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Abstract

We survey recent research into new techniques for artificially facilitating pointing at targets

in graphical user interfaces. While pointing in the physical world is governed by Fitts’ law and

constrained by physical laws, pointing in the virtual world does not necessarily have to abide

by the same constraints, opening the possibility for ‘‘beating’’ Fitts’ law with the aid of the

computer by artificially reducing the target distance, increasing the target width, or both. The

survey suggests that while the techniques developed to date are promising, particularly when

applied to the selection of single isolated targets, many of them do not scale well to the

common situation in graphical user interfaces where multiple targets are located in close

proximity.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades, as graphical user interfaces have largely superceded the
command line interface, the act of pointing to various graphical elements such as
icons, menus and buttons has emerged as the arguably most fundamental elemental
task in human–computer communication. Given the pervasiveness of pointing
throughout all applications using graphical interfaces, even a slight improvement in
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pointing performance can have substantial impact on overall user productivity.
Thus, it is highly worthwhile for interface researchers and designers to attempt to
optimize pointing performance to the greatest extent possible.
In contrast to pointing to physical objects in the real world, pointing in the virtual

world is typically achieved via an input device that acts as an intermediary between
the human and the graphical objects being pointed to. Despite the presence of this
intermediary, however, Card et al. (1978) showed in their seminal paper that virtual
pointing can be accurately modelled using Fitts’ law (Fitts, 1954; MacKenzie, 1992),
which asserts that the movement time MT to acquire a target of width W which lies
at a distance D is governed by the relationship

MT ¼ a þ b log2
D

W
þ 1

� �
;

where a and b are empirically determined constants, the logarithmic term is called
the index of difficulty (ID) measured in ‘‘bits’’, and the reciprocal of b is the human
rate of information processing for the task at hand and is often referred to as the
index of performance (IP) or bandwidth. Note that the above Shannon formulation
of Fitts’ law is the widely preferred alternative amongst several from both theoretical
and practical perspectives (see MacKenzie, 1992, for a discussion on these alternative
formulations).
In addition to demonstrating the applicability of Fitts’ law to modelling

virtual pointing, Card et al. (1978) and other researchers (e.g. MacKenzie, 1992;
Douglas and Mithal, 1997) have also clearly shown that virtual pointing using
input devices like the mouse or stylus can result in performance very similar
to intermediary-free physical pointing. Based on this well replicated finding,
one might argue that pointing in the virtual world is ‘‘as good as it can
possibly get’’. However, in recent years HCI researchers have realized that
since virtual pointing does not have to be constrained by the laws of the
physical world, it may be possible to actually ‘‘beat’’ Fitts’ law and make virtual
pointing easier than its physical counterpart. Assuming that the input device used is
optimal in that it enables virtual pointing performance equivalent to physical
pointing, Fitts’ law indicates two possible approaches for further optimization:
reduce D or increase W. Directly changing these two parameters obviously does
nothing more than change the size and position of onscreen graphical elements,
which are presumably already laid out in a reasonably optimal fashion due in part to
the interface designer’s basic appreciation of Fitts’ law. The challenge is to indirectly
affect further changes in D and/or W in ways that do not substantially alter the
overall visual appearance of the graphical interface, but nonetheless result in shorter
pointing times.
In this paper, we survey the recent research on attempts at creating virtual

enhancements to improve pointing performance. We begin with some background
on the current understanding of the underlying human motor actions that are
believed to be modelled by Fitts’ law. In light of this foundational knowledge, we
then discuss the various pointing facilitation techniques that have been developed to
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date, roughly grouping them in three categories: those that (1) primarily attempt to
decrease D, (2) primarily attempt to increase W, and (3) both decrease D and
increase W. The situations where these new techniques succeed in improving
performance are discussed, but perhaps more importantly we focus on the situations
where they fail to provide any gains or worse still result in poorer performance than
ordinary pointing thus suggesting where more work is needed to refine the relevant
techniques. In addition to providing the reader with a concise overview of the
research in this fascinating area, we hope that this paper will help spur further
research in several promising directions which we identify as a result of our
integrative survey.
We note that this survey focuses on the virtual interaction techniques that have

been developed to facilitate pointing, and not on new or improved input technologies
such as haptic feedback devices that may also be beneficial to pointing performance.
It is also important to acknowledge that the choice of input device can profoundly
impact the performance of a particular technique (Jacob et al., 1994; Zhai, 1995), but
a detailed treatment of this issue is beyond the scope of this paper.
2. Background

In order to gain insight into the directions that can be taken in designing virtual
techniques to facilitate pointing, it is useful to understand the possible underlying
motor control models that are likely explanations for Fitts’ law.
One explanation, called the iterative corrections model (Crossman and Goodeve,

1963/1983; Keele, 1968), attributes the law entirely to closed-loop feedback control.
This model states that the whole movement consists of a series of discrete sub-
movements, each of which takes the user closer to the target and is triggered by
feedback indicating the target is not yet attained.
Another explanation, called the impulse variability model (Schmidt et al., 1979),

attributes the law almost entirely to an initial impulse delivered by the muscles,
flinging the limb towards the target. The last part of the movement consists of the
limb merely coasting towards the target.
It has been pointed out (Wing, 1983; Rosenbaum, 1991), however, that neither of

these two explanations adequately accounts for all the effects shown in the large
body of experimental data in the literature.
The most successful and complete explanation to date (Rosenbaum, 1991), called

the optimized initial impulse model (Meyer et al., 1988), is a hybrid of the iterative

corrections model and the impulse variability model. This suggests that the process
modelled by Fitts’ law (Fig. 1) is as follows:
An initial movement is made towards the target. If this movement hits the target,

then the task is complete. If, however, it lands outside the target, another movement
is necessary. This process continues until the target is reached. Since the goal is to
reach the target as quickly as possible, in an ideal case the subject should make a
single high-velocity movement towards the target. In reality, however, the spatial
accuracy of such movements can be quite poor. It can be shown (Meyer et al., 1988;
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Fig. 1. Possible sequence(s) of submovements toward a target as described by the optimized initial impulse

model (Meyer et al., 1988). (a) Is the case where a single movement reaches the target. (b) and (c) are the

more likely cases where the initial movement under or over shoots the target, requiring subsequent

corrective movements.

R. Balakrishnan / Int. J. Human-Computer Studies 61 (2004) 857–874860
Rosenbaum, 1991) that the standard deviation (S) of the endpoint of any movement
increases with the distance (D) covered by that movement, and decreases with its
duration (T):

S ¼ k
D

T

� �
;

where k is a constant. Thus, a movement with a long distance and short duration
could be executed, but would result in a high standard deviation and therefore a low
probability of actually hitting the target. Conversely, a series of long duration and
short distance movements could be executed, hitting the target with certainty, but the
total movement time would be extremely long. The solution, therefore, is to find the
optimal balance of D’s and T’s that minimizes the total movement time
(Rosenbaum, 1991). In essence, this means that most aimed movements consist of
an initial large and fast movement that gets the subject reasonably close to the target,
followed by one or more shorter, and slower, corrective movements that are under
closed-loop feedback control.
Based on this explanation, we can hypothesize that virtual enhancements for

improving pointing performance that attempt to decrease D should concentrate on
the initial large and fast movement phase that covers the bulk of the distance
towards the target. Conversely, techniques that attempt to decrease W would likely
be able to reap almost all their benefit if they focused on the final corrective
movement phase, since although W may play a part in the planning and execution of
the initial large and fast movement, its effect is most apparent when the user is
homing in on the target under closed-loop feedback control.
In Fitts’ original work and the initial follow-up experiments in the motor control

literature, there was typically a one-to-one correspondence between the human’s
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visual and motor spaces in that physical targets were selected by direct indi-
cation using the human hand. Pointing in the virtual realm of computers, however,
typically involve an intermediary device (e.g. mouse, joystick, touchpad)
that converts human motor actions into movements of a virtual cursor. There
are thus three major factors that come into play and can affect performance
(Graham and MacKenzie, 1996) in virtual pointing: motor or control space, visual
or display space, and the control–display (C–D) transfer function that links the two
spaces. Changes in D and/or W could occur in either the motor or visual spaces, or
both. In the rest of this paper, we use the terms D and W to denote distance and
width in both spaces, Dv, Wv and Dm, Wm to denote distance and width in the visual
(v) and motor (m) spaces, respectively, when a distinction between the two is
necessary.
3. Facilitating pointing by primarily reducing D

3.1. Designing widgets that minimize D

A somewhat trivial optimization is to simply move the targets close to the cursor
where feasible. One instantiation of this idea are the contextual linear pop-up menus
seen in many applications where the menus items are displayed right by the cursor
when the menu is activated. Whereas the linear layout of these menus put some items
further away from the cursor than others, pie-menus (Callahan et al., 1988)
additionally improve the situation by arranging all items in a circle around the cursor
thus making all items equidistant with a very small and constant D (Fig. 2).
Although pop-up linear and pie menus are demonstrably effective (Callahan et al.,
1988), they are only one of the many types of targets that are typically selectable in
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Fig. 2. Linear vs. pie menus. Distance of menu items from red starting point varies in linear menus (left),

but is constant in pie menus (right).
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graphical interfaces. Other common interface elements such as icons, buttons, and
scroll-bars are not easily transformed to reduce their distance to the cursor, without
drastic redesign of the overall interface layout. Note, however, that the use of hot-
keys or dedicated scrolling wheels or joysticks on mice are able to effectively reduce
Dm and/or increase Wm without altering Dv or Wv.
3.2. Temporarily bringing potential targets to the cursor

One recent interesting attempt to directly reduce D for icons without redesigning
their basic behaviour and layout is the drag-and-pop technique developed by
Baudisch et al. (2003). In this technique, the system responds to directional cursor
movements by temporarily bringing a virtual proxy of the most likely potential set of
targets towards the cursor (Fig. 3). The overall interface is unchanged, but the user
can now manipulate the proxy icons at a much closer distance. In a user study
comparing drag-and-pop to direct drag-and-drop on large displays, Baudisch et al.
(2003) found drag-and-pop to be up to 3.7 times faster for very large D, albeit at a
slightly higher error-rate.
Although the drag-and-pop technique was designed for use with icons, one could

imagine extending this idea to operate other interface elements by bringing them
closer to the cursor when required. The challenge would be to design the interaction
such that the proxies do not overly clutter the region near the cursor or obscure
valuable information around it. Furthermore, it can be tricky to implicitly determine
when the user intends to select the remote elements versus items that are already in
the nearby vicinity. If the proxies are activated when not required, they will in the
best case simply annoy the user, and in the worst case actually interfere with the
Fig. 3. Drag-and-pop (Baudisch et al., 2003). Virtual proxies of icons on the far left of the screen are

brought closer to the cursor to facilitate quick pointing by reducing D. The relationship between proxy and

actual icon is indicated by the stretched lines. The proxies only exist for the duration of the cursor drag

action, thus not affecting the overall interface. (Picture taken from Baudisch et al., 2003).
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user’s ability to select an existing nearby target. Indeed, this technique like
many others we will encounter in this survey, tends to work best on a fairly
sparse virtual desktop. In dense desktops with many closely packed potentially
selectable items, the problems with occlusion and false activation can obviate the
potential benefits.
One potential solution to the false activation problem is to use an explicit trigger,

thus trading-off seamlessness in interaction for repeatability and accuracy. Another
solution that addresses both the false activation and occlusion problems may be to
design an on-screen widget with parameters that users can manipulate to specify
which interface items are brought closer to the cursor and how they are to appear
(e.g. using transparency to mitigate interference with existing items (Harrison et al.,
1995), or perhaps scaling the proxies to fit in blank space around the existing items
near the cursor). This approach has the benefit of providing the user with significant
additional control, at the expense of perhaps more complex and less transient
interaction.
3.3. Removing empty space between the cursor and targets

Most efforts at improving pointing performance to date have considered the
traditional situation of a 2D cursor pointing at targets represented as pixels, where
all pixels of the display contribute equally to the overall space of possible selectable
objects. However, Guiard et al. (2004) recently noted that in most real graphical user
interfaces, there are a significant number of pixels that serve no useful function other
than providing a pleasing interface layout. For example, if there were 50 selectable
interface elements averaging 20� 20=400 pixels each on a 1600� 1200 pixel display,
only 50� 400=20000 pixels would be selectable out of a total of
1600� 1200=192000 pixels. Thus 98.9% of the available pixels provide no useful
information to the task of selecting the 20,000 pixels of interest.1 Worse, they
actually hinder that task by increasing the distance between the selectable targets.
Based on this simple yet important observation, Guiard et al. (2004) proposed that
since we are typically only interested at pointing to selectable targets, these useless
pixels could be removed from consideration within the pointing task. Thus, the
overall space is collapsed such that all targets are effectively next to one another,
reducing D very significantly.
Obviously, it would be quite undesirable to actually remove all that empty space

and move the targets together, since it would utterly ruin the layout and usability of
the graphical interface. Instead, Guiard et al. (2004) designed an interaction
technique, called object pointing, where the cursor essentially skips across the empty
space, jumping from one selectable target to another. Thus, Dm is reduced while
keeping Dv unchanged. In practical terms, when the cursor leaves a selectable object
and its velocity exceeds a threshold, it jumps to the next available target in the
1In general, Guiard et al. (Guiard et al., 2004) show that the wasted information is log2 (Ss/S0)�log 2N,

where Ss is the total surface area of the display, S0 is the surface area of all selectable objects, and N is the

number of selectable objects.
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direction of the cursor’s current movement. In a controlled experiment, they showed
that object pointing was on average 74% faster than regular pointing for a reciprocal
pointing task—a very significant improvement in the base case. A second
experiment, where the task more closely resembled pointing in real user interfaces
which have varying target densities, showed that the degree to which object pointing
outperformed regular pointing depended upon the target density. As might be
expected, when the display was sparsely populated and distances between targets
large, the benefits of object pointing was very significant. Conversely, in very dense
displays where targets were close together to begin with, regular pointing was
preferable.
Of all the techniques surveyed in this paper, object pointing is arguably the one

with the most significant performance gains, at least as demonstrated by the
controlled laboratory experiments. However, there are a few practical considerations
that may lower its overall applicability and value, and thus hinder widespread
adoption. First, as Guiard et al. (2004) themselves note, object pointing is not always

applicable in that users may sometimes want to select and manipulate any of the
individual pixels, or one of many small groups of pixels (e.g. a text character in a
word processor), on a display. Also, what can seem like ‘‘blank’’ space in an interface
is sometimes used as implicit targets to facilitate interaction. For example, rubber-
band selection requires pointing and clicking on a blank part of the interface, and
then moving the pointer such that the bounding box encompasses the desired set of
targets. Thus, it would be necessary to provide both object and regular pointing in an
interface, with some mechanism to switch between them, resulting in a slightly less
than seamless interaction style. Second, again identified in Guiard et al. (2004), is the
fact that in many graphical interfaces, the selectable objects are often tiled together
(e.g. menus, toolbars, rows of icons). Since such tilings have no empty space between
targets, object pointing clearly has no benefit, although it is not detrimental in that it
simply regresses to regular pointing. Third, on the basis of evidence that eye gaze
precedes hand movements (Abrams et al., 1989; Jacob, 1991), Guiard et al. argue
that ‘‘there should be no difficulty for the user to follow the jumping motion of the
highlight across the layout of objects’’ (Guiard et al., 2004). Their experimental
results clearly demonstrate that this jumping motion is not an impediment to raw
quantitatively measurable performance, at least within the strictures of performing a
controlled experiment. However, in the context of real usage in everyday computing
environments where subjective impressions of an interface can play a much larger
role than in controlled experiments, the visual discontinuities inherent in such
jumping motions may prove to be overly annoying to the user and thus be a barrier
to acceptance. It would be interesting to explore this issue in a field study of object
pointing in real use.
It is worth noting that a more rudimentary discrete form of object pointing

already exists in many interfaces where the cursor keys can be used to discretely
move between targets in any of the four main directions. Similarly, some interfaces
use the tab key to cyclically select between targets in some predefined ordering. Both
these techniques focus only on selectable targets, and bypass the less interesting
blank space surrounding those targets.
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4. Facilitating pointing by primarily increasing W

4.1. Area cursors

An interesting twist to the pointing facilitation problem is suggested by the work
of Kabbash and Buxton (1995) who investigated the use of area cursors that have an
active area or ‘‘hot spot’’ that is larger than the single pixel of standard cursors (Fig.
4). Kabbash and Buxton showed that selection using area cursors could be
accurately modelled using Fitts’ law, with W being the width of the cursor rather
than the width of the target (assuming that the target width is smaller than cursor
width). Thus, very small targets which would traditionally have a high index of
difficulty when selected by a point cursor would have a much lower index of
difficulty when selected by an area cursor. Zhai et al. (1994) also showed that 3D
volume cursors could improve performance when selecting objects in 3D space,
although their focus was on the effects of translucency in the cursor, rather than a
Fitts’ law analysis per se.
While the basic Fitts’ law analysis of Kabbash and Buxton is sound and indicates

that area cursors can be a promising way to improve pointing performance, Worden
et al. (1997) point to two significant problems with area cursors: large area cursors
can obscure underlying data, and it can be difficult if not impossible to use area
cursors to select one target from several targets closely grouped together. The first
problem is largely mitigated if the area cursors are rendered semi-transparent as in
Zhai et al. (1994). The second problem, however, requires more creative handling.
Worden et al. (1997) propose an enhanced area cursor that has two hot spots: the
area encompassed by the whole area cursor, and a second single point hot spot
within the area cursor. When targets are far apart, the cursor behaves like the default
area cursor. However, when more than one target is within the area cursor, the point
hot spot is used to discriminate between those targets. In a controlled experiment,
they showed that this enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed point cursors when
targets were far apart thus reaffirming the results of Kabbash and Buxton (1995).
Given the demonstrated benefits of area cursors, it would be interesting to explore

further enhancements that would make them work in a facile manner in real
interfaces. For example, one could imagine an area cursor that morphs into a point
Point cursor: Area cursor: 

Fig. 4. Point vs. area cursors. (left) Selection with a point cursor is achieved when centre of the cross-hair

is within the desired target. (middle) Selection with an area cursor is achieved when any part of the area

cursor intersects the desired target. (right) When the area cursor intersects multiple targets, the target

under the cross-hair is selected as in Worden et al. (1997).
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cursor when over clusters of targets such as toolbars and menus, thus removing any
of the occlusion effects inherent even when transparency is used to render the area
cursor.

4.2. Expanding targets

Recently, several interaction techniques (Furnas, 1986; Mackinlay et al., 1991;
Bederson, 2000) have been developed where the size of the interface widget or
viewing region dynamically changes to provide the user with a larger target area to
interact with at their focus of attention. Dynamically sized widgets are also found in
the Apple MacOSX ‘‘dock’’ where the icons in the desktop toolbar expand when the
cursor is over them. These expanding widgets that are displayed at significantly
reduced size by default and dynamically expanded to a usable size only when
required could be an effective strategy for maximizing the use of screen real estate
without sacrificing target selection performance.
McGuffin and Balakrishnan (2002) investigated the potential performance benefits

of such expanding targets. Based on the optimized initial impulse model of
movement (Meyer et al., 1988) discussed earlier, they argued that in the situation
where the target’s width expands at some point during the movement, it can be
expected that the first large and fast movement towards the target is planned and
executed with the initial, unexpanded, target width as the input parameter to the
user’s motor control system. However, subsequent corrective sub-movements
should, according to this model, be able to respond to changes in the target’s size
since these sub-movements are under closed-loop feedback control. Thus, based on
this explanation of Fitts’ law, they hypothesized that in most cases target acquisition
time would depend largely on the final target size and not the initial one at the onset
of movement. They verified this hypothesis in a controlled experiment, and further
showed that users were able to take advantage of the larger expanded target width
even when expansion occurred after 90% of the distance to the target was already
traversed. They also showed that the overall performance could be accurately
modelled by Fitts’ law using the expanded target width as the governing size
parameter. Their study, however, focused only on the case where there was a single
isolated target to be selected. When multiple targets are present in close proximity,
expanding only one target can affect its neighbours either by occluding them or
pushing them out of the way. Either approach is likely to lead to undesirable side
effects. In a design exercise, they explored several alternatives approaches for
addressing the tiled multiple target scenario, with limited success (Fig. 5).
McGuffin (2002) mathematically analysed the multiple target situation and

showed that performance gains would only be possible if one could reasonably
predict the trajectory of the cursor such that only the few targets in the general
vicinity where the cursor is headed are expanded, leaving other widgets unchanged.
Unfortunately, to date, accurate cursor prediction is difficult to achieve in practice.
Zhai et al. (2003) subsequently pointed out that in McGuffin and Balakrishnan’s

(2002) study, users performed a large block of trials during which target expansion
always occurred and as such any observed performance gains could be due to users
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Fig. 5. Expanding target designs (McGuffin and Balakrishnan, 2002). (a) The buttons are un-expanded

when the pointer is far away. (b) Expanding target design that fully expands targets underneath the cursor,

while partially expanding and pushing neighbouring targets sideways. (c) A user starting in the state shown

in (b) may try to move to the right to select the button with the light X on the dark background. By the

time the cursor reaches the desired button’s location, the button has moved to the left and the user is now

over a different button (one with a dark X on a light background). Such horizontal movement of targets in

tiled layouts can negate the benefits of target expansion. (d) Expanding target design that differs from that

in (b, c) by allowing for some overlap between adjacent buttons thus alleviating the problems caused by

sideways motion. In this case, however, benefits due to expansion are only realized when the cursor enters

the target from outside the tiled targets. Sideways movement of the cursor result in target expansion in

visual space, but not in motor space.
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anticipating the expansion and thus a priori planning their entire movement
sequence to account for the larger W, instead of actually responding to changes in W

during the movement. They replicated the experiment with an additional condition
where expansion occurred in a pseudo-random fashion—thus users were unable to
anticipate the expansion ahead of time. Their results showed that even when users
could not anticipate the expansion, similar performance gains were realized. Zhai et
al. (2003) also attempted to design a suitable tiled multi-target expanding widget, but
as with (McGuffin, 2002) they had to rely on cursor prediction to achieve
satisfactory results.
An interesting counterexample to the benefits of expanding targets is indicated by

Gutwin’s (2002) study of target selection in a fisheye view. Here, as with many of the
tiled multi-target designs explored by McGuffin (2002) and Zhai et al. (2003), not
only did the targets expand in size, but they also shifted in x–y space. Gutwin (2002)
showed that the distortion and movement of these fish-eye views actually made it
more difficult to select targets, even though their size had increased. He also showed
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that by ‘‘flattening’’ the distortion based on cursor velocity and acceleration,
performance was significantly improved. He did not, however, analyse his results in
terms of Fitts’ law, thus making generalizable comparisons with the other work on
expanding targets (McGuffin, 2002; Zhai et al., 2003) difficult. This study highlights
the importance of careful interaction design, and the importance of not relying solely
on the results of controlled experiments that look at only one aspect of a new
pointing technique’s performance (such as the studies in McGuffin, 2002; McGuffin
and Balakrishnan, 2002; Zhai et al., 2003). It also indicates that the dynamic
characteristics of the pointer, and not just its position, should be factored into the
equation when designing interaction techniques that attempt to ‘‘beat’’ Fitts’ law.
5. Facilitating pointing by both decreasing D and increasing W

5.1. Dynamically changing the control–display gain

The ratio of the amount of movement of an input device and the controlled
objects (i.e. typically a cursor) is refereed to as the C–D gain. In early graphical
interfaces and in even earlier control systems, this gain was typically a constant.
The effect of gain on performance has been quite extensively explored in the
literature (Buck, 1980; Arnaut and Greenstein, 1990; Jellinek and Card, 1990;
MacKenzie and Riddersma, 1994) but the results are still somewhat inconclusive. It
can be argued that very high gains result in poor performance due to the difficulty in
making the precise movements required at the final phases of target acquisition,
although the initial coarse-grained movement can be achieved more rapidly.
Conversely, very low gains improve precise positioning at the expense of poorer
initial coarse-grained movement time. Some researchers (Gibbs, 1962; Zhai, 1995)
have argued and provided experimental evidence that this trade-off typically results
in a U-shaped gain-performance curve, with optimal performance achieved at
moderate gain levels. Others (Hammerton and Tickner, 1966; Jellinek and Card,
1990), however, have argued differently. In a classic study that investigated if and
how power mice that had variable control gain affected performance, Jellinek and
Card (1990) found that performance decreased as gain was increased. Nevertheless,
they argued that this was due to limitations in resolution of the mouse sensing
technology, and not to inherent human performance limitations. They further
suggested that if gain affected performance, this would violate Fitts’ law—a difficult
argument to accept given that Fitts’ law does not address variables other than
distance and width. In more recent work, MacKenzie and Riddersma (1994) showed
that in a Fitts’ selection task medium gain resulted in highest performance times but
also the highest error rates, thus casting doubt on the existence of an optimal gain
level (MacKenzie, 1995).
Despite the inconclusiveness of the research on the effects of gain, in practical

terms interface designers have found that efficiencies could often be obtained by
dynamically varying the C-D gain based on input device speed. Often referred to as
‘‘mouse acceleration’’, this technique was based on the assumption that when a user
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moved the device fast they intended to cover a greater distance. Thus, simply
decreasing the C-D gain as device movement speed increased would allow greater
virtual distances to be traversed with smaller device movements.
This basic adaptive C-D gain technique, however, is based entirely on device

movement speed and does not take into consideration the location and size of
potentially selectable targets. More recently, several researchers (Keyson, 1997;
Worden et al., 1997; Cockburn and Firth, 2003; Blanch et al., 2004) have
investigated dynamically adjusting the C-D gain based on knowledge about the
targets: increasing gain when the cursor is outside targets and decreasing it when
inside. The resulting ‘‘sticky’’ targets make it easy to get into known targets and
harder to leave them. In a controlled experiment, Keyson (1997) demonstrated that
using a target aware adaptive C-D gain resulted in significantly decreased target
acquisition times. Worden et al. (1997) demonstrated a similar result and
interestingly showed that older users benefited more from the adaptive technique
than younger users. Cockburn and Firth (2003) showed in particular that small
targets were easier to select with a target aware adaptive C-D gain. Most recently,
Blanch et al. (2004) systematically analysed target aware C-D gain adaptation in
terms of Fitts’ law and showed that performance could be accurately predicted based
on the resulting larger Wm and smaller Dm in motor space, rather than the size and
location of the invariant visual target. They also present some nice redesigns of
standard graphical widgets (Fig. 6) to take advantage of what they refer to as
‘‘semantic pointing’’.
While target aware C-D gain adaptation undoubtedly improves pointing

performance for single isolated targets, problems arise when multiple targets are
present in that intervening targets act as traps that can hinder movement along the
way to the desired target. Drawing upon the optimized initial impulse model (Meyer
et al., 1988) of movement discussed earlier, Worden et al. (1997) theorized that since
high-velocity movements are indicative of the initial impulse, the C-D gain should
remain high during high-velocity movements even when over potential targets. Only
when the cursor velocity decreased, indicating corrective sub-movements towards a
desired target, did they reduce the C-D gain. Thus, intervening targets could be
skipped over as long as the user moved fairly quickly over them. In their experiment,
they included a single intervening target between the start position of the cursor and
the final desired target, and their results indicate that performance was generally
unaffected by this distracter target. Cockburn and Firth (2003) attempt to mitigate
the problem of intervening targets by implementing C-D gain adaptation only along
one axis. Further, for the small targets that they were concerned with, they
incidentally observed that when ‘‘the cursor passes rapidly over an interface
component, the motion is often too rapid for the window system’s event model to
trigger an event on the underlying widget’’ (Cockburn and Firth, 2003), resulting in a
quick and dirty solution to the problem. Blanch et al. (2004) recognize this problem,
but did not suggest solutions in their paper.
We note that while the solutions employed by Worden et al. (1997) and Cockburn

and Firth (2003) appear reasonable in the situation where there are a few intervening
distracter targets, most real user interfaces would likely have many such intervening
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Fig. 6. Semantic pointing widget designs from Blanch et al. (2004). (a) Visual space appearance of buttons

in a dialogue box. (b) Motor space version of button design in (a) with much larger targets for certain

buttons. (c) Standard scroll-bar design. (d) Visual space appearance of scroll-bar redesigned to occupy

smaller screen space. (e) Motor space version of scroll-bar design in (d) with larger targets for active areas.

(f) Visual space appearance of menu. (g). Motor space version of the menu design in (f) with the distance

Dm to more important items reduced by compressing the size Wm of less important items.
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targets. Those intervening targets that are closer to the desired target would be
difficult to skip over using the suggested solutions since the user would have slowed
down, iteratively performing corrective sub-movements while homing in on the
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desired target, and in the process encountering interference from the nearby
distracters.
6. Conclusions

Our survey has shown considerably research activity in developing, analysing and
evaluating new techniques for artificially enhancing pointing performance in
graphical user interfaces. Unfortunately, while some of the techniques, such as
object pointing (Guiard et al., 2004), are particularly promising none of them has yet
to be demonstrated to work uniformly well in all situations encountered in typical
graphical user interfaces.
An interesting problem that appears in many of the techniques surveyed is that

while the techniques tend to produce significantly improved pointing performance
when selecting isolated targets, difficulties arise when they are used for selecting one
of multiple targets that are spatially close together. In particular, those techniques
that attempt to facilitate pointing by increasing W do not scale well to selection from
multiple targets. Attempts to effectively utilize target expansion in groups of multiple
tiled targets (McGuffin, 2002; Zhai et al., 2003) have only been marginally successful,
and analysis of the problem (McGuffin, 2002) indicates that this may be a
fundamentally intractable problem unless cursor trajectory can be accurately
predicted. Techniques that rely on C-D gain adaptation also tend to be less effective
when intervening targets lie in the cursor’s path towards the desired target. The few
solutions explored to date (Worden et al., 1997; Cockburn and Firth, 2003) can
alleviate but do not entirely solve the problem. It is interesting to note that this
problem with C-D gain adaptation is analogous to the problem faced by designers of
haptic-feedback interfaces that physically ‘‘attract’’ or ‘‘repel’’ the cursor towards
and away from interface elements (Oakley et al., 2001; Oakley et al., 2002). Thus, as
advances are made towards solving this problem in the haptic-feedback community,
it may be possible to apply the approaches used there towards the general virtual
pointing domain.
As alluded to in the introduction, the choice of input device can significantly alter

the effectiveness of a particular pointing enhancement technique. In particular, the
techniques we have surveyed that rely on altering the C-D mapping will typically not
work well with input devices such as pens/styli which essentially merge the motor
and visual spaces. Given the increased use of PDAs and tablet computers, it may be
worth asking if further efforts in developing pointing enhancement techniques that
rely on C-D gain adaptation are even worthwhile.
Apart from a few notable exceptions (Worden et al., 1997; Cockburn and Firth,

2003), most of the research in this area have tended to follow the classic route of
developing a new technique and comparing it with the status quo un-enhanced
pointing technique. Thus, from surveying the literature alone, while we can ascertain
how the new techniques perform relative to the default, it is somewhat difficult to
directly compare the various new techniques relative to one another. Although many
of the papers surveyed do analyse their results in terms of Fitts’ law which thus
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provides an analytical base for comparison, the subtle differences between the
various experiments tend to make such cross experiment comparisons unreliable.
The work by Cockburn and Firth (2003) and Worden et al. (1997), are the exceptions
that do provide us with some sense of how expanding targets, area cursors, and C-D
gain adaptation compare. In general, however, it would be worthwhile to conduct
further studies comparing these various techniques to one another directly. Another
interesting avenue for further research is in exploring combinations of the various
techniques. For example, combining expanding targets or area cursors with C-D
gain adaptation could result in interesting new techniques for pointing facilitation.
Finally, it is worth noting that in almost all cases the techniques surveyed have

been evaluated in terms of quantitative performance measures such as selection times
and error rates. While these are valuable measures, a perhaps more critical measure
is the final acceptability of a technique by end-users. While this measure is often
difficult to quantify directly, indirect observation can often be useful. For example,
Blanch et al. (2004) observed that their users did not even seem to notice the
distortions in motor space of the semantic pointing enhanced widgets, yet performed
better with semantic pointing. In a sense, perhaps the best measure of all is whether
or not a new pointing facilitation technique even elicits a comment from users.
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