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ABSTRACT 
We introduce the concept of the Temporal Thumbnail, used to 
quickly convey information about the amount of time spent 
viewing specific areas of a virtual 3D model. Temporal 
Thumbnails allow for large amounts of time-based information 
collected from model viewing sessions to be rapidly visualized by 
collapsing the time dimension onto the space of the model, 
creating a characteristic impression of the overall interaction. We 
describe three techniques that implement the Temporal Thumbnail 
concept and present a study comparing these techniques to more 
traditional video and storyboard representations. The results 
suggest that Temporal Thumbnails have potential as an effective 
technique for quickly analyzing large amounts of viewing data. 
Practical and theoretical issues for visualization and representation 
are also discussed. 

Categories and Subject Descriptors 
H5.2. User Interfaces. 

Keywords 
Visualization, viewing analysis, temporal thumbnail, 
representation refinement. 

1.   INTRODUCTION 
Obtaining and understanding information about how people view 
something, such as a new consumer product, can be very 
beneficial. In the manufacturing and marketing world, for 
example, even simple information like knowing how long 
someone spent looking at a certain part of a product could be very 
valuable since it would at least partially indicate the importance of 
that part in the overall product’s design. Traditionally, such 
information has been collected via techniques such as focus 
groups, surveys, and in-person or videotaped observations of 
people examining new product offerings. While these tried and 
tested methods are undoubtedly useful, the increasing use of the 
world wide web for disseminating product information opens up a 
very promising avenue for collecting immense amounts of data on 
how potential customers view these products. For example, a 
manufacturer could showcase a virtual model of a new product on 
the web, and collect data on all virtual camera movements – in 
both space and time – made by those who viewed the model. 
Automobiles are frequently displayed in this manner1. 

                                                           
1 For an example, please see the Toyota web site  at 

http://www.toyota.com/vehicles/2004/camrysolara/ext360.html 

While collecting such data is relatively easy, subsequent analyses 
and visualization of the data is non-trivial. Existing techniques that 
work well for small datasets are not likely to scale to larger 
quantities. For example, determining how much time people spend 
examining different parts of objects becomes very difficult as the 
length of time and number of people increase. The common 
technique of analyzing video footage of users examining objects 
can take linear time in relation to the length of the recording. 
Sifting through the hundreds of hours of video that an online 
collection system will produce would be rather onerous, while 
describing and uniquely identifying similar content can be very 
difficult. Yet, it is indeed the potential treasure trove of 
information contained in these large quantities of data that make 
such an online collection process so valuable. Thus, it is critical 
that we develop appropriate techniques for quickly and accurately 
analyzing such viewing data.  

In this paper we develop, implement, and evaluate techniques that 
distill viewing information into an easily understood format that 
may help to address the analysis of how people view models. In 
particular, we focus on 3D models and scenes. Our techniques 
have the goal of extracting the characteristic impression of a 
viewing session by mapping the time dimension into a unique 
Temporal Thumbnail. Temporal Thumbnails are interactive 
sketches that are time-and-space sensitive and are representative 
of interactive virtual model examination sessions, similar to how 
traditional thumbnail images can quickly convey a low-fidelity 
sketch of static two-dimensional images. 

2.   RELATED WORK 
Summary and Compression. There are several research projects 
that have investigated the problem of making large amounts of 
information easier to handle and understand by extracting and 
presenting the information in a meaningful but condensed way. 
Some systems summarize video using text annotations or 
storyboard pictures [10]. Ueda et al. [19] use semantic techniques 
to automate structure extraction from video, and include a moving 
icon representation. Other techniques have attempted to reduce the 
time taken to process recorded information by compression of 
audio or video [1, 9, 15]. 

Time and interaction visualization. Stoev and Straber [17] present 
a case study of visualizing historical data. They allow users to 
interactively examine the spatial and temporal components of 
recorded data with control over the time increments and camera 
flythroughs. This technique, however, is time intensive since large 
datasets will require considerable interactive exploration. VisVIP 
[5] represents web site traversal as directed splines connecting 
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nodes. Other work explores visualization using glyphs to represent 
data and utilizes color and density to display information to users 
[11-14]. Chi [3] describes a technique for visualizing web site 
usage using a branching tree structure, where each edge 
corresponds to user navigation. The edges of the tree change color 
and thicken to reflect increased traffic. Healey and Enns [14] 
describe a system for mapping environmental parameters to 
glyphs for users to visualize spatial data. They present an example 
of tracking typhoons, where they show how glyph density, 
regularity and size can be utilized to represent the wind speed, 
pressure and precipitation due to the typhoon. 

Eye Tracking. Knowledge of where a user is looking has been 
used to measure attention given to different parts of an interface 
[4]. Vertegaal et al. [20] present a video conferencing system that 
utilizes eye tracking information to direct user viewpoints toward 
the targets of their conversations within a virtual conference room. 
There also have been systems designed to adapt the level of 
display detail to a user’s gaze, for example [2]. DeCarlo and 
Santella [6] describe a system for non–photorealistic painting of 
images based on users’ perception. Their system tracked eye 
fixations and displayed a finer level of detail within those regions 
of interest. Our system similarly assumes that attention is related 
to viewing information, and uses viewpoint information to 
visualize attention. In contrast with much of this previous work, 
our Temporal Thumbnails are effective only in a static, well-
defined domain. However, they have the advantage of requiring no 
specialized extraction algorithms, semantic understanding, or 
extensive customization. Our system takes the approach of 
summarization by collapsing the temporal dimension into a spatial 
representation overlaid onto the subject of the recording. This 
approach takes advantage of a well-defined domain, availability of 
spatial information, and locality of interaction using glyphs and 
color to represent aggregate temporal and spatial data. 

3.   TEMPORAL THUMBNAIL DESIGNS 
The concept of creating Temporal Thumbnails can be explained 
with the metaphor of an individual examining a teapot by holding 
it in their hands and rotating and manipulating it to view its 
various parts. Imagine that while performing this examination, the 
individual concurrently breathes at a constant rate, and little 
droplets from their breath falls onto the teapot. Assuming a direct 
and consistent accumulation of droplets, after the examination is 
finished one may examine the density of droplets deposited on the 
teapot to determine the approximate amount of time the individual 
spent examining any particular part of the teapot.  

Applying this idea to virtual 3D scenes, one can imagine using a 
recorded session of users examining a scene to reconstruct a 
characteristic picture of the viewing interaction. We take the 
recording and reconstruct the time component as a visual 
representation on the corresponding parts of the 3D scene. Just as 
a thumbnail image is a rough approximation of a full resolution 
picture, this reconstructed representation is meant to show a 
characteristic approximation of the time-based interaction. We 
term this reconstruction a “Temporal Thumbnail” and have 
developed three different visualization techniques that 
demonstrate this concept: the Camera Glyph, the View 
Intersection Glyph, and the Temperature Map. 

3.1   Camera Glyph 
Our first technique, the camera glyph, presupposes that knowing 
the position of the viewer (i.e., location of the virtual camera in 3D 
space) is helpful for analysis. Time is represented as dots placed in 
the scene at the camera’s position at each time-step. As shown in 
Figure 1a, we can see the position of a viewer at different times 
during the examination. If the viewer dwells at the sme position, 
the glyph becomes more opaque at each time step. Assuming an 
object-centered view, we can determine roughly what part of the 
model is being examined by projecting the view from the glyph 
into the center of the model. The density of the glyphs in a 
particularly area provides a rough indication of the importance of 
that area. 

When we have a lot of data represented by any kind of glyphs, 
occlusion may occur. To reduce the effect of obscuring clouds of 
camera glyphs, we allow the user to adjust their transparency by 
using a slider. This allows the user to manipulate the 
representation to best fit the task and the data set being viewed. 

3.2   View Intersection Glyph 
Our second technique, the view intersection glyph, is generated by 
projecting a ray from the center of the viewing camera into the 
scene and depositing a glyph at the intersection of the ray and the 
3D model being viewed. This operation is performed at each time-
step, creating a layer of glyphs on the surface of the model (Figure 
1b). If the viewer dwells for a long time at the same position larger 
glyphs are created, while fleeting movements across the model 
result in smaller glyphs. 

As with the previous technique, a slider adjusts the transparency of 
the glyphs and enables the user to see densest areas of the 
visualization, while adjusting for the problems that occur when too 
many glyphs obscure the view of the underlying model. 

The application of view intersection glyphs assumes that users 
center the view close to the subject of interest. This may not 
always be true, and also may be problematic if the model has 
multiple long and thin protrusions. 

3.3   Temperature Map 
Our third technique, the temperature map, addresses the problems 
associated with the single point of interest of the View Intersection 
Glyph. It is based on the idea that the focus of the user's interest 
lies near the centre of the screen and diminishes toward the edges. 
We achieve this by associating an attention score with each 
triangle of the model, which represents how much interest each 
triangle received from the user's navigation. We also wanted to be 
able to maintain a clear view of the model without any glyph 
obstruction and yet still represent the areas of interest. Our 
solution is to color the model’s geometry based on these attention 
scores. Although this coloration may obscure texture details, a 
simple toggle allows users to swap between the temperature map 
and the natural texturing. 

 

 2



 

(a) 

(b) 

Figure 1. (a) Camera glyphs show the position of the viewer in 3D space as a function of time spent at that location. (b) View 
intersection glyphs represent via highlights on the model itself the relative time spent looking at that location. The transparency 
level for both techniques is increased in the glyphs from left to right to reveal progressively more of the underlying model. 

The process of constructing the temperature map is conceptually 
similar to holding a strong spotlight to ‘heat up’ the model 
geometry during examination, and then viewing the resulting 
temperature gradient. To implement the temperature map, we 
recreate the view and identify the visible triangles of the model at 
each time-step. We then increase the attention score of these 
triangles based on their distance from the centre of the screen. We 
used the Gaussian distance function, which gives a strong peak 
around the centre of the screen and tails off smoothly to the edges, 
which roughly approximates the amount of interest for each part 
of the screen as the object is being examined.  

In order to represent this data we mapped the attention scores onto 
the surface of the model by coloring the geometry using a simple, 
three-level temperature metaphor. This technique takes further 
advantage of the pre-attentive nature of hue [13], allowing 
differences to be immediately apparent. Red ‘hotspots’ represent 
areas of strong interest, green areas represent a moderate interest, 
and blue shows the ‘coldest’ or least examined areas (Figure 2).  

Figure 2. (a) An aggregation of virtual spotlights highlights the 
area of interest on the model . (b) The temperature map shows 
those same areas using a colored spectrum. 

In order to map our attention scores to the color scale we 
normalized the attention scores with a sigmoid function, mapping 
the 95th percentile of accumulated attention score to a point on the 
sigmoid curve. The exact mapping of the curve was controlled by 
an interactive slider, allowing for an increase or decrease of the 
‘temperature’ contrast setting. 

3.3   Summary of the Three Designs 
Camera Glyphs and View Intersection Glyphs represent time as 
objects in the scene. Strengths of these two techniques include 
speed and precision. Weaknesses of these glyph techniques 
include the loss of time ordering information and the potential to 
obscure the view. Specific to the floating Camera Glyphs are 
problems with associating each glyph to the corresponding part of 
the model. View Intersection Glyphs, on the other hand, may 
suffer from the assumption that the center of the view is the 
precise area of interest. 

The Temperature Map represents time as a property of the model 
itself. It has the advantage of speed, but the disadvantage of losing 
ordering information. Another disadvantage is that the 
Temperature Map representation replaces the model’s true colors.  

4.   EVALUATION 
We performed a usability evaluation of these three Temporal 
Thumbnail techniques. In addition to comparing the three designs 
amongst themselves, we also included two existing techniques in 
the evaluation: video analysis, and storyboards (Figure 3). Video 
analysis is high-fidelity, and preserves both audio and visual 
modes of information. The storyboard representation lays out 
visual stills of the video, which allows for non-linear navigation, 
but with a reduced visual fidelity. 

Through this evaluation, we hope to differentiate the five different 
techniques in terms of speed, accuracy, and user confidence [8].  
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Figure 3. Traditional techniques: (left) Simple video analysis. 

(right) Storyboards. 

4.1   Apparatus 
All the visualization techniques used in the study were 
implemented in Java3D™ and OpenGL / C++, and ran on a 
Pentium 4, 2.4 GHz, processor running Microsoft Windows XP 
equipped with an ATI Rage128™ graphics card, connected to a 
20” display. For the video analysis technique, we used a standard 
VCR with jog-shuttle controls connected to a 20” video monitor. 

4.2   Participants 
6 women and 5 men, recruited from the university community, 
participated in the study. Six were used in the data generation 
phase, and five in the analysis phase. None of the participants had 
prior experience in analyzing visualization data for 3D scenes. 

4.3   Content Acquisition for Later Analysis 
In order to conduct a user study we needed useful visualization 
data for our participants to analyze. This data was collected from 
six participants who were presented with a simple 3D model 
inspection interface with standard camera controls that allowed 
them to tumble, pan, and zoom in on the 3D model. Users were 
first asked to familiarize themselves with the camera navigation 
controls. Then, we presented them with a 3D model and told them 
to examine it for a minute. They were also told that after the one 
minute examination, they would be asked to recall certain details. 
This instruction ensured that participants inspected the model 
carefully; paying close attention to areas they thought could be 
important. This effectively simulates the real-world situation of, 
for example, someone examining a model of a product they were 
evaluating for possible purchase. After the minute elapsed, the 
model was then hidden and the participants answered questions 
based on the model. We then allowed them access to the model 
again, and they were asked to verbally correct their answers as we 
noted them down. This procedure created visualization data with a 
variety of styles, from overviews in the initial familiarization 
phase, to in depth examinations of various areas of the model 
when asked specific questions about the model in the second 
phase. Each participant examined the same model (Figure 4) 
which was chosen since it has the “boxy enclosure” shape of many 
consumer products.  

 

Figure 4. Tractor model used in evaluation. 

Throughout the process we recorded the users’ interaction. We 
captured a videotape session of the examination sessions, 
including audio data, and recorded the virtual camera location and 
orientation every ten milliseconds. We also captured the session 
display screen as a bitmap every two seconds in order to produce a 
storyboard representation of the session. In total, 12 recordings 
were made: 6 participants x 2 inspection phases of the same 
model. After data collection was complete, we created 4 data 
streams as follows: 

• IndividualPhase1 (I1): the data from one of the 6 participants 
(randomly selected) in the first one minute overall 
examination of the model 

• IndividualPhase2 (I2): the data for the same individual, for 
the second more detailed examination of the model. 

• AggregatePhase (A1): the data from all 6 participants 
combined, for the first one minute examination. 

• AggregatePhase2 (A2): the data from all 6 participants 
combined, for the second examination phase. 

For each of these data streams, we generated visualizations for 
each of the five visualization techniques. 

4.4   Evaluation Procedure 
In the analysis phase, five participants examined the data 
previously generated by participants in the content acquisition 
phase, using our five visualization techniques. A within-subjects 
design had participants using all five techniques; with between 
subjects presentation order counterbalanced using a balanced Latin 
square. At the start of each new technique session, participants 
were given a short introduction and allowed to familiarize 
themselves with the controls for that technique. We then presented 
each participant with the four sets of data for that technique, in a 
random order within each visualization technique.  

For each dataset examined with each of the five visualization 
techniques, participants completed a questionnaire (Figure 5). 
They were asked to rank different parts of the model based on 
their understanding from the visualization of how much attention 
the users who generated the data paid to those parts. We asked 
them to rate their confidence in their answers, and recorded the 
time taken to answer the questions.  
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Figure 5. Questionnaire filled in for each of four data streams, 

for all five visualization techniques. 

4.5   Hypotheses 
Our hypotheses regarding the expected relative performance of the 
five techniques were as follows: 

Video analysis: This technique inherently provides more 
information to the analyst user than other techniques. The audio 
narrative and the mouse movement give additional deictic 
information that is not available in the other visualizations. The 
video also gives a temporal ordering that is not available with 
other techniques; thus we expect the video to be more effective for 
short sessions. On the other hand, the linear time and serial nature 
of video analysis would reduce the effectiveness of video when 
large amounts of data were processed. We predict users would be 
overwhelmed by the data as time progressed, and forget details 
seen early in the video stream, requiring frequent rewinding and 
replaying of previously viewed content. 

Storyboard: We expect the storyboard to exhibit similar properties 
to video analysis, but without the benefit of audio. The nature of 
the storyboard should allow people to quickly navigate the picture 
layout, with the number of pictures proportional to the recorded 
session length. On one hand we expect slightly better accuracy and 
user confidence in their results when compared to video, due to 
the ease of quick view summarization and navigation inherent in 
the parallel viewability of storyboard frames. However, since the 
storyboard frames were captured at a two second interval, we 
suspect that some details would be overlooked due to the sampling 
granularity. 

Camera glyphs: We predict that users would have more difficulty 
mapping the camera glyphs to parts of the model. We also 
expected the glyphs themselves would be a problem in that they 
could obscure the user’s view of the model. Users would likely 
have difficulty associating glyphs with the model since the 
projection is not immediately obvious, impacting on the 
confidence in this technique. On the other hand the camera glyphs 
were expected to provide a good indication of the preferred 

viewing positions, such as from the top, from behind, or from the 
sides of the model. 

View intersection glyphs: We predict that the view intersection 
glyphs would be superior to the floating camera glyphs. First, 
view intersection glyphs obstruct the view less than the camera 
glyphs; and having glyphs placed directly on the model should 
provide the users with greater precision for identification tasks. 
The weakness of the view intersection glyph is that the single 
point of interest in the center of the screen may be misleading in 
some circumstances. 

Temperature map: We expect the temperature map to be one of 
the most accurate techniques, as it addresses shortcomings of the 
view intersection glyph. We also predict that users would 
appreciate the simple format provided by this visualization, 
resulting in a high user confidence, as this technique is the least 
cluttered and has the least ambiguity. We predict that users would 
be able to analyze the visualization swiftly and accurately, even 
with large amounts of information.  

Figure 6 summarizes our hypotheses, in terms of our measures of 
speed, accuracy, and user confidence. 

4.6   Performance Measures 
We used three performance measures. Speed was measured as the 
time taken to answer all parts of Question 2 in the questionnaire 
(Figure 5). Confidence was rated on a scale from -3 to +3 where -3 
corresponded to ‘not confident’ and +3 to ‘very confident’. 
Accuracy was represented by an error score for each of the 
rankings, computed by adding the time difference needed to 
reconcile the true and erroneous rank times for each place. For 
example, if the correct order is A,B,C and the ranked order is B, 
C, A the error attributed to A is |A-B| + |A-C|. 

4.7   Results 
Analysis of variance showed a significant main effect for speed (F 
= 15.59, p < .0001) and confidence (F = 28.34, p < 0.0001). 
Pairwise means comparisons indicated that our hypotheses for 
speed and confidence were correct, with all three Temporal 
Thumbnail techniques significantly faster than the video analysis 
and storyboard techniques. Participants were most confident of 
their results with the Temperature Map technique, followed in 
order by View Intersection Glyphs, video analysis, storyboards, 
and Camera Glyphs. Figure 7 illustrates these results. 

Surprisingly, we did not find a significant difference in the 
accuracy of the techniques (F = 1.90, p = 0.12). We suspect that 
our input data streams were not of sufficient length to differentiate 
the techniques, as users were able to make multiple passes through 
the videotape for questions that were not obvious at first pass. In 
contrast, we believe the accuracy will be closer to our predictions 
as the length of recordings increase due to the fatigue of viewing 
linearly proportional information with the standard visualization 
techniques. Technique order and recording order did not 
statistically impact the measures. 
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Figure 6. Predicted (from left to right) accuracy, speed, and confidence for the five visualization techniques, measured against the 
amount of viewing data being summarized. 

Figure 7. Evaluation results. 

Qualitatively, the users reported that the video provided helpful 
audio cues. On the other hand, they noted it very difficult to judge 
the aggregate interest level, as it was difficult to recall past 
information for lengthy sequences, and thus felt that video was 
most useful for short sessions. The users also were frustrated 
having to estimate viewing information when using the storyboard 
representation. Some users tried to make this task easier by 
manually grouping sets of storyboard images, while others 
scanned through all the images multiple times, trying to get a 
sense of the overall viewing session. Most users felt that there was 
too much information in the storyboard making it difficult to 
determine aggregate information.  

User’s comments for the Temporal Thumbnail techniques 
differed depending on the technique. Camera Glyphs were 
reported to be useful for general overviews, but users had 
difficulty associating the Camera Glyphs with specific parts 
of the model. Consequently, as shown in Figure 7, the 
Camera Glyphs inspired the least confidence for our 
evaluation. In contrast, it was felt that View Intersection 
Glyphs were comparatively accurate, although not quite as 
effective as the Temperature Map technique, which was 
reported to be the most straightforward visualization 
technique for rapid evaluation. Users especially appreciated 
the automatic aggregation of the data in this technique. 

5    DISCUSSION 
Video is the most flexible and sensory rich medium that we 
evaluated, with characteristics not available in most of the other 
visualizations. Perceptual advantages include tone and content of 
audio, mouse-cursor movements, deictic gestures, and time-based 
context and ordering information. However, although time in 
video can be rescaled by compression [15], it nevertheless 
requires review time proportional to the amount of information. 
This leads to memory problems and content overload, with the 
additional difficulty of sifting through large recordings. 

In contrast, the storyboard technique presents time through the 
layout of information in space. Study participants consistently 
reported that the large amount of information simultaneously 
presented by the storyboard feels “visually overwhelming” and 
made it difficult to remember and sort information. 

In both Camera and View Intersection Glyphs, time is represented 
as a scene object. This has the advantage of precise location, but 
also has the possible disadvantage of obscuring the view. By 
projecting the viewpoint onto the model, View Intersection Glyphs 
were more conducive to our particular task than the Camera 
Glyphs. This is evidenced by the strong difference in both 
confidence and speed. Our temperature map technique represents 
time as the color property of the model geometry. In addition to 
less clutter, this method makes use of previous research results 
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that show that hues can be pre-attentively processed [13]. The 
temperature method is fast, but there are many parameters such as 
the Gaussian ‘spotlight’ width and intensity that may be confusing 
if exposed to the user.  

5.1   Limitations 
One assumption of our evaluation is that the viewer’s interest is 
roughly focused at the center of the screen. Although this may 
seem to be a questionable assumption, our results suggest that the 
decision does not result in reduced accuracy when compared to the 
feature-rich video analysis. We acknowledge that the mouse 
navigation (rotate, pan, zoom) used in our study may not the best 
input choice to navigate around 3D objects and we believe that a 
more natural means of navigation around 3D objects such as in 
[18] would achieve even better results.  

It is also important to acknowledge that we are not comparing our 
techniques against eye-tracking techniques. We believe that with 
minor adjustments, Temporal Thumbnails can be used in 
conjunction with eye-tracking techniques, which would result in 
more accurate analysis. However, we decided against using an 
eye-tracking solution since our system would be the most useful in 
the hands of the many users. For example, to aggregate data from 
a large number of users who may be off-site, such as over a 
standard internet browser with mouse input. It would be 
impractical to expect all the users to possess the necessary eye-
tracking equipment. 

5.2   Implications 
Overall, the most efficient and confidence instilling techniques 
collapse time directly onto the model. This contrasts with the other 
representations that have a larger cognitive load imposed upon the 
user. For example, in the task of identifying the area with the most 
attention, the area of the interest must be extracted from each 
frame of a storyboard representation, and scores mentally 
computed by the user. This increased cognitive requirement 
contrasts with the temperature map which automatically 
aggregates the information and uses the pre-attentive processing 
property of color to identify areas of the most interest. 

This suggests that the process of refining representations with 
respect to a specific task can be important. Unrefined 
representations such as the video may contain more ‘raw’ 
information, but refining these representations can distill the 
information towards a specific purpose. Although some 
information may be lost during refinement, the resulting 
visualization is left better suited for the task at hand.  

In our example, the task is to estimate the amount of attention 
given to a specific area. For each successive technique: video 
analysis, storyboard, Camera Glyph, View Intersection Glyph, and 
Temperature Map; we increasingly refine the information towards 
this task. Mapping time to space via a concrete object on the scene 
increases the precision of the task. View intersection glyphs 
provide a tight coupling between task and visualization by 
projecting information directly on the model. The Temperature 
Map provides the strongest binding between task and 
representation by using the properties of the model itself and also 
eliminates the much of the visual clutter associated with having 
objects in the scene. It is apparent that refining information can 
result in a much more efficient representation, as the Temperature 
Map is the most refined towards the task. As long as the refining is 

accurate, this makes for the fastest, most accurate and confidence 
inducing visualization. 

One can refine representations in a more general sense by 
determining what characteristics are most appropriate for the task 
and then work towards creating those characteristics in the 
representation. One way to accomplish this is by transforming one 
property to a different domain. When a property is mapped from 
one domain to another, affordances of the target medium are 
projected onto the information. For example in the Storyboard 
representation, time is represented as space and this can create 
problems associated with spatial content management, yet it also 
enables the quick navigation associated with spatially embedded 
content. Thus in refining representations for efficient visualization 
tasks, there must be a congruency between the representation and 
the task, as hinted in [21]. Simon [16] writes that the problem of 
representation is the task of making the solution salient. 
Congruency between task and representation helps accomplish this 
by creating a visualization which we are able to more easily 
understand since we offload processing from the user through 
representation refinement. 

5    CONCLUSIONS AND FUTURE WORK 
We have shown how aggregate time varying viewing data can be 
represented using an interactive Temporal Thumbnail which a user 
can rapidly interpret with reasonable accuracy. We have presented 
three different designs that implement the Temporal Thumbnail 
concept. A usability evaluation indicated that these designs enable 
faster analysis with greater confidence than existing video analysis 
and storyboard techniques. While accuracy was not improved by 
our techniques, there was no degradation either. The results 
suggest that we have succeeded in refining the representation for 
the task and offloading cognitive load associated in dealing with 
time-based data. We also discussed strengths and weaknesses of 
each technique, and suggest a method of projecting properties to 
other media in order to refine a representation towards a specific 
task. 

The techniques presented here have potential in other domains, 
especially in document versioning where the user’s attention is 
focused by the application tools. Using variations of the 
Temperature Map, one could easily allow users to grasp the areas 
of the document that differ between versions, for both 2D and 3D 
media assets. 

One exciting avenue of exploration is the use of spatially-aware 
displays [7, 18] to generate Temporal Thumbnails. Spatially-
aware displays enable easy navigation of 3D space using a very 
direct metaphor, and we believe that the efficiency and 
effectiveness of the Temporal Thumbnail concept will be 
increased dramatically if such methods of navigation are used to 
inspect the virtual models. 
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