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Abstract 
We present an evaluation of a hybrid gesture interface 
framework that combines on-line adaptive gesture rec-
ognition with a command predictor. Machine learning 
techniques enable on-line adaptation to differences in 
users’ input patterns when making gestures, and exploit 
regularities in command sequences to improve recogni-
tion performance. A prototype using 2D single-stroke 
gestures was implemented with a minimally intrusive 
user interface for on-line re-training. Results of a con-
trolled user experiment show that the hybrid adaptive 
system significantly improved overall gesture recogni-
tion performance, and reduced users’ need to practice 
making the gestures before achieving good results. 
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1 Introduction 
Given that humans use gestures in everyday life to 

facilitate communication, gestural interaction is likely 
to be an important component of future multimodal 
interfaces. Indeed, gestural interaction has been the 
focus of significant research activity (e.g., [3, 8, 17, 18, 
28]), and has begun to appear in commercial products 
such as pen based PDA’s and tablet computers. How-
ever, it remains a challenge to develop a robust gesture 
recognizer that can accommodate different users. A key 
challenge is that different users will input slightly dif-
ferent stroke patterns for the same intended gesture. As 
the example in Figure 1 illustrates, the varying input 
patterns observed when the same gesture is performed 
by different users (within-class difference) may overrun 
the varying input patterns observed when different ges-
tures are performed by the same user (between-class 
difference). The recognizer has to balance between 
generalizing to different users and distinguishing be-
tween different gestures by the same user. In practice, 
this is a difficult balance to achieve and is a major 
cause of unsatisfactory gesture recognition. 

A popular solution to this problem [17, 24] is to 
train the recognizer with samples collected from the 
specific user before the real use of the interface. These 
systems improve upon predefined recognizers (hard-
coded or trained using samples form a few users). The 
explicit training stage, however, precludes “walk up 
and use” interaction. Also, if recognition performance 

is unsatisfactory, or if the user changes his/her input 
patterns during use, then the user has to explicitly return 
to the training stage to modify the recognizer, resulting 
in inefficient and less fluid interaction. 

Another solution aimed at alleviating the recogni-
tion problem and the requirement for explicit training 
and re-training phases in gesture interfaces, is to cap-
ture and adapt to variations between and within users 
on-line during use. Such adaptation has shown promis-
ing results in applications such as information filtering 
[7, 9, 15] and handwriting recognition [5, 6, 20]. 

While there has been substantial work on adaptive 
recognizers, to the best of our knowledge there has been 
relatively little published on the impact of an adaptive 
recognizer combined with a command predictor on rec-
ognition performance. We attempt to address this short-
fall by conducting a controlled user study that evaluates 
such a hybrid combination in terms of recognition rate 
and user performance time. We use standard on-line 
machine learning techniques to adapt to users’ input 
patterns when entering different gestures in regular use 
of the system, and to exploit regularities that often exist 
in command sequences for particular tasks. When a 
recognition error happens, an on-line interface allows 
the user to correct the recognition, and the recognizer is 
re-trained based on this feedback. Thus, the system 
adapts to the user continually, and results in a user-
specific recognizer without requiring an explicit pre-use 
training phase per user. Although our interface for error 
correction is new, the main contribution of our work is 
the systematic evaluation of this hybrid adaptation plus 
command prediction approach to gesture recognition.   

 
Figure 1. Between-class and within-class differences in 
gesture entry. Gestures 1 and 2 entered by user B are 
very similar, while Gesture 2 entered by users A and B 
are quite different, making overall recognition difficult. 



 

2 Related Work 
Gesture interaction has been explored by many re-
searchers. To list a few, Segen et al’ [18, 19] Ges-
tureVR system uses vision tracking of hand gestures for 
spatial interaction. Nishi et al. [14] and Wu et al. [28] 
describe gestural interaction on desks/tabletops. Cao et 
al. [3] describe a gesture interface using a wand to in-
teract with large displays. Wilson et al. describe the 
XWand [26] and WorldCursor [25] systems, which 
control electrical devices with simple gestures using a 
wand. Rubine [17] describes GRANDMA, a toolkit for 
building pen-based single-stroke gestural interfaces.  

In some systems [17, 24] models are learned in a 
“watch and learn” framework, requiring the user to 
demonstrate the gestures in a training phase before the 
real system use. On-line adaptive interfaces construct 
the user model during real system use [11], typically 
using machine learning techniques that take on-line 
user behavior as training data. Wilson [23] describes 
additional research beyond [24] that enables the system 
to capture novel gestures on-the-fly. Pazzani et al. [15], 
Lang [10], and Boone [1] describe systems for informa-
tion filtering, aimed at directing the user’s attention 
towards items from a large set that he/she is likely to 
find interesting or useful. Adaptive frameworks have 
also been used in handwriting recognition [5, 6, 20]. 
Researchers have also demonstrated that adaptive inter-
faces can provide benefits over non-adaptive ones [2, 
20, 22], but this has not been done for gesture interfaces 
in combination with command prediction. Concerns 
have also been raised [18] that adaptation may make the 
interface inconsistent and unpredictable over time, thus 
impairing performance For example, McGrenere et al. 
[13] showed that if the user has too little control in an 
adaptive interface, it may be less efficient than an inter-
face manually customized by the user. 

3 Hybrid Gesture Interface Framework 
In this section we present the framework of the hybrid 
recognition and command prediction engine behind our 
prototype system. This framework is designed for gen-
eral gesture interface systems, independent of the par-
ticular application, input dimension or implementation. 

The engine takes information from the input device 
(gesture) as well as from the application program which 
is using the gesture recognition engine, and outputs the 
resulting interpreted command to the application. 

The engine consists of four relatively independent 
modules: gesture recognizer, gesture-command inter-
preter, command predictor, and decision-maker (Figure 
2). The first three modules use different input informa-
tion to provide intermediate results which are then fed 
to the decision-maker. Both the gesture recognizer and 
the command predictor continuously adapt to the user. 

 
Figure 2. Recognition Engine 

3.1 Adaptive Gesture Recognizer 
Depending on application demands, the user’s gestures 
could be captured through different input devices. The 
captured data is fed into the gesture recognizer which 
calculates the probabilities for each possible gesture 
that matches the current observation: P(O|G1), P(O|G2), 
…, P(O|Gn), P(O|G0) where O is the observation, G1 … 
Gn are all the possible gestures, and G0 represents “not a 
gesture” (i.e. the user’s unintentional input). These 
probabilities are then fed into the decision-maker. 

Each time a gesture is recognized, there are five dif-
ferent possible outcomes depending on the user’s inten-
tion and the system’s recognition result (Figure 3). De-
pending on the outcome, the gesture recognizer will 
take the input data as a new training sample for differ-
ent gestures, and then re-train itself. Both positive and 
negative samples are used for re-training. For the 2D 
single-stroke gesture input in our prototype application 
(to be discussed later), the gesture recognizer is imple-
mented using Hidden Markov Models (HMM) [16]. 

Out-
come Description 

User’s 
inten-
tion 

Recognition 
result Re-training sample 

1 Correct Gx Gx positive sample for Gx 

2 Wrong Gx Gy 
positive sample for Gx 
negative sample for Gy

3 Confused Gx O positive sample for Gx 

4 False alert O Gx 
negative sample for Gx
positive sample for G0 

5 Idle O O None 
Figure 3. Re-training rules for gesture recognizer de-
pending on outcome. Gx and Gy refer to different ges-
tures, and G0 refers to “not a gesture”. In the “user’s 
intention” column, O means the user did not intend to 
enter a gesture but provided input accidentally. In the 
“recognition result” column, O means the system could 
not map the input data to any recognizable gesture. 

3.2 Gesture-Command Interpreter 
The gesture-command interpreter (Figure 4) provides a 
mapping of all possible gestures into commands for the 
application, based on the current state and context of 



 

the application program, and (sometimes) the parame-
ters of the gesture (location, scale, duration, etc.). The 
same gesture may be interpreted as different commands 
depending on the application context. This gesture-
command mapping is fed into the decision-maker. Our 
system accepts 2D single-stroke input, and uses the 
location (geometric center) of the gesture and applica-
tion context to compute the gesture-command mapping. 
 

 
Figure 4. Gesture-command interpreter 

3.3 Command Predictor 
In addition to the input gestural data and the application 
context, another valuable information channel is the 
history of interaction activity. Depending on the appli-
cation and the particular user, regularities typically exist 
in the sequence of commands entered to complete tasks. 
Therefore, the next command the user is likely to exe-
cute is partially predictable by the previous command 
history. For example, the probability of doing “paste” 
becomes much higher when “copy” or “cut” is executed 
recently. Including this historical data could improve 
the reliability of the gesture recognition engine. 

Given the current command context T consisting of 
the previously executed command sequence, the prob-
abilities of all possible commands to be executed next, 
P(C1|T), P(C2|T), …, P(Cm|T) where C1 … Cm are all 
possible commands, are calculated and fed into the de-
cision-maker. Each time a command is executed, the 
prediction model is updated, allowing it to improve 
over time. Note that the command predictor and gesture 
recognizer work independently of each other. In our 
prototype we implement the command predictor based 
on a popular text compression algorithm called “predic-
tion by partial match (PPM)” [4, 21] which exploits 
statistics of the characters that follow identical strings. 

3.4 Decision-Maker 
The decision-maker incorporates information from the 
gesture recognizer, the command predictor and the ges-
ture-command interpreter, and generates the final rec-
ognition result. Given P(O|G1), P(O|G2), …, P(O|Gn), 
P(O|G0) from the gesture recognizer, P(C1|T), P(C2|T), 
…, P(Cm|T) from the command predictor, and the map-
ping from the gesture-command interpreter, we multi-
ply the probabilities of corresponding gestures and 
commands, and choose the gesture with largest product 
to be the final recognition result. To enable gesture re-

jection, the corresponding command possibility for 
P(G0|T) is set to a constant, and the other command 
probabilities normalized. When the product for G0 be-
comes the largest among all the products, or all 
P(O|G1), P(O|G2), …, P(O|Gn) give probabilities below 
a pre-set threshold, G0 is chosen as the result, and the 
recognizer concludes that the input is not a gesture. 

4 Prototype System 
In order to experiment with and evaluate the hybrid 
gesture interface framework, we developed a test-bed 
application based on a “picture shopping scenario” that 
has sufficient functionality to exercise the various parts 
of the framework, but at the same time is simple 
enough for users to quickly understand within the con-
straints of user studies lasting at most a few hours. In 
this application, the task is to pick pictures from the 
“shelf” on the left for placement into the “shopping 
cart” on the right. The user can browse the pictures, 
zoom in to see details, query detailed information, 
move pictures into or out of the cart, and so on. All the 
commands are triggered by making 2D stroke gestures. 
The location (geometric center) of the gesture deter-
mines which object the command is intended for. 
Figure 5 shows an application screenshot, in which a 
select gesture has been made atop the middle picture in 
the bottom row. We defined seven gestures, illustrated 
in Figure 6. Depending on context, these gestures can 
be interpreted as eleven different commands.  

 
Figure 5.  Example “picture shopping” application 

4.1 Input 
Because of the ubiquity of 2D single-stroke gestures, 
we chose it as the input modality for our implementa-
tion. A pen on a Wacom® tablet is used to input single-
stroke 2D gestures to a standard desktop computer. A 
stroke is recorded from the moment the pen tip touches 
the tablet to the moment it is lifted. The captured data is 
fed into the recognition engine. The only data pre-
filtering we do is to ignore strokes too short in either 
time (< 0.2secs) or space (within a 10x10 pixel region).  



 

Gesture Name Corresponding Commands 

 

Select 

Select Picture: Select a picture to zoom in 
on it. (on a picture) 
Select Sort: Select a sort criteria and per-
form the sorting (on a sort button) 

 
Query 

Query: Display the information sheet of a 
picture (on a picture) The info sheet in-
cludes title, author, date and category. 

 

Dis-
miss 
 

Dismiss Picture: Dismiss the zoomed-in 
picture (on a zoomed-in picture) 
Dismiss Info: Dismiss the information 
sheet of a picture (on an info sheet).  
Dismiss Sort: Dismiss the sort buttons (on 
a sort button) 

 

Sort 

Sort: Display sort buttons (any context). 
There are 4 buttons corresponding to 4 
sort criteria: title, author, date and cate-
gory. The date is sorted from earliest to 
latest, and the other three are sorted in 
alphabetical order. Selecting one of the 
buttons, sorts the pictures accordingly.  

 

Pick 

Pick into cart: Place a picture into the cart 
(on a picture in the shelf) 
Pick out of cart: Remove a picture from 
the cart (on a picture in the cart) 

 
Up 

Scroll up: Scroll up the shelf by two lines 
(any context) 

 
Down 

Scroll down: Scroll down the shelf by two 
lines (any context) 

Figure 6. Gestures and associated commands for test 
application. Text within brackets explains the context. 

4.2 Interface for On-Line Re-Training 
The recognition engine adapts to the user’s input pat-
terns by taking feedback from the user about the recog-
nition result. We have designed an interface for collect-
ing this user feedback, with the explicit goal of keeping 
the intrusiveness of the interface to a minimum relative 
to the task the user is trying to perform. Note that 
Mankoff et al. [12] describe techniques for ambiguity 
resolution in recognition systems, with a similar goal of 
low intrusiveness, but do not deal with gesture recogni-
tion per se nor use the pie menu interface we propose.  

Our system recognizes the input gesture every time 
the pen-tip is lifted off the tablet. If the system comes to 
a recognition result other than “not a gesture”, the cor-
responding command is executed immediately. In this 
case, three sub-cases can occur:  
1. The gesture is recognized correctly. The correspond-

ing command is executed, and the user continues to 
make the next gesture. The recognizer is re-trained 
using the current gesture as a positive sample. 

2. The gesture is misrecognized as another gesture. 
3. The stroke is an unintentional input by the user, but 

recognized as a gesture. 
In cases 2 and 3, the user knows there is an error by 

seeing a wrong command being executed, or no re-
sponse at all. The user thus needs to tell the system an 

error happened. By double-tapping the pen-tip on the 
tablet, a correction pie-menu is triggered (Figure 7a). 
This menu includes items for all possible gestures and 
an “undo” item. The captured gesture stroke is also 
displayed for the user’s reference. In case 2, the user 
selects the intended gesture by clicking on the relevant 
menu item. The incorrect response is undone, and the 
command corresponding to the intended gesture is exe-
cuted. The recognizer is then re-trained by taking the 
stroke as a positive sample for the intended gesture, and 
a negative sample for the misrecognized one. In case 3, 
the user selects “undo”, and the incorrect response is 
undone. The recognizer is re-trained by taking the 
stroke as a negative sample for the misrecognized ges-
ture, and a positive one for the “not a gesture” model. 

If the system determines the captured stroke to be 
“not a gesture”, i.e. it fails to recognize the gesture, 
another pie menu automatically pops up to ask for the 
actually intended gesture. This “fail to recognize” menu 
(Figure 7b) is almost identical to the correction menu in 
Figure 7a, except that the “undo” menu item is replaced 
with a “cancel” item. If the user intends the stroke to be 
a meaningful gesture, he/she selects the intended ges-
ture item. The corresponding command is executed, and 
the recognizer is re-trained by taking the stroke as a 
positive sample for the intended gesture. If the stroke 
was made unintentionally, i.e. system made the correct 
decision, the user either selects “cancel” to dismiss the 
menu, or simply ignores it and makes the next gesture.  

 
Figure 7. (a) Correction menu (b) “Fail to recognize” 
menu 

5 Experiment 

5.1 Goals 
We compared the performance of our hybrid adaptive 
recognition system to a non-adaptive one, for novice 
users, using the “picture shopping application”. Since 
our engine has two independent adaptive modules – the 
gesture recognizer and the command predictor – we can 
test their influence on performance separately. 

5.2 Software 
The software is implemented in C++. To support the 
needs of a controlled experiment, the gesture recognizer 
in the recognition engine can be switched between 



 

adaptive and non-adaptive modes. In adaptive mode, 
the recognizer works as described previously. In non-
adaptive mode, it provides the same interfaces for the 
users to correct recognition errors, but does not re-train 
itself. Similarly, the command predictor can be turned 
on or off. When off, the command context is ignored. 
The user interface is unaffected by the mode of either 
the gesture recognizer or command predictor. The basic 
recognizer was empirically tested to ensure that it had 
reasonable recognition performance, thus avoiding bias 
in favor of adaptation due to a poor base-line. 

5.3 Participants 
12 right-handed university students (9 male, 3 female) 
volunteered. None had prior experience with pen input. 

5.4 Procedure 
In each session, a participant was given a different 
group of 24 pictures with a maximum “shopping cart” 
size of 4, and asked to use the gestural commands to 
complete the following five tasks: 
Task 1: Place into the cart all the pictures with exactly 
one person in view. If more than 4 pictures meet the 
requirement, chose the 4 with the earliest dates. 
Task 2: Place into the cart all the pictures with author 
“X”. If there are more than 4 pictures that meet the re-
quirement, choose the 4 with the earliest dates. 
Task 3: Place into the cart all the pictures with person 
“Y” in view and where the title consists of exactly one 
word. If there are more than 4 pictures that meet the 
requirements, choose any 4. 
Task 4: Place into the cart the 4 pictures with the largest 
number of people in view. If there are less than 4 pic-
tures with people in view, take all of them. 
Task 5: Place your favorite 4 pictures into the cart. 

Here “X” refers to a specific name, and “Y” refers 
to a specific person, depending on the group of pictures.  
The design goal of these tasks was to oblige the users to 
actively use all the commands provided, while at the 
same time exposing their own patterns of command 
sequences when performing the various tasks. 

At the start of the experiment, the application was 
demonstrated, and all commands explained in detail. 
Participants read the written task descriptions, and were 
given one practice session in which they completed the 
tasks for one group of pictures, using a standard pop-up 
menu to invoke the commands, instead of the gestures. 
The goal here was to familiarize the participants with 
the tasks, independent of the gestures. 

After the practice session, the gestures were demon-
strated, and a sheet illustrating all gestures provided for 
reference. Participants were not given time to practice 
the gestures, since our goal was to study system per-
formance when used by a novice. Participants were told 

that the correction menu was only for correcting system 
recognition errors. Conceptual errors caused by the user 
(i.e. giving a wrong command) should be remedied by 
giving an opposite command (e.g. “Down” for “Up”). 

Tasks were performed at the users’ own pace, and 
users rested between sessions. For each gesture entered, 
we recorded the recognition result, the user-intended 
gesture, and the time spent. 

5.5 Design 
A two-factor mixed design with between- and within- 
participant factors was used. The two independent vari-
ables were: gesture recognizer adaptive/non-adaptive 
(noted as G: G1/G0) and command predictor on/off 
(noted as P: P1/P0). G was a between-participants fac-
tor, and P was a within-participants factor with coun-
terbalancing. In our experiment, the main source of skill 
transfer would be the user’s practicing of the gestures 
when performing the experiment. Intuitively, this prac-
tice effect should not be correlated to the command 
predictor’s performance, given that the gesture recog-
nizer and command predictor are working independ-
ently. Therefore we hypothesized that the skill transfer 
was symmetric for P (this hypothesis was later vali-
dated by the experiment data), and set P as the within-
subject factor. On the other hand, the user’s practice 
effect would be heavily influenced by the adaptation of 
the gesture recognizer, since we expected that the adap-
tation of the gesture recognizer would alleviate the 
user’s burden to practice the gestures. Therefore G is 
set to be the between-subject factor, so as to avoid the 
influence of possible asymmetric skill transfer. 
Participants were randomly assigned to 4 groups of 3: 
 Group 1: G1; P0 followed by P1 
 Group 2: G1; P1 followed by P0 
 Group 3: G0; P0 followed by P1 
 Group 4: G0; P1 followed by P0 
In each group, participants completed 3 consecutive 
sessions each for P0 and P1. The order of performance 
of P0 or P1 is determined by the group, and we note 
this order of P as Porder. During the 3 consecutive ses-
sions of P0 or P1, the adaptation effect was carried for-
ward between sessions. The system was re-initialized 
when participants switched from P0 to P1 or vice versa. 
All 6 sessions used different groups of pictures for the 
same tasks. The pictures were grouped before the ex-
periments such that the task difficulties were the same 
in each session. In summary, the design was as follows: 

4 groups [2 gesture recognizer conditions (G1/G0) x  
    2 command predictor orderings (P1->P0/P0->P1)] x  
3 participants per group x 
2 cmd predictor conditions (P1/P0) per participant x 
3 sessions per command predictor condition  
= 72 sessions in total 



 

5.6 Results 

Data Summary 
Participants took an average of 6.6 minutes per session. 
A total of 5960 gestures were made in the 72 sessions, 
with an average of 82.8 gestures per session. 

Recognition Rate 
Percentage recognition rate is defined as the number of 
correctly recognized gestures divided by the number of 
all gestures in a session. A gesture is counted in out-
comes 1, 2, 3, and 4 (Figure 3), and as correctly recog-
nized in outcome 1. The outcome is determined from 
the system’s recognition result and the user’s feedback.  

Table 1 summarizes the recognition rate results. The 
adaptive gesture recognizer showed a 20.2% improve-
ment over the non-adaptive gesture recognizer (F1,8 = 
26.788, p < .001). The standard error for G0 (4.063%) 
was higher than that for G1 (1.293%), which indicated 
that without adaptation, system performance varied a 
lot, due on different user behavior. With adaptation, 
system performance is more consistent across users.  

 G0 G1 G Overall 
P0 63.8 85.6 74.7 
P1 70.2 88.8 79.5 

P Overall 67.0 87.2 77.1 
Table 1:  Average Recognition Rates (%) 

The overall average recognition rate was 74.7% for 
P0, and 79.5% for P1. The system with command pre-
diction showed a 4.8% improvement over that without 
command prediction (F1,16 = 10.030, p < .01). The stan-
dard error for P0 (2.546%) was also higher than that for 
P1 (1.511%), suggesting that the command predictor 
also helped to stabilize system performance. In the ex-
periment design, we counterbalanced P as the within-
participants factor, by assigning half the participants to 
P0 before P1, and half to P1 before P0, with the as-
sumption that any skill transfer between the two tech-
niques would be symmetric and balanced out by the 
counterbalancing (i.e. the experience of using P1 first 
affects the performance in subsequently using P0 by 
roughly the same amount as that of the inverse case). 
The lack of a significant Porder x P interaction (F1,16 = 
1.014, p = .343) validated this assumption. 

To compare our fully adaptive system to the fully 
non-adaptive system, the average recognition rate was 
88.8% for G1 & P1, and 63.8% for G0 & P0. The fully 
adaptive system showed a 25.0% improvement (F1,10 = 
23.552, p < .001). Again, the standard error of G0 & P0 
(5.071%) is much higher than G1 & P1 (0.906%). 

The data did not show a significant G x P interac-
tion (F1,16 = 1.089, p = .327). This result suggests that 
the gesture recognizer and the command predictor were 

not only working independently, but also affected the 
user performance independently. It also suggests that 
user’s behavior in performing gestures and executing 
command sequences are not dependent on each other.  

There was also a significant main effect for session 
(F2,16 = 30.400, p < .001), with a steady improvement as 
the experiment progressed. This is due to both system 
adaptation and participants’ practice. Pairwise compari-
sons (Tukey test) showed that session 1 (70.8%) was 
significantly different from session 2 (79.8%)  (p < .01) 
and session 3 (80.8%) (p < 0.05), while session 2 and 
session 3 were not significantly different from each 
other (p = 0.472). We did not observe a significant P x 
session interaction (F2,16 = 0.276, p = .762). However, 
there was a significant G x session interaction ((F2,16 = 
9.463, p < 0.05) as illustrated in Figure 8. 

For G1, there was a significant effect for session 
(F2,8 = 23.828, p < .001). Session 1 (79.1%) was signifi-
cantly different from session 2 (91.1%) (p < .01) and 
session 3 (91.4%) (p < .01), but sessions 2 and 3 were 
not significantly different (p = .867). This indicates that 
system adaptation was probably completed in session 2. 

For G0, there was also a significant effect for ses-
sion (F2,8 = 8.562, p < .010). In contrast to G1, all 3 
sessions were significantly different from each other. 
Session 1 (62.4%) was significantly different from ses-
sion 2 (68.4%) (p < .01) and session 3 (70.3%) (p < 
.05). And session 2 was significantly different from 
session 3 (p < .05). This suggests the participants were 
still improving in session 3. Compared with the result 
for G1, we conclude that system adaptation signifi-
cantly reduced user practice requirements. 

 
Figure 8. Recognition rates by session and G. 

Single Gesture Time 
Single gesture time was defined as the time spent from 
the starting to end points of a single gesture stroke. Al-
though this measure was controlled by the participants 
rather than the system, we expected that the more relia-
bly the gestures could be recognized, the less time the 
participants would spend on making each gesture, since 
they would not have to imitate the pre-defined gestures 
exactly. We only counted correctly recognized gestures. 

Table 2 summarizes the average single gesture 
times. Overall, participants spent 25.9% less time on a 



 

single gesture with the adaptive system (F1,8 = 53.341, p 
< .001). This validated our hypothesis that with the 
adaptive recognizer, participants made the gesture as 
they saw fit rather than mimicking the system’s prede-
fined gesture as in G0, thus enhancing input speed.  

 G0 G1 G Overall 
P0 1160 853 1006 
P1 1130 846 988 

P Overall 1145 849 997 
Table 2:  Average Single Gesture Times (msec) 

On the other hand, the command predictor did not 
have a significant effect on the single gesture time. The 
averages were 1006 ms for P0, and 988 ms for P1 (F1,16 
= 1.170, p = .331). This is interesting compared with 
the effect of G. Although the command predictor im-
proved recognition performance, the mechanism was 
invisible to the participants. Therefore, participants did 
not have an explicit mental model for that, and did not 
change their behaviors enough to affect gesture time. 
We did not observe a significant Porder x P interaction 
(F1,16 = 0.047, p < .833), suggesting a symmetric trans-
fer effect. There was also no significant G x P interac-
tion (F1,16 = 0.405, p = .542). 

There was a significant main effect for session (F2,16 
= 91.641, p < .001), which showed a steady decrease in 
gesture time through the experiment. Pairwise compari-
sons showed that the 3 sessions were all significantly 
different from each other (p < .001), with average times 
of 1096 ms for session 1, 994 ms for session 2, and 901 
ms for session 3. This effect incorporates both system 
adaptation and participants’ practice. There was a sig-
nificant G x session interaction (F2,16 = 7.783, p < 0.01) 
, but no significant P x session interaction (F2,16 = 
1.230, p = .318). As Figure 9 illustrates, G1 had a 
slower rate of decrease, likely because participants were 
already performing quite fast near the start and thus had 
less room to improve with practice. 

 
Figure 9. Single gesture time by session and G 

Prediction Rate 
Although the command predictor is not directly observ-
able by the user, it is still interesting to evaluate how 
precisely the prediction works. Given the predicted 
probabilities of gestures P(G1|T), P(G2|T), …, P(Gn|T), 

and the gesture i actually made by the user, the predic-
tion rate is defined as the expectation of P(Gi|T). With a 
completely uniform prediction (random guess), the pre-
diction rate would be 1/n. The amount by which the 
prediction rate is greater than 1/n is an indication of 
how much better the command predictor is working. In 
our experiment, this expectation was calculated by tak-
ing the average of P(Gi|T) for all the gestures made in 
the session. Obviously the prediction rates were only 
calculated for P1 conditions. Since we have 7 gestures 
in the experiment application, the prediction rate for 
randomly guessing would be 14.3%.  

The overall average prediction rate was 30.4%. This 
was significantly higher than the random guess baseline 
(t = 24.346, p < .001). No significant effect for G (F1,10 
= 3.827, p = .079), session (F2,20 = 1.095, p = .354), or 
G x session interaction (F2,16 = 0.993, p = .378) were 
observed. This indicates that the command predictor 
was working well, and its performance did not depend 
on the gesture recognizer or participants’ practice time. 

6 Discussion 
A concern about adaptive interfaces is that the system 
may become inconsistent and unpredictable due to ad-
aptation, which is detrimental to usability. However, in 
the design we evaluated, the user has full control of the 
adaptation process, and thus can better predict the result 
of the adaptation. The interaction techniques are also 
consistent over time. The only change the user observes 
is that the recognition is getting better. Therefore the 
user does not pay a penalty for the adaptation, beyond 
providing on-the-fly training data.  

Although in the non-adaptive system users had to 
converge to pre-defined gestures, different behaviours 
were observed in the adaptive system. Greatest variabil-
ity was observed in the “pick” and “query” gestures, 
where not only parameters like tilt or proportion varied, 
but different topologies were entered (Figure. 10). This 
variability consolidated our reasoning why an adaptive 
recognizer would be useful. If the adaptation rate is 
fast, the user can completely change the definition of a 
gesture. Since both training and newly collected sam-
ples are maintained, the user can also give multiple 
definitions for the same gesture. This can address the 
concern that the user may not be self-consistent when 
making the same gesture each time. In our implementa-
tion, the system adaptation rate is such that the recog-
nizer can be trained to accept a completely different 
definition for one gesture after 2~3 samples are given.  

                
Figure. 10. Variability in input gestures 



 

7 Conclusions and Future Work 
We have presented a controlled user experiment to 
evaluate an on-line gesture interface framework. Re-
sults showed significant performance gains, both in 
recognition rate and in interaction speed. While our 
experiment provided several revealing results, there are 
many issues regarding adaptive gesture recognition 
worthy of further study. It would be interesting to study 
how different, perhaps higher dof, gestures will perform 
within an adaptive framework. Also interesting is how 
the framework generalizes between different users. 
How well will the command predictor trained by one 
user work for another user? When the recognizer is re-
trained by one user, is its ability to recognize other us-
ers’ gestures improved or impaired? Also, how many 
gestures can such a system optimally handle? We ex-
plored the case where single-stroke gestures are dis-
cretely delimited by pen up/down events. It would be 
interesting to explore multiple-stroke gestures, or the 
situation where gestures are segmented on-the-fly from 
continuous input, which occurs with buttonless devices 
such as laser pointers [27] or passive wands [3]. 
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