
Evaluation of an On-line Adaptive Gesture Interface with Command Prediction

Xiang Cao, Ravin Balakrishnan

Department of Computer Science
University of Toronto

caox | ravin @dgp.toronto.edu

Abstract
We present an evaluation of a hybrid gesture interface
framework that combines on-line adaptive gesture rec-
ognition with a command predictor. Machine learning
techniques enable on-line adaptation to differences in
users’ input patterns when making gestures, and exploit
regularities in command sequences to improve recogni-
tion performance. A prototype using 2D single-stroke
gestures was implemented with a minimally intrusive
user interface for on-line re-training. Results of a con-
trolled user experiment show that the hybrid adaptive
system significantly improved overall gesture recogni-
tion performance, and reduced users’ need to practice
making the gestures before achieving good results.

Key words: gestures, adaptive interfaces, user studies

1 Introduction
Given that humans use gestures in everyday life to

facilitate communication, gestural interaction is likely
to be an important component of future multimodal
interfaces. Indeed, gestural interaction has been the
focus of significant research activity (e.g., [3, 8, 17, 18,
28]), and has begun to appear in commercial products
such as pen based PDA’s and tablet computers. How-
ever, it remains a challenge to develop a robust gesture
recognizer that can accommodate different users. A key
challenge is that different users will input slightly dif-
ferent stroke patterns for the same intended gesture. As
the example in Figure 1 illustrates, the varying input
patterns observed when the same gesture is performed
by different users (within-class difference) may overrun
the varying input patterns observed when different ges-
tures are performed by the same user (between-class
difference). The recognizer has to balance between
generalizing to different users and distinguishing be-
tween different gestures by the same user. In practice,
this is a difficult balance to achieve and is a major
cause of unsatisfactory gesture recognition.

A popular solution to this problem [17, 24] is to
train the recognizer with samples collected from the
specific user before the real use of the interface. These
systems improve upon predefined recognizers (hard-
coded or trained using samples form a few users). The
explicit training stage, however, precludes “walk up
and use” interaction. Also, if recognition performance

is unsatisfactory, or if the user changes his/her input
patterns during use, then the user has to explicitly return
to the training stage to modify the recognizer, resulting
in inefficient and less fluid interaction.

Another solution aimed at alleviating the recogni-
tion problem and the requirement for explicit training
and re-training phases in gesture interfaces, is to cap-
ture and adapt to variations between and within users
on-line during use. Such adaptation has shown promis-
ing results in applications such as information filtering
[7, 9, 15] and handwriting recognition [5, 6, 20].

While there has been substantial work on adaptive
recognizers, to the best of our knowledge there has been
relatively little published on the impact of an adaptive
recognizer combined with a command predictor on rec-
ognition performance. We attempt to address this short-
fall by conducting a controlled user study that evaluates
such a hybrid combination in terms of recognition rate
and user performance time. We use standard on-line
machine learning techniques to adapt to users’ input
patterns when entering different gestures in regular use
of the system, and to exploit regularities that often exist
in command sequences for particular tasks. When a
recognition error happens, an on-line interface allows
the user to correct the recognition, and the recognizer is
re-trained based on this feedback. Thus, the system
adapts to the user continually, and results in a user-
specific recognizer without requiring an explicit pre-use
training phase per user. Although our interface for error
correction is new, the main contribution of our work is
the systematic evaluation of this hybrid adaptation plus
command prediction approach to gesture recognition.

Figure 1. Between-class and within-class differences in
gesture entry. Gestures 1 and 2 entered by user B are
very similar, while Gesture 2 entered by users A and B
are quite different, making overall recognition difficult.

2 Related Work
Gesture interaction has been explored by many re-
searchers. To list a few, Segen et al’ [18, 19] Ges-
tureVR system uses vision tracking of hand gestures for
spatial interaction. Nishi et al. [14] and Wu et al. [28]
describe gestural interaction on desks/tabletops. Cao et
al. [3] describe a gesture interface using a wand to in-
teract with large displays. Wilson et al. describe the
XWand [26] and WorldCursor [25] systems, which
control electrical devices with simple gestures using a
wand. Rubine [17] describes GRANDMA, a toolkit for
building pen-based single-stroke gestural interfaces.

In some systems [17, 24] models are learned in a
“watch and learn” framework, requiring the user to
demonstrate the gestures in a training phase before the
real system use. On-line adaptive interfaces construct
the user model during real system use [11], typically
using machine learning techniques that take on-line
user behavior as training data. Wilson [23] describes
additional research beyond [24] that enables the system
to capture novel gestures on-the-fly. Pazzani et al. [15],
Lang [10], and Boone [1] describe systems for informa-
tion filtering, aimed at directing the user’s attention
towards items from a large set that he/she is likely to
find interesting or useful. Adaptive frameworks have
also been used in handwriting recognition [5, 6, 20].
Researchers have also demonstrated that adaptive inter-
faces can provide benefits over non-adaptive ones [2,
20, 22], but this has not been done for gesture interfaces
in combination with command prediction. Concerns
have also been raised [18] that adaptation may make the
interface inconsistent and unpredictable over time, thus
impairing performance For example, McGrenere et al.
[13] showed that if the user has too little control in an
adaptive interface, it may be less efficient than an inter-
face manually customized by the user.

3 Hybrid Gesture Interface Framework
In this section we present the framework of the hybrid
recognition and command prediction engine behind our
prototype system. This framework is designed for gen-
eral gesture interface systems, independent of the par-
ticular application, input dimension or implementation.

The engine takes information from the input device
(gesture) as well as from the application program which
is using the gesture recognition engine, and outputs the
resulting interpreted command to the application.

The engine consists of four relatively independent
modules: gesture recognizer, gesture-command inter-
preter, command predictor, and decision-maker (Figure
2). The first three modules use different input informa-
tion to provide intermediate results which are then fed
to the decision-maker. Both the gesture recognizer and
the command predictor continuously adapt to the user.

Figure 2. Recognition Engine

3.1 Adaptive Gesture Recognizer
Depending on application demands, the user’s gestures
could be captured through different input devices. The
captured data is fed into the gesture recognizer which
calculates the probabilities for each possible gesture
that matches the current observation: P(O|G1), P(O|G2),
…, P(O|Gn), P(O|G0) where O is the observation, G1 …
Gn are all the possible gestures, and G0 represents “not a
gesture” (i.e. the user’s unintentional input). These
probabilities are then fed into the decision-maker.

Each time a gesture is recognized, there are five dif-
ferent possible outcomes depending on the user’s inten-
tion and the system’s recognition result (Figure 3). De-
pending on the outcome, the gesture recognizer will
take the input data as a new training sample for differ-
ent gestures, and then re-train itself. Both positive and
negative samples are used for re-training. For the 2D
single-stroke gesture input in our prototype application
(to be discussed later), the gesture recognizer is imple-
mented using Hidden Markov Models (HMM) [16].

Out-
come Description

User’s
inten-
tion

Recognition
result Re-training sample

1 Correct Gx Gx positive sample for Gx

2 Wrong Gx Gy
positive sample for Gx
negative sample for Gy

3 Confused Gx O positive sample for Gx

4 False alert O Gx
negative sample for Gx
positive sample for G0

5 Idle O O None
Figure 3. Re-training rules for gesture recognizer de-
pending on outcome. Gx and Gy refer to different ges-
tures, and G0 refers to “not a gesture”. In the “user’s
intention” column, O means the user did not intend to
enter a gesture but provided input accidentally. In the
“recognition result” column, O means the system could
not map the input data to any recognizable gesture.

3.2 Gesture-Command Interpreter
The gesture-command interpreter (Figure 4) provides a
mapping of all possible gestures into commands for the
application, based on the current state and context of

the application program, and (sometimes) the parame-
ters of the gesture (location, scale, duration, etc.). The
same gesture may be interpreted as different commands
depending on the application context. This gesture-
command mapping is fed into the decision-maker. Our
system accepts 2D single-stroke input, and uses the
location (geometric center) of the gesture and applica-
tion context to compute the gesture-command mapping.

Figure 4. Gesture-command interpreter

3.3 Command Predictor
In addition to the input gestural data and the application
context, another valuable information channel is the
history of interaction activity. Depending on the appli-
cation and the particular user, regularities typically exist
in the sequence of commands entered to complete tasks.
Therefore, the next command the user is likely to exe-
cute is partially predictable by the previous command
history. For example, the probability of doing “paste”
becomes much higher when “copy” or “cut” is executed
recently. Including this historical data could improve
the reliability of the gesture recognition engine.

Given the current command context T consisting of
the previously executed command sequence, the prob-
abilities of all possible commands to be executed next,
P(C1|T), P(C2|T), …, P(Cm|T) where C1 … Cm are all
possible commands, are calculated and fed into the de-
cision-maker. Each time a command is executed, the
prediction model is updated, allowing it to improve
over time. Note that the command predictor and gesture
recognizer work independently of each other. In our
prototype we implement the command predictor based
on a popular text compression algorithm called “predic-
tion by partial match (PPM)” [4, 21] which exploits
statistics of the characters that follow identical strings.

3.4 Decision-Maker
The decision-maker incorporates information from the
gesture recognizer, the command predictor and the ges-
ture-command interpreter, and generates the final rec-
ognition result. Given P(O|G1), P(O|G2), …, P(O|Gn),
P(O|G0) from the gesture recognizer, P(C1|T), P(C2|T),
…, P(Cm|T) from the command predictor, and the map-
ping from the gesture-command interpreter, we multi-
ply the probabilities of corresponding gestures and
commands, and choose the gesture with largest product
to be the final recognition result. To enable gesture re-

jection, the corresponding command possibility for
P(G0|T) is set to a constant, and the other command
probabilities normalized. When the product for G0 be-
comes the largest among all the products, or all
P(O|G1), P(O|G2), …, P(O|Gn) give probabilities below
a pre-set threshold, G0 is chosen as the result, and the
recognizer concludes that the input is not a gesture.

4 Prototype System
In order to experiment with and evaluate the hybrid
gesture interface framework, we developed a test-bed
application based on a “picture shopping scenario” that
has sufficient functionality to exercise the various parts
of the framework, but at the same time is simple
enough for users to quickly understand within the con-
straints of user studies lasting at most a few hours. In
this application, the task is to pick pictures from the
“shelf” on the left for placement into the “shopping
cart” on the right. The user can browse the pictures,
zoom in to see details, query detailed information,
move pictures into or out of the cart, and so on. All the
commands are triggered by making 2D stroke gestures.
The location (geometric center) of the gesture deter-
mines which object the command is intended for.
Figure 5 shows an application screenshot, in which a
select gesture has been made atop the middle picture in
the bottom row. We defined seven gestures, illustrated
in Figure 6. Depending on context, these gestures can
be interpreted as eleven different commands.

Figure 5. Example “picture shopping” application

4.1 Input
Because of the ubiquity of 2D single-stroke gestures,
we chose it as the input modality for our implementa-
tion. A pen on a Wacom® tablet is used to input single-
stroke 2D gestures to a standard desktop computer. A
stroke is recorded from the moment the pen tip touches
the tablet to the moment it is lifted. The captured data is
fed into the recognition engine. The only data pre-
filtering we do is to ignore strokes too short in either
time (< 0.2secs) or space (within a 10x10 pixel region).

Gesture Name Corresponding Commands

Select

Select Picture: Select a picture to zoom in
on it. (on a picture)
Select Sort: Select a sort criteria and per-
form the sorting (on a sort button)

Query

Query: Display the information sheet of a
picture (on a picture) The info sheet in-
cludes title, author, date and category.

Dis-
miss

Dismiss Picture: Dismiss the zoomed-in
picture (on a zoomed-in picture)
Dismiss Info: Dismiss the information
sheet of a picture (on an info sheet).
Dismiss Sort: Dismiss the sort buttons (on
a sort button)

Sort

Sort: Display sort buttons (any context).
There are 4 buttons corresponding to 4
sort criteria: title, author, date and cate-
gory. The date is sorted from earliest to
latest, and the other three are sorted in
alphabetical order. Selecting one of the
buttons, sorts the pictures accordingly.

Pick

Pick into cart: Place a picture into the cart
(on a picture in the shelf)
Pick out of cart: Remove a picture from
the cart (on a picture in the cart)

Up

Scroll up: Scroll up the shelf by two lines
(any context)

Down

Scroll down: Scroll down the shelf by two
lines (any context)

Figure 6. Gestures and associated commands for test
application. Text within brackets explains the context.

4.2 Interface for On-Line Re-Training
The recognition engine adapts to the user’s input pat-
terns by taking feedback from the user about the recog-
nition result. We have designed an interface for collect-
ing this user feedback, with the explicit goal of keeping
the intrusiveness of the interface to a minimum relative
to the task the user is trying to perform. Note that
Mankoff et al. [12] describe techniques for ambiguity
resolution in recognition systems, with a similar goal of
low intrusiveness, but do not deal with gesture recogni-
tion per se nor use the pie menu interface we propose.

Our system recognizes the input gesture every time
the pen-tip is lifted off the tablet. If the system comes to
a recognition result other than “not a gesture”, the cor-
responding command is executed immediately. In this
case, three sub-cases can occur:
1. The gesture is recognized correctly. The correspond-

ing command is executed, and the user continues to
make the next gesture. The recognizer is re-trained
using the current gesture as a positive sample.

2. The gesture is misrecognized as another gesture.
3. The stroke is an unintentional input by the user, but

recognized as a gesture.
In cases 2 and 3, the user knows there is an error by

seeing a wrong command being executed, or no re-
sponse at all. The user thus needs to tell the system an

error happened. By double-tapping the pen-tip on the
tablet, a correction pie-menu is triggered (Figure 7a).
This menu includes items for all possible gestures and
an “undo” item. The captured gesture stroke is also
displayed for the user’s reference. In case 2, the user
selects the intended gesture by clicking on the relevant
menu item. The incorrect response is undone, and the
command corresponding to the intended gesture is exe-
cuted. The recognizer is then re-trained by taking the
stroke as a positive sample for the intended gesture, and
a negative sample for the misrecognized one. In case 3,
the user selects “undo”, and the incorrect response is
undone. The recognizer is re-trained by taking the
stroke as a negative sample for the misrecognized ges-
ture, and a positive one for the “not a gesture” model.

If the system determines the captured stroke to be
“not a gesture”, i.e. it fails to recognize the gesture,
another pie menu automatically pops up to ask for the
actually intended gesture. This “fail to recognize” menu
(Figure 7b) is almost identical to the correction menu in
Figure 7a, except that the “undo” menu item is replaced
with a “cancel” item. If the user intends the stroke to be
a meaningful gesture, he/she selects the intended ges-
ture item. The corresponding command is executed, and
the recognizer is re-trained by taking the stroke as a
positive sample for the intended gesture. If the stroke
was made unintentionally, i.e. system made the correct
decision, the user either selects “cancel” to dismiss the
menu, or simply ignores it and makes the next gesture.

Figure 7. (a) Correction menu (b) “Fail to recognize”
menu

5 Experiment

5.1 Goals
We compared the performance of our hybrid adaptive
recognition system to a non-adaptive one, for novice
users, using the “picture shopping application”. Since
our engine has two independent adaptive modules – the
gesture recognizer and the command predictor – we can
test their influence on performance separately.

5.2 Software
The software is implemented in C++. To support the
needs of a controlled experiment, the gesture recognizer
in the recognition engine can be switched between

adaptive and non-adaptive modes. In adaptive mode,
the recognizer works as described previously. In non-
adaptive mode, it provides the same interfaces for the
users to correct recognition errors, but does not re-train
itself. Similarly, the command predictor can be turned
on or off. When off, the command context is ignored.
The user interface is unaffected by the mode of either
the gesture recognizer or command predictor. The basic
recognizer was empirically tested to ensure that it had
reasonable recognition performance, thus avoiding bias
in favor of adaptation due to a poor base-line.

5.3 Participants
12 right-handed university students (9 male, 3 female)
volunteered. None had prior experience with pen input.

5.4 Procedure
In each session, a participant was given a different
group of 24 pictures with a maximum “shopping cart”
size of 4, and asked to use the gestural commands to
complete the following five tasks:
Task 1: Place into the cart all the pictures with exactly
one person in view. If more than 4 pictures meet the
requirement, chose the 4 with the earliest dates.
Task 2: Place into the cart all the pictures with author
“X”. If there are more than 4 pictures that meet the re-
quirement, choose the 4 with the earliest dates.
Task 3: Place into the cart all the pictures with person
“Y” in view and where the title consists of exactly one
word. If there are more than 4 pictures that meet the
requirements, choose any 4.
Task 4: Place into the cart the 4 pictures with the largest
number of people in view. If there are less than 4 pic-
tures with people in view, take all of them.
Task 5: Place your favorite 4 pictures into the cart.

Here “X” refers to a specific name, and “Y” refers
to a specific person, depending on the group of pictures.
The design goal of these tasks was to oblige the users to
actively use all the commands provided, while at the
same time exposing their own patterns of command
sequences when performing the various tasks.

At the start of the experiment, the application was
demonstrated, and all commands explained in detail.
Participants read the written task descriptions, and were
given one practice session in which they completed the
tasks for one group of pictures, using a standard pop-up
menu to invoke the commands, instead of the gestures.
The goal here was to familiarize the participants with
the tasks, independent of the gestures.

After the practice session, the gestures were demon-
strated, and a sheet illustrating all gestures provided for
reference. Participants were not given time to practice
the gestures, since our goal was to study system per-
formance when used by a novice. Participants were told

that the correction menu was only for correcting system
recognition errors. Conceptual errors caused by the user
(i.e. giving a wrong command) should be remedied by
giving an opposite command (e.g. “Down” for “Up”).

Tasks were performed at the users’ own pace, and
users rested between sessions. For each gesture entered,
we recorded the recognition result, the user-intended
gesture, and the time spent.

5.5 Design
A two-factor mixed design with between- and within-
participant factors was used. The two independent vari-
ables were: gesture recognizer adaptive/non-adaptive
(noted as G: G1/G0) and command predictor on/off
(noted as P: P1/P0). G was a between-participants fac-
tor, and P was a within-participants factor with coun-
terbalancing. In our experiment, the main source of skill
transfer would be the user’s practicing of the gestures
when performing the experiment. Intuitively, this prac-
tice effect should not be correlated to the command
predictor’s performance, given that the gesture recog-
nizer and command predictor are working independ-
ently. Therefore we hypothesized that the skill transfer
was symmetric for P (this hypothesis was later vali-
dated by the experiment data), and set P as the within-
subject factor. On the other hand, the user’s practice
effect would be heavily influenced by the adaptation of
the gesture recognizer, since we expected that the adap-
tation of the gesture recognizer would alleviate the
user’s burden to practice the gestures. Therefore G is
set to be the between-subject factor, so as to avoid the
influence of possible asymmetric skill transfer.
Participants were randomly assigned to 4 groups of 3:
 Group 1: G1; P0 followed by P1
 Group 2: G1; P1 followed by P0
 Group 3: G0; P0 followed by P1
 Group 4: G0; P1 followed by P0
In each group, participants completed 3 consecutive
sessions each for P0 and P1. The order of performance
of P0 or P1 is determined by the group, and we note
this order of P as Porder. During the 3 consecutive ses-
sions of P0 or P1, the adaptation effect was carried for-
ward between sessions. The system was re-initialized
when participants switched from P0 to P1 or vice versa.
All 6 sessions used different groups of pictures for the
same tasks. The pictures were grouped before the ex-
periments such that the task difficulties were the same
in each session. In summary, the design was as follows:

4 groups [2 gesture recognizer conditions (G1/G0) x
 2 command predictor orderings (P1->P0/P0->P1)] x
3 participants per group x
2 cmd predictor conditions (P1/P0) per participant x
3 sessions per command predictor condition
= 72 sessions in total

5.6 Results

Data Summary
Participants took an average of 6.6 minutes per session.
A total of 5960 gestures were made in the 72 sessions,
with an average of 82.8 gestures per session.

Recognition Rate
Percentage recognition rate is defined as the number of
correctly recognized gestures divided by the number of
all gestures in a session. A gesture is counted in out-
comes 1, 2, 3, and 4 (Figure 3), and as correctly recog-
nized in outcome 1. The outcome is determined from
the system’s recognition result and the user’s feedback.

Table 1 summarizes the recognition rate results. The
adaptive gesture recognizer showed a 20.2% improve-
ment over the non-adaptive gesture recognizer (F1,8 =
26.788, p < .001). The standard error for G0 (4.063%)
was higher than that for G1 (1.293%), which indicated
that without adaptation, system performance varied a
lot, due on different user behavior. With adaptation,
system performance is more consistent across users.

 G0 G1 G Overall
P0 63.8 85.6 74.7
P1 70.2 88.8 79.5

P Overall 67.0 87.2 77.1
Table 1: Average Recognition Rates (%)

The overall average recognition rate was 74.7% for
P0, and 79.5% for P1. The system with command pre-
diction showed a 4.8% improvement over that without
command prediction (F1,16 = 10.030, p < .01). The stan-
dard error for P0 (2.546%) was also higher than that for
P1 (1.511%), suggesting that the command predictor
also helped to stabilize system performance. In the ex-
periment design, we counterbalanced P as the within-
participants factor, by assigning half the participants to
P0 before P1, and half to P1 before P0, with the as-
sumption that any skill transfer between the two tech-
niques would be symmetric and balanced out by the
counterbalancing (i.e. the experience of using P1 first
affects the performance in subsequently using P0 by
roughly the same amount as that of the inverse case).
The lack of a significant Porder x P interaction (F1,16 =
1.014, p = .343) validated this assumption.

To compare our fully adaptive system to the fully
non-adaptive system, the average recognition rate was
88.8% for G1 & P1, and 63.8% for G0 & P0. The fully
adaptive system showed a 25.0% improvement (F1,10 =
23.552, p < .001). Again, the standard error of G0 & P0
(5.071%) is much higher than G1 & P1 (0.906%).

The data did not show a significant G x P interac-
tion (F1,16 = 1.089, p = .327). This result suggests that
the gesture recognizer and the command predictor were

not only working independently, but also affected the
user performance independently. It also suggests that
user’s behavior in performing gestures and executing
command sequences are not dependent on each other.

There was also a significant main effect for session
(F2,16 = 30.400, p < .001), with a steady improvement as
the experiment progressed. This is due to both system
adaptation and participants’ practice. Pairwise compari-
sons (Tukey test) showed that session 1 (70.8%) was
significantly different from session 2 (79.8%) (p < .01)
and session 3 (80.8%) (p < 0.05), while session 2 and
session 3 were not significantly different from each
other (p = 0.472). We did not observe a significant P x
session interaction (F2,16 = 0.276, p = .762). However,
there was a significant G x session interaction ((F2,16 =
9.463, p < 0.05) as illustrated in Figure 8.

For G1, there was a significant effect for session
(F2,8 = 23.828, p < .001). Session 1 (79.1%) was signifi-
cantly different from session 2 (91.1%) (p < .01) and
session 3 (91.4%) (p < .01), but sessions 2 and 3 were
not significantly different (p = .867). This indicates that
system adaptation was probably completed in session 2.

For G0, there was also a significant effect for ses-
sion (F2,8 = 8.562, p < .010). In contrast to G1, all 3
sessions were significantly different from each other.
Session 1 (62.4%) was significantly different from ses-
sion 2 (68.4%) (p < .01) and session 3 (70.3%) (p <
.05). And session 2 was significantly different from
session 3 (p < .05). This suggests the participants were
still improving in session 3. Compared with the result
for G1, we conclude that system adaptation signifi-
cantly reduced user practice requirements.

Figure 8. Recognition rates by session and G.

Single Gesture Time
Single gesture time was defined as the time spent from
the starting to end points of a single gesture stroke. Al-
though this measure was controlled by the participants
rather than the system, we expected that the more relia-
bly the gestures could be recognized, the less time the
participants would spend on making each gesture, since
they would not have to imitate the pre-defined gestures
exactly. We only counted correctly recognized gestures.

Table 2 summarizes the average single gesture
times. Overall, participants spent 25.9% less time on a

single gesture with the adaptive system (F1,8 = 53.341, p
< .001). This validated our hypothesis that with the
adaptive recognizer, participants made the gesture as
they saw fit rather than mimicking the system’s prede-
fined gesture as in G0, thus enhancing input speed.

 G0 G1 G Overall
P0 1160 853 1006
P1 1130 846 988

P Overall 1145 849 997
Table 2: Average Single Gesture Times (msec)

On the other hand, the command predictor did not
have a significant effect on the single gesture time. The
averages were 1006 ms for P0, and 988 ms for P1 (F1,16
= 1.170, p = .331). This is interesting compared with
the effect of G. Although the command predictor im-
proved recognition performance, the mechanism was
invisible to the participants. Therefore, participants did
not have an explicit mental model for that, and did not
change their behaviors enough to affect gesture time.
We did not observe a significant Porder x P interaction
(F1,16 = 0.047, p < .833), suggesting a symmetric trans-
fer effect. There was also no significant G x P interac-
tion (F1,16 = 0.405, p = .542).

There was a significant main effect for session (F2,16
= 91.641, p < .001), which showed a steady decrease in
gesture time through the experiment. Pairwise compari-
sons showed that the 3 sessions were all significantly
different from each other (p < .001), with average times
of 1096 ms for session 1, 994 ms for session 2, and 901
ms for session 3. This effect incorporates both system
adaptation and participants’ practice. There was a sig-
nificant G x session interaction (F2,16 = 7.783, p < 0.01)
, but no significant P x session interaction (F2,16 =
1.230, p = .318). As Figure 9 illustrates, G1 had a
slower rate of decrease, likely because participants were
already performing quite fast near the start and thus had
less room to improve with practice.

Figure 9. Single gesture time by session and G

Prediction Rate
Although the command predictor is not directly observ-
able by the user, it is still interesting to evaluate how
precisely the prediction works. Given the predicted
probabilities of gestures P(G1|T), P(G2|T), …, P(Gn|T),

and the gesture i actually made by the user, the predic-
tion rate is defined as the expectation of P(Gi|T). With a
completely uniform prediction (random guess), the pre-
diction rate would be 1/n. The amount by which the
prediction rate is greater than 1/n is an indication of
how much better the command predictor is working. In
our experiment, this expectation was calculated by tak-
ing the average of P(Gi|T) for all the gestures made in
the session. Obviously the prediction rates were only
calculated for P1 conditions. Since we have 7 gestures
in the experiment application, the prediction rate for
randomly guessing would be 14.3%.

The overall average prediction rate was 30.4%. This
was significantly higher than the random guess baseline
(t = 24.346, p < .001). No significant effect for G (F1,10
= 3.827, p = .079), session (F2,20 = 1.095, p = .354), or
G x session interaction (F2,16 = 0.993, p = .378) were
observed. This indicates that the command predictor
was working well, and its performance did not depend
on the gesture recognizer or participants’ practice time.

6 Discussion
A concern about adaptive interfaces is that the system
may become inconsistent and unpredictable due to ad-
aptation, which is detrimental to usability. However, in
the design we evaluated, the user has full control of the
adaptation process, and thus can better predict the result
of the adaptation. The interaction techniques are also
consistent over time. The only change the user observes
is that the recognition is getting better. Therefore the
user does not pay a penalty for the adaptation, beyond
providing on-the-fly training data.

Although in the non-adaptive system users had to
converge to pre-defined gestures, different behaviours
were observed in the adaptive system. Greatest variabil-
ity was observed in the “pick” and “query” gestures,
where not only parameters like tilt or proportion varied,
but different topologies were entered (Figure. 10). This
variability consolidated our reasoning why an adaptive
recognizer would be useful. If the adaptation rate is
fast, the user can completely change the definition of a
gesture. Since both training and newly collected sam-
ples are maintained, the user can also give multiple
definitions for the same gesture. This can address the
concern that the user may not be self-consistent when
making the same gesture each time. In our implementa-
tion, the system adaptation rate is such that the recog-
nizer can be trained to accept a completely different
definition for one gesture after 2~3 samples are given.

Figure. 10. Variability in input gestures

7 Conclusions and Future Work
We have presented a controlled user experiment to
evaluate an on-line gesture interface framework. Re-
sults showed significant performance gains, both in
recognition rate and in interaction speed. While our
experiment provided several revealing results, there are
many issues regarding adaptive gesture recognition
worthy of further study. It would be interesting to study
how different, perhaps higher dof, gestures will perform
within an adaptive framework. Also interesting is how
the framework generalizes between different users.
How well will the command predictor trained by one
user work for another user? When the recognizer is re-
trained by one user, is its ability to recognize other us-
ers’ gestures improved or impaired? Also, how many
gestures can such a system optimally handle? We ex-
plored the case where single-stroke gestures are dis-
cretely delimited by pen up/down events. It would be
interesting to explore multiple-stroke gestures, or the
situation where gestures are segmented on-the-fly from
continuous input, which occurs with buttonless devices
such as laser pointers [27] or passive wands [3].

Acknowledgements
We thank Allan Jepson, Xuming He, DGP lab mem-
bers, and all who participated in our experiment.

References
1. Boone, G. (1998). Concept features in Re:Agent, an

intelligent email agent. 2nd International Confer-
ence on Autonomous Agents. p.141-148.

2. Brusilovsky, P. & Pesin, L. (1998). Adaptive navi-
gation support in educational hypermedia: An
evaluation of the ISIS-Tutor. Journal of Computing
and Information Technology, 6(1). p.27-38.

3. Cao, X. & Balakrishnan, R. (2003). VisionWand:
interaction techniques for large displays using a pas-
sive wand tracked in 3D. ACM UIST. p.173-182.

4. Cleary, J. & Witten, I. (1984). Data compression
using adaptive coding and partial string matching.
IEEE Trans. on Comm, 32(4). p.396-402.

5. Connell, S. & Jain, A. (2002). Writer adaptation for
online handwriting recognition. IEEE Trans. on
PAMI, 24(3). p.329-346.

6. Fu, H., Chang, H., Yeong, Y., & Pao, H. (2000).
User adaptve handwriting recognition by self-
growing probabilistic decision-based neural net-
works. IEEE Trans. on Neural Networks, 11(6).

7. Hermens, L. & Schlimmer, J. (1993). A machine-
learning apprentice for the completion of repetitive
forms. IEEE Conf on AI Applications. p.164-170.

8. Hinckley, K. (2003). Synchronous gestures for mul-
tiple users and computers. ACM UIST. p.149-158.

9. Hinkle, D. & Toomey, C. (1994). CLAVIER: Ap-
plying case-based reasoning on to composit part
fabrication. 6th Innovative App of AI Conf. p.55-62.

10. Lang, K. (1995). NewsWeeder: Learning to filter
news. Intl. Conf. on Machine Learning. p.331-339.

11. Langley, P. (1999). User modeling in adaptive inter-
faces. Intl. Conf. on User Modeling. p.357-370.

12. Mankoff, J., Hudson, S., & Abowd, G. (2000). In-
teraction techniques for ambiguity resolution in rec-
ognition based interfaces. ACM UIST. p.11-20.

13. McGrenere, J., Baecker, R., & Booth, K. (2002). An
evaluation of a multiple interface design solution for
bloated software. ACM CHI. p.163-170.

14. Nishi, T., Sato, Y., & Koike, H. (2001). SnapLink:
Interactive object registration and recognition for
augmented desk interface. Interact. p.240-246.

15. Pazzani, M., Muramatsu, J., and Billsus, D. (1996).
Syskill & Webert: Identifying interesting web sites.
Natl. Conference on Artificial Intelligence. p.54-61.

16. Rabiner, L.R. (1989). A tutorial on Hidden Markov
Models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2). p.257-285.

17. Rubine, D. (1991). Specifying gestures by example.
ACM SIGGRAPH. p 329-337.

18. Segen, J. & Kumar, S. (1998). Gesture VR: Vision-
based 3D hand interface for spatial interaction.
ACM Multimedia. p.455-464.

19. Segen, J. & Kumar, S. (2000). Look ma, no mouse!
Comm. of the ACM, 43(7). p.102-109.

20. Vuori, V. (2002). Adaptive Methods for On-Line
Recognition of Isolated Handwritten Characters.
Ph.D. Thesis. Helsinki University of Technology.

21. Ward, D., Blackwell, A., & MacKay, D. (2000).
Dasher - a data entry interface using continuous ges-
tures and language models. ACM UIST. p.129 - 137.

22. Weber, G. & Specht, M. (1997). User modeling and
adaptive navigation support in WWW-based tutor-
ing systems. Intl. Conf. User Modeling. p.289-300.

23. Wilson, A. (2000). Adaptive models for the recogni-
tion of human gesture, Ph.D. Thesis. MIT.

24. Wilson, A. & Bobick, A. (2000). Realtime online
adaptive gesture recognition. ICPR'00 International
Conference on Pattern Recognition. p.1270-1275.

25. Wilson, A. & Pham, H. (2003). Pointing in intelli-
gent environments with the World Cursor. Interact.

26. Wilson, A. & Shafer, S. (2003). XWand: UI for
intelligent spaces. ACM CHI. p.545-522.

27. Winograd, T. & Guimbretiere, F. (1999). Visual
instruments for an interactive mural. ACM CHI.
p.234-235.

28. Wu, M. & Balakrishnan, R. (2003). Multi-finger
and whole hand gestural interaction techniques for
multi-user tabletop displays. ACM UIST. p.193-202.

