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ABSTRACT 
We describe techniques for exploring 3D scenes by combining 
non-linear projections with the interactive data mining of camera 
navigations from previous explorations. Our approach is 
motivated by two key observations: First, that there is a wealth of 
information in prior explorations of a scene that can assist in 
future presentations of the same scene. Second, current linear 
perspective camera models produce images that are too limited to 
adequately capture the complexity of many 3D scenes. The 
contributions of this paper are two-fold. First, we show how 
spatial and temporal subdivision schemes can be used to store 
camera navigation information that is data mined and clustered to 
be interactively applicable to a number of existing techniques. 
Second, we show how the movement of a traditional linear 
perspective camera is closely tied to non-linear projections that 
combine space and time. As a result, we present a coherent 
system where the navigation of a conventional camera is data 
mined to provide both the understandability of linear perspective 
and the flexibility of non-linear projection of a 3D scene in real-
time. Our system’s generality is illustrated by three visualization 
techniques built with a single data mining and projection 
infrastructure.  

Categories and Subject Descriptors 
I.3.3 [Computer Graphics]: Picture/Image Generation – viewing 
algorithms; I.3.6 [Computer Graphics]: Methodology and 
Techniques – interaction techniques. 

General Terms 
Algorithms, Design, Human Factors 

Keywords 
Non linear projection, data mining, camera visualization 

1. INTRODUCTION 
Complex 3D models and scenes can now be realistically rendered 
in real-time on commodity hardware. However, interactive 
viewing, navigation, and presentation of complex 3D scenes 
remain difficult to achieve effectively. There are a number of 
reasons for this but two are of particular relevance to this paper. 
First, interaction with virtual 3D scenes, given current 2D display 
technology, is typically achieved through 2D projections, which 

inhibits a viewer’s overall spatial understanding of the scene. 
Second, navigation through a virtual 3D scene offers viewing 
possibilities which transcend those of a real physical scene.  

Without good exploration and visualization tools it is easy for a 
viewer to “get lost” in a scene, view models from awkward 
angles, miss important features, and experience frustration at their 
inability to navigate as desired. In some cases, 2D imagery can be 
more effective in conveying information about the 3D scene. On 
the other hand, static 2D linear perspective imagery of a 3D scene 
is disjointed and gives no feedback on a viewer’s degree of 
interest in different parts of a scene. While linear perspective – 
which is the simplest 2D projection that provides information 
about the third dimension via easily understood depth cues – 
provides an easily understood method for exploring and 
visualizing localized regions of a model, it can be restrictive for 
the visualization of complex scenes. Artists working in traditional 
media have used non-linear projections effectively for centuries to 
express 3D shapes in 2D imagery but its use for interactive 
computer visualization is relatively new [29]. Also, most current 
visualization tools do not exploit the wealth of information that 
can be gleaned from prior explorations of a scene. 

The goal of our work is to allow artists, designers, and end 
viewers to leverage off past and ongoing camera manipulation to 
help explore, understand, and subsequently express 3D scenes 
using non-linear projective imagery. To motivate this objective, 
consider the following three examples, illustrated by Figures 1-3, 
which effectively utilize non-linear projection and information 
from previous camera manipulations. 
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Figure 1. Mosaic camera. a) Schematic of three cameras 
viewing a scene. Mosaic camera is in bright-green, and two 
other cameras have viewports in blue and focus in green. b) 

Linear perspective through mosaic camera. c,d) View through 
other two cameras. e) Resulting non-linear projection 

combining views b,c,d, as viewed through mosaic camera. 



 
Figure 2. Sticky camera: images in the left column show views 
through the lens, while the right column shows the respective 

locations of the camera in the scene. a,b) Regular linear 
perspective view as the camera is moved quickly from 2a to 

2b. c) The camera data captured in the movement from 2a to 
2b is used to create a non-linear projection, resulting in a 

“sticky” camera. On the right, the scene is seen distorted such 
that it projects correctly through the sticky camera’s lens. 

 
Figure 3. Fisheye Camera: a) This global view shows the 
camera, and a spherical radial falloff function around its 
center of interest. b) Rectilinear grid surrounds center of 

interest. c) Through-the-lens linear perspective view of the 
scene. d) Resulting fisheye view after some time has been 

spent focusing on the gas tank of the motorcycle. 
The first example is the Mosaic camera (Figure 1). Three 
different views of a car (Fig 1b-d), from different cameras (Fig 
1a), are combined into a single non-linear projection (Fig 1e) 
where the overall shape of the car is presented. In the same image, 
the region around the steering wheel is zoomed in (from view in 
1d), to highlight the styling of the interior. Also, the side panel on 
the left is rotated outwards to show the wheels and character lines 
along the side of the car (from 1c). These three views were 
automatically extracted by data mining previous explorations of 
the scene for views where users dwelt for long periods of time. 
They were then combined into a single non-linear projection of 
the scene. This example illustrates how non-linear projections that 
possess a local linear perspective are flexible, while still being 
easily deciphered by a viewer. 

The second example is the Sticky camera (Figure 2). One often 
moves the camera to view a part of the scene currently obscured 
at the expense of regions currently in view. A sticky camera, 
while moving to bring new parts of the scene into focus, would 
use a non-linear projective warp to prevent parts of the scene 
previously in view from disappearing, in proportion to the time 
spent focusing them. The sticky camera can be thought of as 
combining the views from a trail of cameras behind it whose 
influence fade with time. This is seen in Figure 2 where the face 
that was in focus in 2a, disappears in 2b as the camera orbits the 
model. The sticky camera in 2c, however, keeps the face in view, 
while focusing on the torso as in 2b.  
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The third example is the Fisheye camera (Figure 3), where the 
amount of time spent focused on different parts of a scene is 
proportional to its size in any given view. Here as in Figure 2, the 
concepts of viscoelasticity of a view is directly applied. 

The contribution of our research is the concept and development 
of an infrastructure within which complex non-linear 
visualizations of scenes can be built up from previous navigations 
using conventional linear cameras. Our approach is motivated by 
the boot-strap nature of the presentation of a 3D scene, in that an 
author of a viewing experience must first explore the scene as a 
viewer, likely resulting in a strong relationship between 
exploration and presentation of a scene. It is these relationships 
that we data mine to enhance 3D scene visualization through 
appropriate non-linear projections.  

The rest of this paper is organized as follows: Section 2 reviews 
prior art. Section 3 proposes efficient spatial and temporal data 
structures for storing and processing camera attributes for 
subsequent data mining. Section 4 discusses details of how this 
infrastructure is used to generate three new visualization 
techniques: the Mosaic, Sticky, and Fisheye cameras (Figures 1-
3). Section 5 concludes with a discussion of the results obtained.  a b 

2. RELATED WORK 
2.1 Camera Navigation 
A variety of metaphors have been developed to assist the user 
when navigating 3D virtual environments. One of the most 
common metaphors, the cinematic camera, allows users to track, 
tumble, and dolly the camera around a scene. Other metaphors 
include through-the-lens control [11], flying and orbiting [31], 
points and areas of interests [17], path drawing [15], bimanual 
techniques [36], using constraints [21], and various combinations 
of techniques [30, 35]. Taxonomies and evaluations of these 
various techniques are presented by Bowman et al. [2]. Our 
current paper presents techniques for data mining camera 
explorations that use any of the above camera manipulations. 
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Apart from direct techniques for navigating the scene, additional 
information can be provided to aid navigation. These include 
landmarks [6], and global overview maps in addition to local 
views [8]. The integration of global and local views, using various 
distorted spaces including “fisheye” views has also been explored 
[4, 9]. Our present work uses the data mining of camera 
manipulation to construct such visualizations. 

Another approach is to give the author more influence over what 
the viewer sees by creating guided tours where camera paths are 
prespecified to varying degrees. Hanson and Wernert [13, 32] 



propose “virtual sidewalks” which are authored by constructing 
virtual surfaces and specifying gaze direction, procedural events, 
and vistas along a sidewalk. Galyean [10] proposes a “river 
analogy” where a user, on a metaphorical boat, can steer the boat 
in limited deviations from the prescribed “river” path. Automatic 
creation of paths using robotic planning algorithms have also been 
investigated [7]. Automatic camera framing of a scene by 
following defined rules such as keeping certain objects visible in 
the scene, or following a primary object have also been explored 
[14]. Burtnyk et al. [3] describe the StyleCam system that allows 
for authoring 3D viewing experiences that incorporate stylistic 
elements such as smooth animations between predefined viewing 
areas. Their approach gives the author a significant amount of 
control over what the end-user finally sees, while simultaneously 
providing the user with the feeling that they are actually 
navigating the scene, rather than simply playing a movie. Our 
present work shares an aspect of this previous body of research in 
that the system assists the author and viewer in the final viewing 
experience at the expense of ceding some, but not all, control to 
the system. However, unlike our current work, none of this prior 
art attempts to interactively utilize the information from previous 
visualizations to improve future visualizations. 

2.2 Non-linear Projections 
Non-linear projections have been applied to computer generated 
imagery for a variety of purposes such as image warping, 3D 
projections and multi-perspective panoramas. A survey of these 
applications is presented by Singh [29]. Of particular importance 
to this paper are interactive techniques for non-linear projection 
that assist in the visualization of complex 3D scenes. 

Image warping [28, 33] approaches are inherently 2D, limiting 
their ability to explore a 3D scene from different viewpoints. 
Research in the area of nonlinear magnification for the purpose of 
visualization is well documented by Carpendale [4, 5]. 

Multi-perspective panoramas [23, 26, 34], are approaches for the 
construction of panoramas from camera motion. Panoramas are an 
effective way of visualizing landscapes with a wide angle of view, 
or for unfolding the detail of an object. These approaches are 
catered to capturing imagery using real cameras. However, they 
are, unfortunately, not well suited to interactive manipulation. 

As an alternative, 3D deformations [12, 27] are widely used for 
manipulating 3D geometry. Interactive object deformation, like 
most modeling and animation tasks, usually requires camera 
manipulation as a secondary operation. View dependent 
distortions to scene geometry for animation and illustration have 
also been explored [16, 20, 22, 25]. Agrawala et al. [1] use 
multiple linear perspectives to define a composite rendering of a 
scene. In their approach each object is rendered in perfect linear 
perspective, possibly different from the perspective of other scene 
objects. While this leads to interesting artistic renderings it does 
not help and possibly impairs the visualization and understanding 
of a 3D scene.  

A more recent approach to non-linear projection [29] combines a 
number of exploratory linear perspective cameras into a single 
interactive non-linear projection of a scene. We extend this work 
in Section 4.1 in our description of the Mosaic camera. 

2.3 Interactive Data Mining 
Data mining in its most general form is concerned with searching 
for interesting patterns within large datasets. Very generally, 
building a data mining system requires that two problems be 
solved: 1) appropriate and efficient storage of the relevant data to 
facilitate fast searching, and 2) the ability to extract interesting 
and relevant patterns from the stored data. In our current work, we 
are not concerned with innovating on either storage or pattern 
discovery data mining algorithms; rather we seek to apply 
established data mining techniques to a new problem domain. 
While data mining techniques have been applied to a variety of 
domains related to computer graphics, such as texture 
segmentation and computer vision, to the best of our knowledge 
only a few examples exist of its application to camera navigation 
[13]. With regards to storage of spatial data, the text by Laurini  
[19] provides a general overview. Shapiro and Frawley [24] 
discusses interesting examples of various issues in pattern 
discovery, where the patterns of interest are not known apriori. Of 
particular interest to us are various clustering algorithms [18], 
which can be broadly categorized into hierarchical or partitioning 
approaches. While hierarchical methods have been applied 
successfully in biological applications [18], one limitation is that 
they cannot undo previously determined clusters, making them 
less suitable for interactive applications. In contrast, partitioning 
methods, such as variants of k-means or k-mediod, try to find the 
best k partitions of the dataset that satisfy a given similarity 
criteria. We use a standard k-means algorithm in our work. 

3. DATA MINING INFRASTRUCTURE 
Before designing an infrastructure for data mining camera 
manipulation it is important to understand the parameters 
involved in camera manipulation and their impact on viewing a 
3D scene. Conventional linear perspective cameras used to 
navigate through 3D scenes have a large number of parameters 
that can vary over time. Typically, camera manipulation involves 
control of the position, orientation, and focal length or center of 
interest of the camera. Additional parameters like clipping planes, 
aspect ratio, and other application specific data related to the 
camera may also be manipulated. The most comprehensive form 
of data collection would maintain a record of all parameters for all 
cameras at every instant in time. This approach would result in an 
intractable amount of data for complex applications and does not 
scale well over time. The data must, therefore, be pruned and 
structured for it to be usable within complex scenes over long 
periods of time, retaining the ability to be processed at interactive 
rates. We now consider techniques for collecting data that are 
both memory efficient and usable for interactive data mining.    

3.1 Camera vs. Object Centric 
Objects in complex 3D scenes also have parameters that can vary 
in time and these objects are often the subject of a camera’s 
interest. In terms of the collection and structuring of camera 
manipulation data, one can thus look at the relationship between 
cameras and objects in two ways: 1) the objects a camera is 
looking at, or 2) the cameras with which an object or parts of an 
object is being looked at. As we show using examples in Section 
4, some applications are viewer centric while others object 
centric. The focus of the application has a strong influence on the 



information mined from the collected data and thus affects the 
data structures used. 

3.2 Spatial vs. Temporal Manipulation 
The intent of the user when varying these parameters is 
sometimes explicitly clear and sometimes ambiguous, depending 
on the action performed by the user and the application context 
within which that action is performed. As an example, 
manipulating the camera in an interactive sculpting application is 
usually done to examine an operation just performed or to focus 
on a region about to be worked on. Here the path taken to the 
region of interest is of less importance than the final spatial 
configuration of the camera. In contrast, when generally 
evaluating a 3D scene, the pattern and paths along which the 
viewer navigates through the scene and its pacing in time, is as 
important as the regions over which a viewer dwells for periods of 
time.  

3.3 Spatial Data Mining 
There are a number of scenarios where it is desirable to know how 
the various parameters of a camera are distributed over time, 
disregarding their relative chronology. In such cases a simple 
scalable solution is to employ a spatial subdivision scheme over 
the domain of any varying camera parameter to aggregate the 
amount of time over which the parameter has a specific value. In 
practice we find that almost without exception the camera’s 
position and orientation are the parameters typically manipulated 
by viewers. We thus embed our scene in a 6D subdivision of 
position and orientation. In Figure 4, the camera’s position in 
space is captured by a spherical coordinate grid, which is well 
suited to sampling camera space within a range of distances 
between the camera and the object. The orientation of the viewing 
axis of the camera is captured by the subdivision of the two 
angles in the camera’s local spherical coordinates, and camera tilt 
by an angle around the view axis.  

 
Figure 4. a) Tracking position, gaze, and  focus of cameras 
over time. The size of the blue dots is proportional to time 

spent at that location. The pink line segments are the principal 
gaze directions over time. b) The green blobs are temporal 

iso-surfaces from the camera’s position field.   
As shown in Figure 3b, the center of interest of the camera is 
captured by a rectilinear grid, which embeds the scene being 
viewed. As the camera navigates through the scene it accumulates 
a value of time spent at each proximal grid locations using linear 
interpolation in each data dimension. In Figure 4a, camera 
position subdivision grid locations with non-zero accumulated 
time are shown with blue dots: the size of the dot proportional to 
the amount of time spent. The pink direction vector is a 
normalized, accumulated time weighted average of the vectors 
that subdivide the camera orientation at each position grid point. 

The pink lines thus indicate the principle gaze direction for every 
camera position grid point. The example in Figure 4 is typical for 
situations where we may wish to analyze camera manipulation 
behavior over long periods of time for one or more viewers. In 
interactive applications where data mining assists in performing 
the current task, older camera manipulations and ones less 
frequently used have less importance. We model this in our 
infrastructure as a simple decay parameter that attenuates the 
accumulated time values in the spatial data structure at every time 
step. This reduces the contribution of any given camera 
configuration as it gets older in time.  

Given the collected data we can perform a number of interactive 
operations on it, the results of which can be used for a number of 
existing visualization techniques and some new ones that we 
describe in Section 4. 

3.3.1 Clustering 
The first most obvious data mining operation is to cluster the data 
to find camera configurations of local maxima, where viewers 
spend the majority of time.  

Figure 5c shows the result of a k-means clustering algorithm [18] 
run on the dataset. The algorithm generates four clusters, the 
center of each cluster represented by the apex of a red cone, 
pointing at the principal gaze direction for the cluster. The green 
sphere around each cluster shows its spread (clusters of larger 
radius indicate a more even distribution of time over the camera 
configurations in the cluster). We can extract a larger number of 
more focused views by limiting the spread size of the clusters. 
Figures 5d-g show “through the lens” views of the mean camera 
configuration for the four clusters. These views correspond to the 
collected camera navigation data. The clustering algorithm is 
incremental and can be used interactively with ongoing data 
collection, while a camera is being manipulated. 

There are large numbers of existing visualization techniques that 
can benefit from spatial data clustering. For example, some 3D 
graphics systems, such as Alias’ Maya, allow viewers to 
bookmark camera views that they can switch to at will. Users 
often find that setting up bookmarks manually is cumbersome 
since it distracts them from their primary task. Incremental 
clustering allows us to automatically bookmark frequently used 
camera views unobtrusively, while the user manipulates the 
camera as part of their primary task. Attaching a decay parameter 
to the data collection allows old and rarely used bookmarks to be 
purged automatically, increasing the usability of the bookmarking 
functionality in current 3D systems. Clusters can also be used to 
create camera attractor fields as described by Hanson and Wernet 
[13, 32], where both the center of the field and its region of 
influence can be controlled by the cluster. Finally, in Section 4.1, 
we demonstrate the use of clusters to construct non-linear mosaic 
projections of 3D scenes. 
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3.3.2 Isosurfaces 
Figure 4b shows an isosurface representing camera positions in 
space with equal accumulated time. While clusters are used to 
find local maxima or minima in the collected data, isosurfaces 
allow us to extract paths and regions of uniform camera 
manipulation.  Figure 6a shows an isosurface corresponding to 
camera positions with a small amount of accumulated time. 



3.4 Temporal Data Mining Figure 6b shows an isosurface with a greater accumulated time on 
the same dataset. We can now extract isocurves on the isosurfaces 
based on the camera orientation. Curves of constant principal 
camera orientation that are perpendicular to the curve can indicate 
a camera pan through the scene. Curves with a principal camera 
orientation tangent to the curve are typically generated by 
dollying the camera. Figure 6c shows a more complex isocurve 
with the property that the camera orientation along the curve is 
directed at a given point. As seen in Figure 6c the curve helps us 
reconstruct the path representing a tumble of the camera about the 
origin. StyleCam [3] used a similar approach where cluster 
centers defined “money shots”. Isosurfaces clipped at the cluster 
spread boundary can be used to define the surfaces onto which the 
cluster center is projected. Finally, isocurves can be used to define 
transition paths between camera surfaces that share a common 
isosurface. 

There are also applications where we wish to track the chronology 
of manipulations, as we will see with the sticky-camera example 
in Section 4.2. In such cases we use a simple event list of camera 
configurations over time. For most interactive data mining 
applications related to camera navigation, however, it is both 
sufficient and necessary to constrain the event list to a finite sized 
moving window of time. Events older than the window either 
decay in importance or get aggregated into spatial data structures 
as described in Section 3.3. 

3.5 Data Filtering 
The various data mining operations are fairly sensitive to noise 
and errant camera motion. Unfortunately, the interactive and 
exploratory nature of camera manipulation make it next to 
impossible to collect data that is devoid of jerky motion, 
unintentional camera moves and other camera noise. We typically 
need to apply data filters to improve the quality of the data to be 
able to apply various data mining algorithms successfully. Most 
standard data filtering algorithms used in image processing can be 
applied to our datasets, given that we are using regular 
subdivision grids. As an example, Figure 7a shows an example of 
jerky camera movements that result in the disjoint camera 
movement isosurfaces. Figure 7b shows the results of the 
isosurfaces after running a Laplacian smoothing filter on the 
dataset to even out the non-uniformity in the data. 
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Figure 7. a) Incomplete data sampling from jerky camera 
motion results in poor reconstruction. b) Reconstruction after 
a Laplacian filter has been applied to the data retrieved in 7a. d f e g 

4. VISUALIZATION APPLICATIONS 
Section 3 presented a variety of data structuring and mining 
techniques that are well suited to interactive camera manipulation 
applications, as seen by their use with existing visualization 
techniques. We now use this infrastructure to describe three novel 
techniques for the interactive visualization of complex scenes, 
that employ elements of non-linear projection.  

Figure 5. a) View through the camera navigating through the 
scene in 5b. c) Results of data clustering. The cones point in 

the direction of the average gaze direction for the cluster with 
their apex at the center. The green spheres show the radius of 

the cluster. d-g) Through the lens views for the camera 
clusters. 4.1 Mosaic Camera 

 

The Mosaic camera is inspired by the fact that while linear 
perspective is an excellent visualization tool providing 
consistently understandable depth cues for parts of a 3D scene, it 
is restrictive for the overall visualization of complex shapes. 
Singh [29] presented an approach to building non-linear 
projections of scenes as compositions of multiple exploratory 
linear perspectives. Each exploratory camera is defined using 
parameters such as position, orientation and center of interest. A 
viewport for each camera maps its perspective view onto a 
common projection canvas. For every point in the scene, a weight 
value is first computed for each exploratory camera based on 
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Figure 6. a) Volume envelope for little time spent  at a 
location. b) More focused isosurface of higher time value, with 

extracted isocurve that is a reconstruction of a camera path 
shown in 6c. 



user-controlled functions such as proximity to camera’s center of 
interest. The weights for all cameras were then normalized and a 
virtual camera constructed as a weighted interpolation of the 
parameters defining the exploratory cameras. The point was then 
projected onto a common canvas using the virtual camera and a 
similarly weight interpolated viewport transformation. While this 
is a general approach to non-linear projection the number of 
variables that may be controlled to construct a non-linear 
visualization is quite daunting: we must first pick the number and 
settings for the different exploratory cameras. Then we must 
define viewports for them, the size and layout of which is 
implicitly constrained by the position and orientation of the 
exploratory cameras relative to each other. Finally we must figure 
out the relative weighting or importance of the cameras and 
weight computation functions for each camera. 

Here we use the spatial subdivision scheme presented in Section 
3.3 to conceptually capture the non-linear projection model 
described above. Let each camera position grid point represent the 
position of an exploratory camera with its orientation represented 
as the principal orientations as shown in Figure 4. The viewport 
for each camera is represented by a spherical projection of the 
square around it as shown in Figure 8. Points in the scene are 
weighted by their distance from the line segment between the 
camera’s position and its center of interest. This weight function 
is attenuated by an overall camera weight that is proportional to 
the time accumulated at the camera’s grid position. Any point P is 
thus projected to a weighted summation of the projection of the 
point through every grid point camera. 

While this formulation is conceptually robust, it is not efficient as 
there maybe a huge number of exploratory cameras to consider 
for every point in the scene. Instead we use clusters to define the 
exploratory views and use the cluster spread to influence both the 
falloff function for a point as well as the viewport size. Figure 1 
shows the results of such a formulation using 3 cluster cameras. 

 
Figure 8. a) Blue dots represent exploratory cameras in a 

spherical grid. The polygon around it represents the viewport 
transformation laid out as a spherical projection as in 8b. 

4.2 Sticky Cmera 
In many applications, camera manipulation is used to bring parts 
of a scene outside the current viewing frustum of the camera into 
view. This is either done at the expense of parts currently in view 
by tumbling or panning the camera, or by an overall loss of view 
detail by dollying or zooming the camera. The sticky camera 
attempts to bring new parts of the scene into view after the 
camera is manipulated, while preserving the view properties of 

regions in focus prior to the camera manipulation. This is 
accomplished by non-linear projection. 

Let Cb, Mb and Vb represent the eye-space, projection and 
viewport transformation matrices of the camera before 
manipulation and Ca, Ma and Va the corresponding matrices after 
manipulation. For a point P to appear in the camera view after 
manipulation as it did in the camera view before manipulation it 
would need to be deformed to a point P’ = P  (Cb Mb Vb )(Ca Ma 
Va )-1. The aim of the sticky camera, is to preserve the view 
perspective of points prior to manipulation but these points must 
moved on-screen somewhat to create space for new parts of the 
scene that are coming into view. With this in mind we add a 
relative viewport translation Vr proportional to the –T, where T is 
the displacement of the camera’s center of interest as a result of 
camera manipulation, i.e. P’ = P  (Cb Mb Vb )Vr(Ca Ma Va )-1. 
Further all points in the scene have a weight wP that is based on 
camera parameters, for example, a falloff function of the distance 
of the point from the camera’s center of interest. For sticky-
camera behavior thus any point is transformed to a point Pdef = P + 
wP(P’-P). Such a non-linear projection formulation works well for 
a single camera manipulation step. Camera manipulation takes 
place as a stream of camera events and we need to employ data 
structures for temporal mining as in section 3.4 so as not to have 
to store an increasingly long array of camera configurations. In 
this case we use  a simple temporal window size of two. 
Deformation and weight values are aggregated in an object centric 
fashion on a per point basis as DP and an overall weight value, oP. 
DP += oPP’ and oP += wP. This aggregated deformation is added 
into the deformation for a later step as Pdef = P + wP(P’-P) + DP 
(V’r(Cb Mb Vb )-1 )-1(Vr(Ca Ma Va ) 

–1) - oPP, where V’r  is the 
relative viewport translation for the last timestep (Cb,Mb,Vb are 
Ca,Ma,Va from last timestep). This allows us to aggregate 
deformation data in an object centric way with just a single vector 
D and scalar weight o, per point. 

Results of the sticky-camera can be seen in Figure 2 and the 
animation still in Figure 9. a 

b 
4.3 Fisheye Camera 
The fisheye-camera is motivated by the observation that part of an 
object viewed for a longer period of time should be presented in 
greater relative detail on screen. The concept is illustrated first on 
a 2D grid and the concept extends trivially into three and higher 
dimensions. Suppose a camera (2D viewport in this case) viewing 
parts of the (m+1)x(n+1) grid of unit cell dimensions has 
accumulated time values tij at grid location (i,j). We deform the 
grid location (i,j) to (i*(hij /hmj), j*(vij /vin)), where hij is the sum of 
accumulated times along the jth row from  h0j to hij  and vij is the 
sum of accumulated times from  along the ith column vi0 to vij.  
The grid is initialized with tij =1 for all (i,j). 

The deformed grid has non-uniform sizing of grid cells to reflect 
the amount of time spent looking at any grid point. In 3D we 
subdivide scene space with a rectilinear grid structure and use a 
radial falloff function around the camera’s center of interest to 
compute a value of focus-time for each grid point. We then use 
the grid structure to define a free-form deformation lattice [27], 
resulting in a smooth deformation of all objects in the scene to 
reflect the time spent viewing different parts of it (see Figure 3).  



5. DISCUSSION and CONCLUSIONS 6. REFERENCES 
The concepts in this paper have been implemented as plug-ins to 
the animation system Maya4.5. The use of a commercial 
animation system makes these visualization ideas instantly usable 
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