played, rather than worsening progressively with deeper levels.

4 SOME ALTERNATIVE GRAPHICAL REPRESENTATIONS

The rapid crowding of nodes that occurs in genealogical graphs in-
spired us to explore graphical depictions that show different parts of
the graph at different scales. By allocating progressively smaller ar-
eas to nodes, we might usefully pack more information into a single
representation.

Figure 7 shows a fractal layout for G∗. (More generally, such
a fractal layout could also be used to depict any free tree.) There

is no limit to the extent of the graph that could be drawn this way,
however nodes eventually become imperceptibly small. Also notice
that this depiction trades away an ordering of nodes by generation
to gain non-crossing edges of bounded length.

Figure 7: A fractal layout for G∗, showing the same 9 nuclear families
as in Figure 6, along with some additional nodes in grey.

Interactive browsing of the tree in Figure 7 could be done by
zooming and panning, or by having the user dynamically select the
“focal” region that is shown largest in the centre. In the latter case,
the resulting interactive visualization might be similar to fisheye
graph browsers (e.g. [13]), though it would differ in the details of
how nodes surrounding the focal region are shifted and scaled.

In the process of exploring graphical depictions for genealogical
graphs, we found it useful to consider the different ways in which
rooted trees are represented. Figure 8 shows what we consider to
be the most basic styles for drawing rooted trees, 3 of which are
identified in [2, 9]. A familiar example of nested containment (Fig-
ure 8, B) are treemaps [8]. The indented outline (Figure 8, D) rep-
resentation may appear to simply be a variation on the node-link
(Figure 8, A) representation, but in fact the indented outline style
would still be unambiguous without any edges drawn: its essential
feature is the use of indentation to imply structure. Many variations
on the styles in Figure 8 have been described in the literature, based,
for example, on polar coordinate systems, or on embeddings in 3D
rather than 2D, or on combinations of existing styles.

Figure 8: Different graphical representations of the same rooted tree.
A: node-link. B: nested containment, or enclosure. C: a layered
“icicle” diagram, that uses adjacency and alignment to imply the
tree structure. D: an indented outline view.

The majority of new tree representations, however, have been
applied to rooted trees, whereas free trees are drawn almost exclu-
sively using the node-link style (Figure 8, A). Nevertheless, repre-
sentations based on rooted trees could be applied to free trees, if the
user had a way of dynamically choosing a node to serve as a tempo-
rary “visual” root. The user would then be able to see the tree from
different perspectives, by transitioning from using one node as a
root to another. Such interaction might be useful for temporarily
and visually highlighting various regions of the free tree.

This idea allowed us to adapt the nested containment style (Fig-
ure 8, B) to genealogical free trees resulting in a novel represen-
tation (Figure 9). In general, nested containment representations
could be used with any free tree, and thus with any genealogical



graph where there is no intermarriage of type 1 or type 2. How-
ever, the representation can be simplified if we assume that, in ad-
dition to there being no intermarriage, every node participates in at
most two nuclear families: one in which they are a child, and one in
which they are a parent (in other words, nodes cannot have multiple
spouses in different nuclear families). This assumption allows us to
omit the “spousal union” ⊕ nodes (Figure 4, B) and leave these im-
plicit, as we have done in Figure 9. In Figure 9, lower left and lower
right, each individual corresponds to a rectangle, and each rectangle
may have one nuclear family nested within it, and also be part of an-
other nuclear family containing the rectangle. Parents appear in the
upper half of a rectangle, and children in the lower half. Note that
this representation would easily accommodate the case of nuclear
families containing more than 2 parents, by simply subdividing the
upper half of rectangles into more than 2 sub-rectangles.

Figure 9: A free tree can be drawn using the nested containment style
of Figure 8, B, if the user’s current “focus” is used as a temporary
root. Top: a genealogical graph, drawn using conventional notation.
For simplicity, squares are used for all individuals, not just males.
Lower left: the same graph, drawn using nested containment, with
the nuclear family {F, I,O,P} as the root. This is analogous to the
representation in Figure 7, with larger nodes containing smaller nodes
rather than being connected to them with line segments. Lower right:

now, the nuclear family {P,R,U,V,W} is the root.

5 DUAL-TREES

Although the novel representations in Figures 7 and 9 are inter-
esting, they do not order nodes by generation. Their unfamiliarity
might also make them difficult to interpret for many users. We now
describe a scheme that is closer to traditional diagrams.

The general problem of scaling a visualization to graphs of thou-
sands of nodes, and the added problem of dense crowding in ge-
nealogical graphs, convinced us to focus on visualizing only a sub-
set of the graph at a time, and therefore to identify which subset
might be best. Some general questions to ask in such a situation
are: What are the canonical, or standard, subsets of the data that
would be familiar to users? Which of these canonical subsets, or
combinations of them, can be shown at once in a manner than is

easy to interpret and that scales well?
In the case of genealogical graphs, two obvious canonical sub-

sets are trees of descendants and trees of ancestors. As already
mentioned, showing both of these at once (Figure 2, left; Figure 10,
A) results in an hourglass chart. To show more information, we
propose offsetting the roots of the trees with respect to each other,
as in Figure 10, B. The result, which we call a dual-tree, is a more
general kind of union of two rooted trees. (The result can also be
thought of as a single free tree, or a “doubly rooted tree”, follow-
ing the observation in [5] that the ancestors and descendants of a
directed path in a multitree form a free tree.)

Figure 10: Combinations of canonical subsets of genealogical graphs.
A: The tree A(x) of ancestors and tree D(x) of descendants of x
form an hourglass diagram. B: This dual-tree scheme shows more
information, by showing D(y) ⊃ D(x). C: An example dual-tree.

The dual-tree A(x)∪D(y) contains a superset of the information
in an hourglass chart, because A(x) ⊃ A(y) and D(y) ⊃ D(x). In
an hourglass diagram of A(x)∪D(x), the choice of x is a tradeoff
between the number of ancestors and number of descendants re-
vealed: choosing x in an older generation reveals a larger tree of
descendants, but reduces the number of ancestors shown. In con-
trast, with dual-trees, we can always choose x and y to be in the
most recent and oldest generations, respectively, to maximize the
coverage of the subset displayed.

Because a dual-tree diagram consists of only 2 trees, it can be
drawn in a straight-forward manner, and may prove to be easy to
understand and interpret. It can be drawn with no edge crossings,
with nodes ordered by generation, and it scales relatively well, since
the crowding of nodes within it is no worse than the crowding that
occurs in individual trees.

To combine two trees in the style of Figure 10, B and C, the root
y of the tree of descendants must be a right-most node in the tree
A(x) of ancestors. Likewise, x must be a left-most node of D(y).
Thus, changing x or y generally requires rotating subtrees to make
the new roots right- and left-most. One scenario in which the dual-
tree might be particularly useful is in families where surnames are
passed down from the paternal side. In such a family, if y is chosen
to be the oldest paternal ancestor of x, then the dual-tree would si-
multaneously contain every ancestor of x (in A(x)), as well as every
individual having the same surname as x (in D(y)), or alternatively
every individual having the same surname as any chosen ancestor
of x. We are not aware of any other traditional and scalable depic-
tion of families that can show this. For example, Figure 13 shows
Tom Smith, his ancestors, and other Smiths in single dual-tree.

Figure 10, C is based on the node-link style of drawing trees
(Figure 8, A). The indented outline style (Figure 8, D), however,
is often more space-efficient, especially when nodes have long text
labels, so we tried to adapt it to dual-trees. Figure 11 shows the
steps involved in this. The key to combine the two trees was to
use an alternative convention for drawing edges taken from Venolia
and Neustaedter [20], and analogous to the left-child, right-sibling
pointer implementation of tree data structures [4]. The result in
Figure 11, C accommodates long text labels to the right or left of



nodes without requiring new whitespace to be introduced between
nodes, as would be the case in Figure 10, C.

Figure 11: Three stages in adapting the indented outline style to
dual-trees. The nodes and labels are the same as in Figure 10, C.
A: Each tree is drawn in indented outline style. B: Edges are drawn
in an alternative way, to clear the space between the trees. Arrows
show matching nodes in both trees. C: The two trees combined.

Note that dual-trees can be used to browse and visualize any mul-
titree, even if some nodes have multiple spouses, or there is type 2
intermarriage, or some nodes have more than 2 parents. Note also
that, in Figures 10, C and 11, C, nodes in the same generation are
clearly shown as such, as they correspond to a single row or column,
respectively.

6 SOFTWARE PROTOTYPE FOR DUAL-TREES

To experiment with browsing based on dual-trees, a software proto-
type was developed, written in C++ using OpenGL and GLUT. The
prototype reads in a GEDCOM file as input, from which a directed
graph is constructed according to Figure 4, C.

The digraph is then pre-processed to remove directed cycles and
diamonds to obtain a valid multitree. To do this, a breadth-first
traversal identifies all undirected cycles in the underlying undi-
rected graph. For each cycle, we count the number of times the
edges change direction along the cycle, yielding a non-negative
even integer. If the result is zero, we have a directed cycle in the
digraph; if the result is 2, we have a diamond; if the result is 4 or
more, this may or may not correspond to type 2 intermarriage but
in any case is allowed in a multitree. So, if the result is zero or 2,
we mark one of the edges involved to be skipped in the embedding
algorithm. The display routine, however, can draw these special
edges in an alternative colour, to highlight them.

The prototype only displays one dual-tree subset of the graph at
a time, but allows the user to interactively transition from subset to
subset and browse the entire graph, which might be very large. Each
time a new dual-tree subset is chosen, the embedding routine is
invoked to determine its layout. Two styles of layout are supported:
classical node-link style, and indented outline style. Regardless of
the style used, the embedding involves two stages: first, computing
two preliminary embeddings EA and ED of the tree of ancestors and
the tree of descendants, respectively, and second, combining EA and
ED into a final embedding EF of the dual-tree.

In the case of classical node-link layout, EA and ED are com-
puted with an adaptation of the Reingold-Tilford algorithm [16],
though a slightly better implementation would use Buchheim et al.’s
improvements [3]. To combine EA and ED and produce EF , the em-
bedding routine shifts ED so that it is beside EA, such that nodes in

the same generation are aligned. Next, consider the set of nodes that
appear in both trees, which we call the axis of the dual-tree, i.e. the
path between the two roots. Each node n in the axis has a position
pA given by EA and a position pD given by ED. The final position of
n is computed as the weighted average pF = (apA +d pD)/(a+d)
where a and d are the number of ancestors and descendants, re-
spectively, of n. Our rationale for this weighting is that we don’t
want the change in n’s position to result in many edges having an
extreme slope; thus, the more edges n has in one of the trees, the
closer its final position should be to its position in the preliminary
embedding of that tree.

In the case of the indented outline layout, EA and ED are com-
puted in a simple recursive bottom-up pass. Next, pairs of consecu-
tive nodes on the axis are “stretched out” so that EA and ED match
up along the axis, and finally EF is produced (cf. Figure 11, B, C).

In both cases, the time required for the entire embedding process
is linear in the number of nodes embedded.

Figure 12 shows screenshots of output. The classical node-link
layout can be done along two different orientations (Figure 12, top
left and bottom left) yielding different total areas and aspect ratios.
The area of the bounding rectangle for the indented outline layout
(Figure 12, right) tends to be smaller than that of the other two
layout styles, however its aspect ratio also tends to be far from 1.
Such an aspect ratio could be an advantage, however, as it could
simplify navigation, requiring the user to scroll mainly along just
one direction in a zoomed-in 2D view. Figure 13 shows the visual
design of nodes in more detail.

Figure 12: A dual-tree laid out 3 different ways by the prototype.
Nodes are coloured by gender. Upper Left: Classical node-link, sim-
ilar to Figure 10, C, with generations progressing top-to-bottom.
Lower Left: Classical node-link, with generations progressing left-to-
right. Right: Indented outline style, similar to Figure 11, C.

6.1 Interaction Techniques

To transition between different dual-tree subsets, the basic opera-
tions performed by the user are: expanding/collapsing parents of
a given node, and expanding/collapsing children of a node. These
actions can be invoked through a 2-item marking menu [10] afford-
ing ballistic “flick” gestures, in the direction of parents or children,
to toggle their expansion state. Expanding a node can also cause
automatic rotation. For example, if node n is in the tree of descen-
dants, expanding upwards toward its parents requires that n first be



Figure 13: Another dual-tree under 3 layouts: classical node-link
top-to-bottom (Top) and left-to-right (Lower Left), and indented
outline style (Lower Right). Black edges are part of the dual-tree,
and nodes with bold borders lie on the axis, or path between the
two roots. Additional edges from children to parents are shown in
grey, to make nuclear families more apparent. For example, Rick
and Susan are siblings, sharing the same parents Irene and Edgar,
however Janet is a half-sibling with a different mother, as shown by
the lack of a grey edge from her to Irene. Grey dots on either side
of a node provide previews of the number of parents or children that
the node has. Preview dots that are too numerous are collapsed
into oblong shapes (e.g. under Saul and Mary), and shown in full
when the cursor rolls over the node, as shown under Ethel (Top).
Once over a node, the user can reveal hidden parents and children
by flicking in the appropriate direction to expand the node.

rotated onto the axis. Such rotations generally require that certain
other nodes be collapsed, to maintain the dual-tree scheme.

Expansion, collapsing, and rotation of nodes is shown with
smooth, 1-second animations to help the user maintain context
[1, 23]. As in [14], our animation has 3 stages: fading out nodes
which need to be hidden, moving nodes to their new positions, and
fading in newly visible nodes. Although many nodes may need to
move in different directions during a transition, the user may bene-
fit from tracking even just a few nodes that serve as visual anchors
or landmarks. We feel that even a complicated animation is better
than no animation at all, and could always be slowed down if the
user wishes with a technique such as the dial widget in [11].

The user may zoom and pan the 2D view of the graph with the
mouse, and optionally activate automatic camera framing that is
animated during transitions.

In browsing genealogical graphs, we have found it is often de-
sirable to expand downward from an individual to their most recent

descendants, or to expand upward to their oldest ancestors. This can
be done with the marking menus using a sequence of flicks, with
one or more flicks for each generation. However, an even faster
method is available through a subtree-drag-out widget for “drag-
ging out” subtrees to any depth. To use this widget, the user first
clicks down (with a secondary mouse button) on a node (Figure 14,
A), and then drags either up or down (i.e., toward ancestors or de-
scendants) to select the subtree on which they want the widget to
operate. After this initial drag, the length and colouring of the wid-
get (Figure 14, B) indicate both the maximum depth of the subtree,
and also the depth to which the subtree is currently expanded. The
user may drag towards the subtree, to expand it further one level at a
time, or away from the subtree, to collapse it one level at a time. In
keeping with a metaphor of relative adjustment, the user may also
release over the centre of the widget, to dismiss it with no effect,
which is useful for cancelling.

Figure 14: A semi-transparent popup widget for expanding or col-
lapsing subtrees in a single drag. The user pops up the widget over
a node (A), and may now drag up or down to select whether to op-
erate on the tree of ancestors or descendants. After dragging down
slightly, the tree of descendants has been selected (B), and now the
widget displays the number of levels the user could drag to change
this tree: at most 4 levels down to expand to the full depth, or at
most 2 levels up to collapse. Furthermore, the first 2 levels down
are shaded in to indicate that they are already partially expanded. C

and D show the subsequent feedback after dragging down almost 3
levels, or up 1 level, respectively. Releasing the mouse button com-
pletes the operation. The node’s tree of ancestors could similarly be
expanded or collapsed in a separate invocation of the widget.

After popping up this widget and performing the initial drag to
select the subtree to operate on, the user may then drag ballisti-
cally to quickly open or close the entire subtree. Although in gen-
eral subtrees may be quite large after just a few levels, the trees
of descendants and ancestors in typical genealogical data tend to
be fairly shallow, seldom spanning more than a few hundred years.
Furthermore, even though the user may ballistically expand multi-
ple subtrees upward and downward in quick succession, the auto-
matic rotations that result from expansion often cause other nodes
to disappear, thus the user is much less likely to experience an “ex-
plosion” in the number of expanded nodes.



7 INITIAL USER FEEDBACK

As a first step toward evaluating our prototype and informing design
changes, an informal session was held to solicit feedback from a
practicing genealogist who has also lectured on genealogy. The user
reported using computers an average of 2 hours/day, and is familiar
with two common genealogy software packages. The session lasted
1 hour, and consisted of a mixture of free-form exploration by the
user, demonstration and explanation by the first author, and semi-
structured navigation tasks given to and performed by the user.

After some time interacting with the prototype, the user reported
finding it “very clear” and “very easy”, and was “impressed with its
manoeuvrability”. (Note that, at the time the session was held, the
subtree-drag-out widget had not yet been implemented. The user
did, however, discover and successfully operate the marking menus
with no help.)

The user also commented that the “unfamiliarity” of the depic-
tion of family relationships “takes getting used to”. The user men-
tioned the lack of a symbol explicitly linking spouses, which is
shown in conventional diagrams.

The user successfully completed all navigation tasks, even
though these required expanding upward and downward multiple
times, and even when using the indented outline style dual-tree.
The user was also able to correctly interpret indented outline depic-
tions, pointing out the parents and children in nuclear families.

The user was also shown printouts of sample output from a com-
mercial genealogy software package, and asked for opinions, com-
ments, or personal preferences in comparing the different diagrams
and the output of the prototype. The user seemed rather neutral, and
so was given an explanation of some potential positive and negative
differences between the dual-tree scheme and other representations.
The user remained neutral, however, saying “I can understand [each
of the depictions]. [...] I don’t know that there are any pros or cons.”

Of course, more sessions with other users would be necessary
to gain a fuller comparative picture, however we are encouraged
by the fact that the user was able to interact with and interpret the
output of our prototype.

8 CONCLUSIONS AND FUTURE DIRECTIONS

We have analyzed the nature of genealogical graphs, characterized
how they are difficult to draw, and presented novel graphical rep-
resentations for them. In particular, our dual-tree scheme scales
as well as a single tree, orders nodes by generation with no edge
crossings, is easy to interpret, can be used for browsing any mul-
titree, and generalizes both the hourglass chart/centrifugal view of
Furnas and Zacks and the “lineage” view of the same authors [5].
Furthermore, our interaction technique for expanding or collaps-
ing subtrees to any depth with a single mouse drag could be used
in other domains for general tree browsing, and might possibly be
adapted for general graph browsing.

Dual-trees can show many generations vertically, but have a hor-
izontal extent limited to ancestors or descendants of 2 root nodes.
Although these roots can be changed interactively to traverse a data
set, only a fraction of a large data set may be visible at any given
time. To increase the horizontal extent of nodes shown, without
introducing long or crossed edges, the dual-tree scheme could be
generalized to a sequence of N trees, laid out left-to-right and al-
ternating between ancestor and descendant trees, all shown at once.
Another possibility is to embed combinations of ancestor and de-
scendant trees in 3D, e.g. by arranging intersecting trees on perpen-
dicular planes. Use of 3D could eliminate the need to rotate sub-
trees, possibly giving the user a more consistent view of the data.

It would also be useful to have graphical representations that are
oriented toward higher-level groupings of individuals, such as fam-
ily units. For example, a viewer for a dual-tree A(x)∪D(y) could

be augmented to also show siblings of nodes in A(x), and spouses
of nodes in D(y). This would increase the crowding of nodes some-
what, but would make complete nuclear families visible.

9 ACKNOWLEDGEMENTS

Many thanks to Derek G. Corneil, Shigeru Owada, Alicia Servera,
June E. McGuffin, Daniel Morin, Dallan Quass, Jean Bryan, our
anonymous reviewers, and the user who gave us feedback on our
prototype, for their valuable support, help, suggestions, and time.

REFERENCES

[1] L. Bartram. Can motion increase user interface bandwidth? In Proc.
IEEE Conf. Systems, Man and Cybernetics, pages 1686–1692, 1997.

[2] J. Bertin. Sémiologie graphique: Les diagrammes, Les réseaux, Les
cartes. Éditions Gauthier-Villars, Paris, 1967. (2nd edition 1973).

[3] C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algo-
rithm to run in linear time. In Proc. Graph Drawing (GD), 2002.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Al-
gorithms. MIT Press, 1990.

[5] G. W. Furnas and J. Zacks. Multitrees: Enriching and reusing hier-
archical structure. In Proc. ACM Conference on Human Factors in
Computing Systems (CHI), pages 330–336, 1994.

[6] G. B. Hoffman. Genealogy in the new times, 1999.
http://www.genealogy.com/genealogy/61 gary.html.

[7] GenoPro Inc. GenoPro. http://www.genopro.com/.
[8] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach

to the visualization of hierarchical information structures. In Proc.
IEEE Visualization (VIS), pages 284–291, 1991.

[9] D. E. Knuth. The Art of Computer Programming, Volume I: Funda-
mental Algorithms, pages 309–310. Addison-Wesley, 1968.

[10] G. Kurtenbach and W. Buxton. The limits of expert performance us-
ing hierarchic marking menus. In Proc. ACM Conference on Human
Factors in Computing Systems (CHI), pages 482–487, 1993.

[11] M. J. McGuffin, G. Davison, and R. Balakrishnan. Expand-Ahead: A
space-filling strategy for browsing trees. In Proc. IEEE Symp. Infor-
mation Visualization (InfoVis), pages 119–126, 2004.

[12] M. J. McGuffin and m. c. schraefel. A comparison of hyperstructures:
Zzstructures, mSpaces, and polyarchies. In Proc. 15th ACM Confer-
ence on Hypertext and Hypermedia (HT), pages 153–162, 2004.

[13] T. Munzner. H3: Laying out large directed graphs in 3D hyperbolic
space. In Proc. IEEE Symp. Information Visualization (InfoVis), 1997.

[14] C. Plaisant, J. Grosjean, and B. B. Bederson. SpaceTree: Supporting
exploration in large node link tree. In Proc. IEEE Symp. Information
Visualization (InfoVis), pages 57–64, 2002.

[15] D. W. Read. Formal analysis of kinship terminologies and its rela-
tionship to what constitutes kinship. Mathematical Anthropology and
Cultural Theory, 1(1), November 2000. 46 pages.

[16] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Trans.
on Software Engineering, SE-7(2):223–228, March 1981.

[17] D. L. T. Rohde, S. Olson, and J. T. Chang. Modelling the recent com-
mon ancestry of all living humans. Nature, 431(7008), 2004.

[18] A. Shoumatoff. The Mountain of Names: A History of the Human
Family. Simon & Schuster, Inc., 1985.

[19] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Trans. on Systems,
Man, and Cybernetics, SMC-11(2):109–125, February 1981.

[20] G. D. Venolia and C. Neustaedter. Understanding sequence and reply
relationships within email conversations. In Proc. ACM Conference on
Human Factors in Computing Systems (CHI), pages 361–368, 2003.

[21] J. Wesson, MC du Plessis, and C. Oosthuizen. A ZoomTree interface
for searching genealogical information. In Proc. ACM AFRIGRAPH
’04, pages 131–136, 2004.

[22] D. R. White and P. Jorion. Representing and computing kinship: A
new approach. Current Anthropology, 33(4):454–463, 1992.

[23] D. D. Woods. Visual momentum: a concept to improve the cogni-
tive coupling of person and computer. International Journal of Man-
Machine Studies, 21:229–244, 1984.


