
An Interface for Creating and Manipulating Curves using a
High Degree-of-Freedom Curve Input Device

Tovi Grossman, Ravin Balakrishnan, Karan Singh
Department of Computer Science

University of Toronto
tovi | ravin | karan @dgp.toronto.edu

www.dgp.toronto.edu

ABSTRACT
Current interfaces for manipulating curves typically use a
standard point cursor to indirectly adjust curve parameters.
We present an interface for far more direct manipulation of
curves using a specialized high degree-of-freedom curve
input device, called ShapeTape. This device allows us to
directly control the shape and position of a virtual curve
widget. We describe the design and implementation of a
variety of interaction techniques that use this curve widget
to create and manipulate other virtual curves in 2D and 3D
space. The input device is also used to sense a set of user
gestures for invoking commands and tools. The result is an
effective alternate user interface for curve manipulation
that can be used in 2D and 3D graphics applications.
Categories & Subject Descriptors: H.5.2 [Information
Interfaces and Presentation]: User Interfaces; I.3.6
[Computer Graphics]: Methodology and Techniques
General Terms: Human Factors; Design
Keywords: High degree-of-freedom input; Curve editing

INTRODUCTION
In computer graphics, curves are a fundamental primitive
used in a variety of applications. These include direct use in
2D drawings, specification of surfaces in 3D geometric
modeling, and specification of motion and camera paths in
animation and virtual reality systems. Thus, the ability to
quickly and precisely create an appropriate set of curves is
a crucially important task in these graphics applications.
Most current interactive curve manipulation techniques
require that the user, to some extent, understand and work
with the underlying mathematical representations of curves
in order to control its shape and size. Recognizing the
limitations of these existing tools, researchers have been
working on tools for sketching and refining curves in a
more direct manner [2, 4, 5, 8, 9, 11, 15-17]. While
sketching is a very useful paradigm for creating and
refining curves, another paradigm that has not received as
much attention is the use of high degree-of-freedom input
devices to directly manipulate virtual curves. In the design

industry, however, traditional high degree-of-freedom
physical techniques for manipulating curves in clay
modeling and paper drawings are still very popular. Here,
curves are created directly by copying segments from
physical templates (e.g., French curve templates) or using
physical tools, which flex to produce curves (e.g., spring
steels). Many of these physical techniques allow for very
fast and accurate specification of curves, while current
virtual techniques are typically more cumbersome. Given
the success of these techniques in the real world, it is
reasonable to expect that virtual interaction techniques
could benefit from the use of physical artifacts more
closely matched to the task [7, 13, 16].
In [3], based on physical techniques used in the design
industry, Balakrishnan et. al. explored using a high degree-
of-freedom curve input device to directly create curves and
surfaces. While theirs was the first such system that
exploited the affordances of physical tools for manipulating
virtual curves, their interaction techniques were limited by
simple absolute mappings between physical tool and virtual
curves/surfaces. Their system also provided little precision
control over virtual curve parameters.
In this paper, we present a system that significantly extends
this previous research, demonstrating the use of a high
degree-of-freedom curve input device for quick but precise
curve creation and manipulation in both 2D and 3D space.
The system achieves this via a suite of new interaction
techniques for relative mapping of the parameters of the
physical device to the virtual world.

P
p
n
b
o
s
C
C

Fig. 1. System setup. The tape is secured at point #1. The first half
of the tape (segment 1-2) is used to position and orient the starting
point (#2) of the second half of the tape (segment 2-3). The
position and shape of the second half of the tape (segment 2-3) is
ermission to make digital or hard copies of all or part of this work for
ersonal or classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advantage and that copies
ear this notice and the full citation on the first page. To copy otherwise,
r republish, to post on servers or to redistribute to lists, requires prior
pecific permission and/or a fee.
HI 2003, April 5–10, 2003, Ft. Lauderdale, Florida, USA.
opyright 2003 ACM 1-58113-630-7/03/0004…$5.00.
mapped to the virtual TapeWidget (segment 4-5).

SYSTEM HARDWARE
The primary input device that forms the core of our
interface is the ShapeTape (www.measurand.com): a 96 x 1
x 0.1 cm rubber tape with a flexible spring steel core that
has 32 fiber optic sensors distributed in pairs uniformly, 6
cm apart, along its length. Each sensor pair provides bend
and twist information at its location, and by summing the
bends and twists of the sensors along the tape, the shape of
the tape can be reconstructed in three dimensions. This
shape reconstruction is relative to the location of the first
sensor pair. The tape was secured to a desk at the location
of this first sensor pair. In [3], a separate position and
orientation tracker was used to determine the location of
the starting point of the tape in 3D space. Rather than
adding another piece of hardware to our system, we instead
used the first half of the tape to position and orient in
physical 3D space the starting point of the second half of
the tape. The second half of the tape was then used to input
shape information. Figure1 illustrates this hardware setup.
The only other input device used was a footpedal hinged in
the middle, with two momentary buttons: one at the front of
the pedal (henceforth referred to as the FrontButton) and
the other at the back (BackButton).
It is important to note that we have deliberately chosen this
minimal hardware setup, in order see how far we could go
with using only a curve input device and two buttons. As
will be evident as we progress through this paper, we were
able to develop a significant repertoire of gestural
interaction techniques using only this minimalist
configuration. We readily admit, however, that while this
was an excellent setup for pushing the boundaries of our
research, any commercially viable system for curve
manipulation using curve input devices would likely
require additional input modalities.

GESTURES
In building a usable system for curve manipulation using
such a minimal hardware configuration, we are faced with
the challenge of providing a mechanism for command
input. We use the footpedal’s two buttons for the most
frequently used commands, and to kinesthetically maintain
a few modes. Additional commands are specified via a set
of gestures performed using the physical tape (henceforth
referred to simply as tape). Figure 2 illustrates this gesture
set. Six of the gestures (Fig. 2a-f) are recognized by
tracking the velocity vectors of the centre and two endpoint
sensors of the tape. The last two gestures (Fig. 2g,h) are
recognized by measuring the amount, direction, and timing
of twisting of the tape. These eight gestures are used
throughout our system. The commands associated with
these gestures will be described as we progress through the
paper explaining the various interaction techniques.

PHYSICAL to VIRTUAL INTERFACE
In the standard mouse/keyboard GUI interface, the system
cursor serves as an abstract representation of mouse
movements. This cursor is then used to manipulate various
parts of the interface. In a sense, the cursor serves as an

intermediary between the mouse and the rest of the
interface. Unlike the standard point cursor that has only two
changeable parameters (X-Y position in 2D space),
analogous intermediaries for high degree-of-freedom
devices would likely have more parameters that can be
manipulated by the device. Based on previous experience
[3], and building on foundational work on three
dimensional widgets by Conner et. al. [6], we have
designed such an intermediary for our interface, called the
TapeWidget. Manipulations on the tape are used to control
parameters of the TapeWidget, including position in space,
size, and shape. The TapeWidget is then used to create,
edit, and manipulate other virtual curves in the graphical
scene. This TapeWidget is one major difference between
this present system and the exploratory work done in [3].
The following subsections describe the various techniques
we have developed that use manipulations of the tape to
change the TapeWidget’s parameters.

Tape to TapeWidget Mapping
Two points on the physical tape are mapped to the
TapeWidget’s endpoints (Fig. 1). Thus, the TapeWidget
takes on the shape of this section of the physical tape.

Fig. 2. Gesture set. (a) Crack – quickly move the tape endpoints
close together. (b) Snap – quickly move the tape endpoints apart.
(c) Push – quickly move the centre of the tape towards the screen
by “flicking” the wrists forward. (d) Pull – quickly move the
centre of the tape away form the screen by “flicking” the wrists
backward. (e) Stab – quickly move the free endpoint of the tape
towards the screen. (f) Tug – quickly pull the free endpoint of the
tape away from the screen. (g) Twist – twist the tape with each
hand moving in opposite directions. (h) Double Twist – twist the
tape in one direction and then in the opposite direction in quick
succession.

TapeWidget Positioning
The first half of the tape, which is used to track the location
in space of the second half of the tape, does not allow for
enough freedom to move the TapeWidget around the entire
screen. As such, we need an interaction technique for gross
scale position of the TapeWidget in space. This is
accomplished as follows using a “flying” metaphor: when
the FrontButton is pushed and held, moving the tape moves
the TapeWidget in the same direction with a velocity
relative to the tape’s distance from it’s starting point.

TapeWidget Scaling
Scaling the TapeWidget is accomplished by using a twist
gesture on the tape. When the tape is twisted in one
direction, the size of the TapeWidget is increased. A twist
in the opposite direction scales down the TapeWidget. The
twist gesture can be made anywhere along the tape.

Endpoint Mapping
The two endpoints that are set by default to map a section
of the tape to the TapeWidget can be changed at any time
using a double twist gesture. Double twisting at any point
of the tape will make that the endpoint (Fig. 3) – analogous
to the real-world action of twisting a piece of wire back and
forth to break it. Together with scaling, this enables
subsections of the tape to be mapped to the TapeWidget,
resulting in changing the gain between the tape and the
TapeWidget. If a small section of the tape is mapped to the
entire TapeWidget, the resulting high gain mapping is good
for changing the shape of the entire TapeWidget with just a
small change in the shape of the tape. Conversely, mapping
a large section of the tape to the TapeWidget results in a
low gain mapping that is better for precise tweaking of
portions of the TapeWidget. A snap gesture restores the
default endpoint mapping.

.
Fig. 3. Endpoint mapping. (a) shows the default mapping where
the whole tape is mapped to the whole TapeWidget. (b, c) a
double twist gesture at points 1 and 2 respectively sets those
points as the new endpoints.

Sharp Corners
Since the tape cannot be physically bent into sharp corners
(the fiber sensors would crack if bent too sharply), the
TapeWidget’s shape by default also cannot have sharp
corners. However, in many curve editing tasks, it is
desirable to be able to create sharp changes in a curve’s
shape. To support this, we use a crack gesture to “crack”
the continuity of the TapeWidget’s shape, resulting in a
“corner” that consists of two straight lines joined at a vertex
(Fig. 4). The location of the endpoints of this corner
TapeWidget are controlled by the endpoints of the tape, and

the angle between the lines is relative to the distance
between the tape’s endpoints. A snap gesture restores the
regular curved TapeWidget.

Fig. 4. Sharp corners. (a) default mapping of tape to TapeWidget.
(b) a crack gesture changes the TapeWidget into a sharp corner.
(c) snap gesture restores TapeWidget to default mapping in (a).

TapeWidget Locking
We have found many situations (to be described shortly)
where it is desirable to temporarily lock the parameters of
the TapeWidget. We use the BackButton as a toggle to lock
and unlock the TapeWidget’s position, shape, and size.

Relative Tape to TapeWidget Orientation Mapping
So far, apart from the technique for creating sharp corners,
all the manipulations we have described result in the
TapeWidget taking on the exact orientation of the tape.
However, it is sometimes desirable to have a more relative
mapping between the orientation of the tape and
TapeWidget, particularly in situations where the desired
orientation of the TapeWidget would otherwise necessitate
holding the tape in an awkward position. To support
relative orientation mapping, we first click the BackButton
to lock the TapeWidget. The tape can now be reoriented in
a comfortable pose by the user, without affecting the
TapeWidget. When the BackButton is clicked again the
TapeWidget is unlocked and its shape, position, and size
responds to new manipulations of the tape, but with a
transformed orientation (Fig. 5). Again, a snap gesture
restores the default absolute mapping.

Fig. 5. Relative orientation mapping. (a) normal mapping. The
tape is held in a fairly awkward position. (b). BackButton is
clicked to lock the TapeWidget. The tape now be repositioned
without affecting the TapeWidget. (c) BackButton is clicked again
to unlock the TapeWidget. Tape manipulations are now mapped
with a relative orientation to the TapeWidget.

These techniques result in a sophisticated interface between
the physical tape and its virtual instantiation – the
TapeWidget. The interface supports both simple and
complex (but precise) control of the TapeWidget’s
parameters. Using this highly maneuverable TapeWidget,
coupled with a few more gestures, we have developed a set

of interaction techniques for creating and manipulating
other virtual curves in a graphical scene. We describe these
interaction techniques in the following sections, beginning
with 2D techniques, and then moving to 3D.

2D CURVE CREATION and MANIPULATION
Creation
Creating a new curve in the scene is accomplished by using
a push gesture (Fig. 6). The metaphor here is that of
“pushing forward to drop a curve onto the scene”, echoing
the paradigm shift from control point based creation to a
faster, more direct approach. Invoking this gesture creates a
new curve at the position of the TapeWidget that replicates
its current shape and size. We lock the TapeWidget (using
the BackButton) before invoking the push gesture. This
prevents any movements in the tape caused by the gesture
itself from accidentally changing TapeWidget parameters.

Fig. 6. Curve creation. (a) tape shapes and positions the
TapeWidget. BackButton click locks the TapeWidget. (b) push
gesture drops a new curve with TapeWidget’s shape into scene.

Editing
Our curve editing design philosophy is based on a sculpting
metaphor with the TapeWidget as the analogue of a
sculpting tool. Just as a sculpting tool’s behaviour changes
depending on how it is used, we implicitly use the
TapeWidget’s proximity to, and intersection with, curves in
the scene to determine the type of editing to be performed.
We have developed four example editing techniques that as
a whole can be viewed as a single editing mechanism that
changes its behaviour depending on the proximity and
intersection of the TapeWidget to the curve. The next few
subsections describe these techniques.

Curve Selection
To edit a curve, the user must first select it. Our system
considers the curve closest to the endpoint of the
TapeWidget to be the “current curve”. To distinguish the
current curve from others in the scene, we render it as a
thicker curve. Clicking the FrontButton toggles selection
and deselection of the current curve. We can select multiple
curves by moving the TapeWidget around the scene.

Reshaping with a Single Intersection Point
The simplest method for reshaping a curve is by
intersecting one endpoint of the TapeWidget with a
selected curve. Two interpolation endpoints are placed on
either side of the point of intersection, at a default distance.
A preview curve that is a Bezier interpolation joining these
interpolation points and the endpoint of the TapeWidget is

displayed in red, indicating to the user what the resulting
change would look like (Fig. 7). Increasing or decreasing
the interpolation interval is achieved by twisting the tape.
Clicking the FrontButton results in the curve being
reshaped as indicated by the red preview curve.

Fig. 7. Reshaping with a single intersection point. (a) the
TapeWidget intersects a curve in the scene at one point, and the
interpolated red preview curve is shown. (b) FrontButton is
clicked and the curve takes on the shape of the preview curve.

Reshaping with Two Intersection Points
If the TapeWidget intersects a selected curve at two points,
the red preview curves appears, taking on the shape of the
TapeWidget between these two intersection points. The red
preview curve is finely interpolated at the two points of
intersection to maintain smoothness (Fig. 8). As with the
previous technique, clicking the FrontButton results in the
curve taking on the shape of the preview curve.
Both these methods of editing can be used while there is a
relative orientation mapping between the tape and
TapeWidget, and/or when the TapeWidget is shaped as a
sharp corner as previously described.

Fig. 8. Reshaping with two intersection points. (a) TapeWidget
(blue) intersects a curve (black) at two points, and the resulting
interpolated red preview curve is shown. (b) FrontButton is
clicked and the curve takes on the shape of the preview curve.

Compound Reshaping
A third method, useful for precise but compound relative
reshaping of curves, is now described with Figure 9
illustrating. First, the TapeWidget glues to an existing
curve when its shape closely matches the shape of a curve
near to it (Fig. 9a). This is the analogue of point snapping
to parts of a scene when using a standard point cursor for
editing. The endpoint extents are placed on the existing
curve closest to where the TapeWidget endpoints were
before the TapeWidget was glued (Fig. 9b). Once glued,
the TapeWidget is controlled by both the endpoints and
subsequent manipulation of the physical tape. When the
TapeWidget’s shape is changed, we keep the end points
constrained to their original glued position by displacing
every point on the TapeWidget by an offset vector as
follows: The difference vectors between the original end
points e1, e2, and the end points after the TapeWidget’s
shape is changed, are shown in Fig. 9c as d1,d2. The offset

vector at any point along the TapeWidget is an
interpolation of the vectors d1 and d2, varying from d1 at
point e1 to d2 at point e2. These offset vectors are added to
the TapeWidget, with results as shown in Fig. 9d. Clicking
the FrontButton reglues the TapeWidget in its current state,
while preserving the same end points.

The other set of extents seen in Fig. 9b, called interpolation
extents, are used to blend the results of the curve generated
using the algorithm described above with the unedited
segments of the curves. A bezier curve smoothly joins the
unedited curve segments in the regions between the
endpoints and the interpolation extents (see Fig. 9e). The
end points and interpolation extents can also be edited from
their default locations. Either set of extents are active at any
given time. When the tape is twisted close to the center, the
active set of extents move closer together or further apart,
depending on the twist direction. If either endpoint of the
tape is twisted, then only its corresponding extent will
move. A double twist toggles the active set of extents.

Fig. 10. Cranking during compound reshaping. (a) TapeWidget is
glued onto the curve. (b) manipulating the TapeWidget shapes the
curve. (c) BackButton is clicked to lock the TapeWidget, allowing
the tape to be repositioned without affecting the TapeWidget. (d)
BackButton is clicked again to unlock the TapeWidget.
Manipulating the TapeWidget again results in the curve being
further reshaped in a relative manner.

A push gesture makes the existing curve permanently take
on the shape of the preview curve in between the endpoint
extents (Fig 9f). The TapeWidget remains glued, so the
process can be repeated. As always, clicking the
BackButton locks/unlocks the TapeWidget, allowing for
the shape of the curve to be "cranked" in a relative manner
(Fig. 10). This technique allows for precise, compound,
relative reshaping of curves to be performed, which would
be quite difficult to achieve using existing curve editing
techniques. The TapeWidget unglues with a tug gesture.

Extending Curves
If the TapeWidget is close to an endpoint of a curve, it
glues to that endpoint. As usual, the TapeWidget can be
locked and unlocked by clicking the BackButton. Twisting
the tape determines how much the curve’s endpoint will be
extended along the curved path provided by the
TapeWidget’s shape (Fig. 11). A push gesture makes the
curve extension permanent.

Fig. 11. Extending curves. (a) TapeWidget moves close to the
endpoint of an existing curve. (b) TapeWidget glues to the
endpoint of the curve. (c) after BackButton is clicked to lock the
TapeWidget, a push gesture extends the curve.

Tools
When editing curves, it is often desirable to be able to reuse
a previously defined TapeWidget shape. We support this by
creating, saving, and recalling a set of user defined tools.
To create a tool a crack gesture is made while the
TapeWidget is locked. This closes the shape of the
TapeWidget and locks it. The endpoint of the tape can then
be used to control the position and rotation angle of the
tool. The tool can be scaled and moved around the screen
just like the regular TapeWidget. Similar to the
TapeWidget, a tool can be used to drop new curves of the
same shape as the tool into the scene, or to reshape existing
curves. We also implemented a menuing system to provide
the user with access to tools that have been previously
created. A stab gesture pops up the menu directly above the
position of the TapeWidget. The menu contains iconic

Fig. 9. Compound reshaping. (a) the TapeWidget (blue) moves
close to an existing curve (black), causing it to “glue” onto the
curve. (b) endpoint and interpolation extents are displayed. (c) the
computed vector offsets (the arrows are for illustration only and
do not appear when the system is in use). (d) shows result of
adding the vector offsets. (e) curve is interpolated between the
endpoint and interpolation extents. (f) a push gesture reshapes the
curve. (g) a tug gesture unglues the TapeWidget from the curve.

representations of the tools arranged in an arc (Fig. 12). A
maximum of six tools are displayed at a time. If the menu
has more than six tools, the edges of the menu fade out to
indicate that the menu can be scrolled. Twisting the tape
rotates the menu left or right, scrolling through all available
tools. By moving the TapeWidget over a tool and clicking
the FrontButton, the TapeWidget will take on the shape of
that tool.

Fig. 12. Tool menu. (a) stab gesture pops up the menu. (b) moving
TapeWidget highlights desired menu item. (c) clicking
FrontButton selects highlighted tool.

If a tool is locked and a snap gesture is made, then the tool
can be edited as if it were a curve in the scene. After
modifications to the tool have been made, a tug gesture
allows the user to return to using that tool. This new tool
shape is also added to the tool menu.

3D OPERATIONS
We now extend our interactions into 3D space. Previous
work [8, 9] on the design of 3D curve editing tools have
indicated that to ensure accuracy it is preferable for 3D
curves to be created and manipulated in 2D orthographic
views of the 3D scene. Given that all the 2D techniques
described in the previous sections will seamlessly work on
2D orthographic views of 3D space, we already have a
suite of tools for 3D curve manipulation. What remains to
be developed are techniques for use in the 3D perspective
view, including: camera controls for maneuvering around
the 3D view, selecting curves and construction planes,
creating new 3D construction planes, and transitioning
between 3D and 2D views.

2D to 3D Transitions
A tug gesture is used to seamlessly transition between 2D
orthographic and 3D perspective views. Similar to the
techniques used in [8, 9], this transition is smoothly
animated to allow the user to understand the
correspondence between the 2D and 3D visuals.

Camera Controls
As in previous systems [8, 9, 17], we support standard
camera controls of tumble, pan, and zoom. However, we
have adapted these techniques to work with the tape.
If the user points the tape towards the screen while pressing
and holding down the FrontButton, movement of the tape’s
endpoint rotates the camera around the 3D scene.
If the tape is parallel to the screen while the FrontButton is
pressed and held, a pan-zoom mode is entered. The two
endpoints of the tape control the panning and zooming.
Based on the technique used in [14], moving the two
endpoints closer together or further apart zooms in or out
respectively. Keeping the tape’s endpoints at a constant

distance apart and moving them together in the same
direction pans the camera.

Construction Planes
In order to create curves in 3D space, we project 2D curves
onto 3D construction planes. By default, three base
construction planes (x-y, x-z, y-z), are drawn in the 3D
scene. These not only provide a base for drawing curves
onto, but also serve as a basis for specifying other
construction planes.

Selecting Construction Planes
When in the 3D perspective view, a cursor is drawn and is
controlled by the endpoint of the tape. Using this cursor to
point at any of the construction planes and clicking with the
BackButton selects that plane. Only one plane can be
selected at a time.

Creating Curves on Construction Planes
Once a construction plane has been selected, a tug gesture
smoothly transitions from the 3D perspective view to a 2D
orthographic view perpendicular to that construction plane.
In this 2D view, curves can be created and edited using all
the techniques previously described. Any new curves
created are projected onto the surface of the construction
plane. Figure 13 illustrates. Another tug gesture returns to
the 3D view.

Intersection Points.
In both 2D and 3D views, points where curves intersect
planes are marked by a large green dot. This serves as a
useful aid for the user to align curves.

Creating New Construction Planes
When an existing plane has been selected in the perspective
view, a push gesture creates a new plane that’s positioned
perpendicular to this selected plane. The new plane is either
flat or curved, depending on the type of plane last created.
A snap gesture changes the plane from flat to curved, and a
crack gesture does the opposite.

Fig. 13. Drawing on construction planes. (a) construction plane is
selected. (b) tug gesture transitions to 2D orthographic view of
that construction plane, and a new curve is created on it. (c, d)
another tug gesture transitions back to the 3D perspective view,
where the curve can be inspected in 3D space.

Neither user chose to build complex 3D models with the
system. One user did, however, build up a relatively simple
3D model of a table consisting of a circular body and four
legs. Both users did become familiar enough with the
system to get the overall feel of the various techniques, and
were able to give us valuable feedback, leading to the
following observations:

• Both users liked using the tape to directly manipulate
curves without the abstractions found in current interfaces.
However, they both felt that the tape would be more useful
if it were complementing other tools and input devices,
rather than being the only tool available. One user said he
would like to be able to put the tape down and sketch part
of a curve with a pen – in other words, using the best tool
for the job as needed. Both users liked the fact that the tape
could be manipulated using both hands simultaneously, and
even suggested potentially new ways in which two-handed
manipulation of the tape could be used.

Fig. 14. Creating new construction planes. (a) in 3D view, a push
gesture creates a flat plane. The endpoints 1 and 2 of the plane
correspond to the endpoints of the tape that are similarly labeled.
(b) a snap gesture converts to a curved plane whose shape is
controlled by the tape.

As Fig. 14a shows, the location of a flat plane is controlled
by the two endpoints of the tape. When the new flat plane’s
location is within a small delta of either major axis of the
base selected plane, the flat plane will snap to that axis. Fig.
14b illustrates how the shape of a curved plane is
determined by the shape of the tape.

• We found that the users were able to learn and perform
our gesture set, and easily understood the underlying
metaphors. In particular, the push gesture resonated with
both users. This is likely because it only required a simple
flick of the wrists and also because the metaphor was very
obvious − that of pushing a curve or plane into the scene.

A new plane can be moved around the 3D scene by moving
the tape, using the same technique for moving the
TapeWidget around when in the 2D orthographic view. The
shape, position, and orientation of the plane can also be
locked and unlocked by clicking the BackButton (i.e., using
the same method for locking/unlocking the TapeWidget).
When the new plane is locked, another push gesture
confirms the addition of this plane, with its locked shape,
into the scene at its current position and orientation.

• One of the users commented on the amount of physical
work that could be required to manipulate the tape. He said
he much prefers a small tablet that can be used without
lifting his wrist. We note that while there will always be
some physical effort required when using tangible devices,
more extensive use of the widget flying technique and
relative mappings we provide could have significantly
reduced the effort required. Almost all tangible user
interfaces [7, 13] face this challenge of providing simple,
easily understood physical artifacts to control virtual
elements without increasing the work required of the user.
Indeed, one of the reasons why the mouse is such a popular
device is that it can be operated in a “lazy” fashion [1].

The technique for plane creation described above works
fine for planes of approximate shape. If more precise shape
and location is required of a plane, its curvature can be
defined in the orthographic view. First, a curve is drawn
using the previously described techniques. With a pull
gesture this curve will be used to define the curvature of a
new surface, extruded along the normal of the currently
selected plane. • One user mentioned that the paradigm which we used

would be very useful for organic modeling, where curves
are drawn and then tweaked to the designer’s preferences.
However, he said he sometimes felt uncomfortable creating
and editing curves without direct control over the
underlying mathematics of the curve. This complaint could
be due to the fact that this user is very highly skilled in the
use of current interfaces that demand that the user
understand the underlying math. Indeed, one of the goals of
our system was to insulate the user from the math! So, in a
sense this user’s comment could be viewed as a measure of
how well we had managed to achieve this separation
between the underlying math and the interaction
techniques. On the other hand, this could be an argument
for providing other tools to complement the tape so that the
user would have the choice of either very direct
manipulation with the tape or more abstract manipulations
of the foundational curve parameters.

USER FEEDBACK
While our system is still in the research prototype stage, we
thought that it was important to get some early feedback
from potential users. We felt that at this stage it would be
more valuable to obtain feedback from expert users of other
curve manipulation systems, rather than rely on novices
who would be unlikely to understand all the subtleties
involved in complex curve manipulation tasks. We asked
two subjects very experienced in using various commercial
2D and 3D graphics software – one an academy-award
nominated 3D modeler, and the other an industrial designer
– to try out the system for a two hour session each. The first
hour was used by the subject to learn the various gestures
and interaction techniques. During the second hour, the
subject was asked to freely use the system to create and
manipulate curves of their own choosing.

DISCUSSION, CONCLUSIONS, and FUTURE WORK
One of the first challenges we faced was finding a way to
use the tape not only for the curve manipulation tasks that it
was very well suited for, but also for command input. Our
solution was to use the tape to capture user gestures, and
we defined an initial set of eight distinct gestures. Note that
each of these gestures was assigned a consistent meaning in
our system. For example, the push gesture was consistently
used to add elements to the scene: curves when in a 2D
view, planes when in a 3D view. Similarly, the twist
gesture was used to increase or decrease a particular
variable: interpolation interval, widget size, and menu item
position. Overall, we found that this small but well defined
gesture set enabled us to support the fairly large set of
interaction techniques used in our system.

Fig. 15. Two views of an example wireframe model created
entirely with our system.

REFERENCES
1. Balakrishnan, R., et. al. (1997). The Rockin'Mouse:

Integral 3D manipulation on a plane. CHI'97. p. 311-
318.

2. Balakrishnan, R., et. al. (1999). Digital tape drawing.
UIST'99. p. 161-169. While our minimalist hardware configuration was useful in

forcing us to push the envelope on developing novel
interaction techniques, including gestural command input,
user feedback indicated that our system would benefit from
integrating other techniques, such as sketching [4, 5, 10, 12,
17]. We also believe that it would be beneficial to have a
suite of different physical tapes, each with unique physical
characteristics such as bending tension, thickness, length,
and precision. As discussed in [3], it could also be useful to
have tapes that can maintain their physical shape over time.

3. Balakrishnan, R., et. al. (1999). Exploring interactive
curve and surface manipulation using a bend and twist
sensitive input strip. ACM I3D'99. p. 111-118.

4. Baudel, T. (1994). A mark-based interaction paradigm
for free-hand drawing. UIST'94. 185-192.

5. Cohen, J., et. al. (1999). An interface for sketching 3D
curves. ACM I3D'99. p. 17-21.

6. Conner, B., et. al. (1992). Three dimensional widgets.
Computer Graphics, 22(4). p. 121-129. An interesting design element of our system was the focus

on a thorough set of 2D curve editing techniques, and then
using these 2D techniques to create and manipulate 3D
curves. Simply by adding construction planes and camera
controls, we got a useful set of 3D tools “for free”.
However, given that we use 2D techniques to project
curves onto 3D planes that are either flat or curved along
one axis, only planar 3D curves are possible. In the current
system, we restricted ourselves to using only the 2D shape
information of the tape, although the tape itself can provide
3D shape data. While non-planar 3D curves alone are
sufficient for creating many useful 3D wireframe models
(Fig. 15), there are situations where it would be desirable to
have non-planar 3D curves [9]. Accordingly, we intend to
explore using the 3D shape information for creating non-
planar 3D curves, building on techniques developed in [9].

7. Fitzmaurice, G., et. al. (1995). Bricks: Laying the
foundations for graspable user interfaces. CHI'95. p.
442-449.

8. Grossman, T., et. al. (2001). Interaction techniques for
3D modeling on large displays. ACM I3D'99. p. 17-23.

9. Grossman, T., et. al.. (2002). Creating principal 3D
curves with digital tape drawing. CHI'02.. p. 121-128.

10. Igarashi, T., & Hughes, J. (2001). A suggestive
interface for 3D drawing. UIST'01. p. 173-181.

11. Igarashi, T., et. al. (1998). Path drawing for 3D
walkthrough. UIST'98. p. 173-174.

12. Igarashi, T., et. al.. (1999). Teddy: a sketching interface
for 3D freeform design. SIGGRAPH'99. p. 409-416.

Overall, our system has demonstrated how a high degree-
of-freedom curve input device can be used for complex
curve manipulations. It is also an example of a graspable
[7] or tangible [13] interface that goes beyond the simple
one-to-one mappings between physical and virtual artifacts
that have typically been demonstrated by previous research.

13. Ishii, H., & Ullmer, B. (1997). Tangible bits: towards
seamless interfaces between people, bits and atoms.
CHI'97. p. 234-241.

14. Kurtenbach, G., et. al. (1997). The design of a GUI
paradigm based on tablets, two-hands, and
transparency. CHI'97. p. 35-42. ACKNOWLEDGEMENTS

15. Sachs, E., et. al.. (1991). 3-draw: A tool for designing
3D shapes. IEEE CG&A, 11(6). p. 18-26.

We thank Lee Danisch of Measurand for providing the
hardware, David Torre and Jeff Magder for video
production, and members of the Dynamic Graphics Project
laboratory (www.dgp.toronto.edu) at the University of
Toronto for valuable comments and discussions.

16. Singh, K. (1999). Interactive curve design using french
curves. ACM I3D'99. p. 23-30.

17. Zeleznik, R.C., et. al. (1996). SKETCH: An interface
for sketching 3D scenes. SIGGRAPH'96. p. 163-170.VIDEOS

Digital video clips demonstrating this system can be
downloaded from www.dgp.toronto.edu/~ravin/#videos

http://www.dgp.toronto.edu/
http://www.dgp.toronto.edu/~ravin/

	ABSTRACT
	Categories & Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces; I.3.6 [Computer Graphics]: Methodology and Techniques
	General Terms: Human Factors; Design
	INTRODUCTION
	SYSTEM HARDWARE
	GESTURES
	PHYSICAL to VIRTUAL INTERFACE
	Tape to TapeWidget Mapping
	TapeWidget Positioning
	TapeWidget Scaling
	Endpoint Mapping
	Sharp Corners
	TapeWidget Locking
	Relative Tape to TapeWidget Orientation Mapping

	2D CURVE CREATION and MANIPULATION
	Creation
	Editing
	Curve Selection
	Reshaping with a Single Intersection Point
	Reshaping with Two Intersection Points
	Compound Reshaping
	Extending Curves

	Tools

	3D OPERATIONS
	2D to 3D Transitions
	Camera Controls
	Construction Planes
	Selecting Construction Planes
	Creating Curves on Construction Planes
	Intersection Points.
	Creating New Construction Planes

	USER FEEDBACK
	DISCUSSION, CONCLUSIONS, and FUTURE WORK
	ACKNOWLEDGEMENTS
	VIDEOS
	REFERENCES

