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Abstract
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University of Toronto
1998

Animation through the numerical simulation of physics-based graphics models o�ers un-
surpassed realism, but it can be computationally demanding. Likewise, �nding controllers
that enable physics-based models to produce desired animations usually entails formidable
computational cost. This paper demonstrates the possibility of replacing the numerical
simulation and control of model dynamics with a dramatically more e�cient alternative.
In particular, we propose the NeuroAnimator, a novel approach to creating physically re-
alistic animation that exploits neural networks. NeuroAnimators are automatically trained
o�-line to emulate physical dynamics through the observation of physics-based models in
action. Depending on the model, its neural network emulator can yield physically realistic
animation one or two orders of magnitude faster than conventional numerical simulation.
Furthermore, by exploiting the network structure of the NeuroAnimator, we introduce a
fast algorithm for learning controllers that enables either physics-based models or their
neural network emulators to synthesize motions satisfying prescribed animation goals. We
demonstrate NeuroAnimators for passive and active (actuated) rigid body, articulated, and
deformable physics-based models.
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Chapter 1

Introduction

Computer graphics studies the principles of digital image synthesis (Foley et al., 1990). As a
�eld it enjoys enormous popularity commensurate with the visual versatility of its medium.
The computer, on the one hand, can deliver hauntingly unusual forms of visual expression
while, on the other hand, it can produce images so real that the only trait suggesting their
electronic identity is that they may look too perfect.

This dissertation is concerned with computer animation, an important area of computer
graphics which focuses on techniques for synthesizing digital image sequences of graphics
objects whose forms and motions are modeled mathematically in the computer. Currently,
the most popular method in commercial computer animation is keyframing|a technique
that has been adopted from traditional animation (Lasseter, 1987). In keyframing, a human
animator interactively positions graphics objects at key instants in time. The computer then
interpolates these so-called \keyframes" to produce a continuous animation. In principle,
keyframing a�ords the animator a high degree of exibility and direct control in specifying
desired motions. In practice, however, keyframing complex graphics models usually requires
a great deal of skill and intense labor on the part of the animator, especially when the task
is to create physically realistic animation in three dimensions. Hence, graphics researchers
are motivated to develop animation techniques that a�ord a higher degree of automation
than is available through keyframing.

In this thesis, we are mainly interested in the process of synthesizing realistic animation
in a highly automated fashion. Physical modeling is an important approach to this end.
Physics-based computer animation applies the principles of Newtonian mechanics to achieve
physically realistic motions. In this paradigm, the animator speci�es the physical properties
of the graphics model and the equations that govern its motion, and the computer synthe-
sizes the animation through numerical simulation of the governing equations. Once the
simulation is initialized, the outcome depends entirely on the forces acting on the physical
model. Physics-based animation o�ers a high degree of realism and automation; however,
the animator can exercise only indirect control over the animation, by applying appropriate
control forces to the evolving model. The \physics-based animation control problem" is the
problem of computing the control forces such that the dynamic model produces motions
that satisfy the goals speci�ed by the animator.

After more than a decade of development, physics-based animation techniques are begin-
ning to �nd their way into high-end commercial animation systems. However, a well-known
drawback has retarded their broader penetration|compared to purely geometric models,
physical models typically entail formidable numerical simulation costs and they are di�cult

1



Chapter 1. Introduction 2

to control. Despite dramatic increases in the processing power of computers in recent years,
physics-based models are still far too expensive for general use. Physics-based models have
been underutilized in virtual reality and computer game applications, where interactive
display speeds are necessary. Our goal is to help make physically realistic animation of
complex computer graphics models fast and practical.

This thesis proposes a new approach to creating physically realistic animation that
di�ers radically from the conventional approach of numerically simulating the equations of
motion of physics-based models. We replace physics-based models by fast emulators which
automatically learn to produce similar motions by observing the models in action. Our
emulators have a neural network structure, hence we dub them NeuroAnimators. A neural
network is a highly interconnected network of multi-input nonlinear processing units called
\neurons" (Bishop, 1995). Neural networks provide a general mechanism for approximating
complex maps in high dimensional spaces, a property that we exploit in our work.

The NeuroAnimator structure furthermore enables a new solution to the control prob-
lem associated with physics-based models. Since the neural network approximation to the
physical model is di�erentiable, it can be used to discover the causal e�ects that the control
forces have on the actions of the model. This knowledge is essential for the design of an
e�cient control learning algorithm, but it is unfortunately not available through the nu-
merical simulation alone. For that reason the solution to the control problem through the
physical simulation alone is di�cult to achieve.

1.1 Overview of the NeuroAnimator Approach

Our approach is motivated by the following considerations: Whether we are dealing with
rigid (Hahn, 1988; Bara�, 1989), articulated (Hodgins et al., 1995; van de Panne and Fiume,
1993), or nonrigid (Terzopoulos et al., 1987; Miller, 1988) dynamic animation models, the
numerical simulation of the associated equations of motion leads to the computation of a
discrete-time dynamical system of the form

st+�t = �[st;ut; ft]: (1.1)

These (generally nonlinear) equations express the vector st+�t of state variables of the system
(values of the system's degrees of freedom and their velocities) at a time �t in the future
as a function � of the state vector st, the vector ut of control inputs, and the vector ft of
external forces acting on the system at time t.

Physics-based animation through the numerical simulation of a dynamical system gov-
erned by (1.1) requires the evaluation of the map � at every timestep, which usually involves
a non-trivial computation. Evaluating � using explicit time integration methods incurs a
computational cost of O(N) operations, where N is proportional to the dimensionality of
the state space. Unfortunately, for many dynamic models of interest, explicit methods are
plagued by instability, necessitating numerous tiny timesteps �t per unit simulation time.
Alternatively, implicit time-integration methods usually permit larger timesteps, but they
compute � by solving a system of N algebraic equations, generally incurring a cost of O(N3)
operations per timestep.

We propose an intriguing question: Is it possible to replace the conventional numerical
simulator, which must repeatedly compute �, by a signi�cantly cheaper alternative? A
crucial realization is that the substitute, or emulator, need not compute the map � exactly,
but merely approximate it to a degree of precision that preserves the perceived faithfulness
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of the resulting animation to the simulated dynamics of the physical model.
Neural networks (Bishop, 1995; Hertz, Krogh and Palmer, 1991) o�er a general mecha-

nism for approximating complex maps in higher dimensional spaces.1 Our premise is that,
to a su�cient degree of accuracy and at signi�cant computational savings, trained neural
networks can approximate maps � not just for simple dynamical systems, but also for those
associated with dynamic models that are among the most complex reported in the literature
to date.

The NeuroAnimator, which uses neural networks to emulate physics-based animation,
learns an approximation to the dynamic model by observing instances of state transitions,
as well as control inputs and/or external forces that cause these transitions. Training a
NeuroAnimator is quite unlike recording motion capture data, since the network observes
isolated examples of state transitions rather than complete motion trajectories. By gener-
alizing from the sparse examples presented to it, a trained NeuroAnimator can emulate an
in�nite variety of continuous animations that it has never actually seen. Each emulation step
costs only O(N2) operations, but it is possible to gain additional e�ciency relative to a nu-
merical simulator by training neural networks to approximate a lengthy chain of evaluations
of (1.1). Thus, the emulator network can perform \super timesteps" �t = n�t, typically
one or two orders of magnitude larger than �t for the competing implicit time-integration
scheme, thereby achieving outstanding e�ciency without serious loss of accuracy.

The NeuroAnimator o�ers an additional bonus which has crucial consequences for ani-
mation control: Unlike the map � in the original dynamical system (1.1), its neural network
approximation is analytically di�erentiable. Since the control problem is often de�ned as
an optimization task that adjusts the control parameters so as to maximize an objective
function, the di�erentiable properties of the neural network emulator enable us to compute
the gradient of the objective function with respect to the control parameters. In fact, the
derivative of the objective function with respect to control inputs is e�ciently computable
by applying the chain rule. Easy di�erentiability enables us to arrive at a remarkably fast
gradient ascent optimization algorithm to compute near-optimal controllers. These con-
trollers produce a series of control inputs ut to synthesize motions satisfying prescribed
constraints on the desired animation. NeuroAnimator controllers are equally applicable to
controlling the original physics-based models.

1.2 Contributions

This dissertation o�ers a uni�ed solution to the problems of e�ciently synthesizing and
controlling realistic animation using physics-based graphics models. Our contribution in
this thesis is twofold:

1. We introduce and successfully demonstrate the concept of replacing physics-based
models with neural network emulators. By observing the physics-based models in
action, the emulators capture the visually salient characteristics of their motions,
which they can then synthesize at a small fraction of the cost of numerically simulating
the original models.

2. We develop a control learning algorithm that exploits the structure of the neural
network emulator to quickly learn controllers through a gradient descent optimization

1Note that � in (1.1) is in general a high-dimensional map from <s+u+f 7! <s, where s, u, and f denote
the dimensions of the state, control, and external force vectors.
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process. These controllers enable either the emulators or the original physics-based
models to produce motions consistent with prescribed animation goals at dramatically
lower costs than competing control synthesis algorithms.

3. To minimize the approximation error of the emulation, we construct a structured
NeuroAnimator that has the intrinsic knowledge about the underlying model build
into it. The main subnetwork of the structured NeuroAnimator predicts the state
changes of the model in its local coordinate system. A cascade of smaller subnetworks
forms an interface between the main subnetwork and the inputs and outputs of the
NeuroAnimator. To limit the approximation error that accumulates during the emu-
lation of the deformable models, we introduce the regularization step that minimizes
the deformation energy.

4. For complex dynamical systems with large state spaces we introduced hierarchical
emulators that can be trained much more e�ciently. The networks in the bottom level
of this two level hierarchy are responsible for the emulation of di�erent subsystems of
the model, while the network at the top level of the hierarchy combines the results
obtained by the lower level.

We have developed software for specifying and training emulators which makes use
of the Xerion neural network simulator developed by van Camp, Plate and Hinton at
the University of Toronto. Using our software, we demonstrate that the neural network
emulators can be trained for a variety of some of state-of-the-art physics based models in
computer graphics. Fig. 1.1 shows the models used in our research. The emulators obtain
speed-ups of often as much as two orders of magnitude when compared against their physical
counterparts, and yet they can emulate the models with little visible degradation to the
quality of motion. We also present the solutions to a variety of non-trivial control problems
synthesized through an e�cient connectionist control learning algorithm that uses gradient
information to drastically accelerate convergence.

1.3 Thesis Outline

Chapter 2 presents prior work in computer graphics and neural networks relevant to our
research. It starts the survey with the work done in computer graphics on physics-based
modeling, and proceeds to overview the neural network research upon which we draw.

Chapter 3 de�nes a common type of arti�cial neural network and discusses techniques for
training it, most importantly the backpropagation algorithm|a fundamental optimization
method used for neural network training as well as controller synthesis. The chapter includes
extensions of this technique, and describes other optimization scenarios in relation to our
work.

Chapter 4 explains the practical application of neural network concepts to the con-
struction and training of di�erent classes of NeuroAnimators. It introduces a strategy for
building networks that avoid serious over�tting, yet are exible enough to approximate
highly nonlinear mappings. It also includes the discussion on the network input/output
structure, the use of hierarchical networks to tackle physics-based models with large state
spaces, and methods for changing the network structure to minimize the approximation
error. The chapter additionally describes a strategy for generating independent training
examples that ensure good generalization properties of the network, and lists the di�erent
optimization techniques used for neural network training.
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Figure 1.1: A diverse set of physical models used in our research. The collection includes
some of the most complex models utilized in computer graphics research to date. The top
left image shows the model of a lunar lander that was implemented as a rigid body acted
upon by four independent thruster jets. The top right image shows the model of a sport
utility vehicle implemented as a rigid body with constraint friction forces acting on it due
to the contact with the ground. The middle left image shows the model of a multi-link
pendulum under the inuence of gravity. The pendulum has an independent actuator at
each of its 3 joints. The middle right image shows the deformable model of a dolphin
that can locomote by generating water friction forces along its body using six independent
actuators. Finally, the bottom of the �gure shows the model of a runner developed by
Hodgins (Hodgins et al., 1995) that we used to synthesize a running motion.
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In Chapter 5 we turn to the problem of control; i.e., producing physically realistic anima-
tion that satis�es goals speci�ed by the animator. We �rst describe the objective function
and its discrete approximation and then propose an e�cient gradient based optimization
procedure that computes derivatives of the objective function with respect to the control
inputs through the back-propagation algorithm.

Chapter 6 presents a list of trained NeuroAnimators and supplies performance bench-
marks and an error analysis for them. Additionally, the chapter discusses the use of the
regularization step during the emulation of nonrigid models and its impact on the ap-
proximation error. The second part of the chapter describes the results of applying the
new control learning algorithm to the trained NeuroAnimators. The report includes the
comparison of the new technique with the control learning techniques used previously in
computer graphics literature.

Chapter 7 concludes the thesis and presents future work.
Appendix A implements a C++ functions for calculating the outputs of a neural network

from the inputs.
Appendix B derives the on-line weight update rule for a simple feedforward neural

network with one hidden layer and includes a C++ implementation of the algorithm.
Appendix C derives the on-line input update rule for a simple feedforward neural network

with one hidden layer and includes a C++ implementation of the algorithm.
Appendix D reviews the quaternion representation of rotation, and describes the quater-

nion interpolation. For the purposes of the control learning algorithm, the appendix also
derives the di�erentiation of the quaternion rotation and de�nes the error metric for rota-
tions de�ned as quaternions.

Appendix E describes the physical models used as the emulator prototypes. For the rigid
bodies we include the SD/FAST script used to build the model and the force computation
function used by the physical simulator.

Appendix F includes an example script that speci�es and trains a NeuroAnimator, and
it also speci�es the format of the training data.

Appendix G describes the controller representation used in this thesis.



Chapter 2

Related Work

In this chapter, we present prior work in the �elds of computer graphics and neural networks
relevant to our research. We survey work done in computer graphics on physics-based
modeling and proceed to overview the neural network research upon which we draw.

2.1 Animation Through Motion Capture

Motion capture o�ers an approach to physically realistic character animation that bypasses
many di�culties associated with motion synthesis through numerical simulation. This
method captures motion data on a computer using sensors attached to di�erent body parts
of an animal. As the animal moves, each sensor outputs to the computer a motion track
that records changes over time in the sensor location. Once captured, the motion tracks
can be applied to a computer model of the animal producing physically realistic motion
without numerical simulation. This process can be performed very e�ciently and produces
highly realistic animations. The main limitation of motion capture is its static character.
The motion data captured this way is hard to alter and cannot be concatenated easily.
Computer animation research seeks to address these drawbacks (Bruderlin and Williams,
1995; Unuma, Anjyo and Takeuchi, 1995; Witkin and Popovi�c, 1995; Guenter et al., 1996).

Related to our work is the idea of synthetic motion capture that collects motion data from
synthetic models into a repertoire of kinematic actions that can be played back at interactive
speeds (Lamouret and van de Panne, 1996; Yu, 1998). This approach is particularly useful
when the original motion is costly to compute, as is the case for complex physics-based
models. Lamouret additionally discusses the possibility of creating new animations from a
set of representative example motions obtained using synthetic motion capture.

Our approach also uses synthetic models as the source of data, however, it is funda-
mentally di�erent. We do not build up a database of kinematic motion sequences to be
used for playback. Instead, we train a neural network emulator using examples of the state
transitions to behave exactly like the physical model. Once trained, the neural network can
precisely emulate the forward dynamics of the synthetic model.

2.2 Physics-Based Modeling

We seek to develop e�cient techniques for producing physically realistic animations through
the emulation of physics-based models. Physics-based animation involves constructing mod-
els of objects and computing their motion via physical simulation. A high degree of realism

7
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results because object motion is governed by physical laws. Additionally, since the models
react to the environment in a physically plausible way, the animator does not need to spend
time specifying the tedious, low-level details of the motion.

2.2.1 Modeling Inanimate Objects

Physics-based techniques have been used most successfully in the animation of inanimate
objects. In particular, physics-based techniques have been applied to the animation of
rigid bodies (Hahn, 1988; Bara�, 1989), articulated �gures (Hodgins et al., 1995; Wilhelms,
1987), and deformable models (Terzopoulos et al., 1987; Terzopoulos and Fleischer, 1988;
Desbrun and Gascuel, 1995; Carignan et al., 1992). Physics-based animation has also been
applied to the simulation some more speci�c domains such as uids (Kass and Miller, 1990),
gases (Stam and Fiume, 1993; Foster and Metaxas, 1997), chains (Barzel and Barr, 1988),
and tree leaves (Wejchert and Haumann, 1991).

A de�ning factor of physics-based animation is the simulation through numerical inte-
gration of equations of motion. This paradigm requires a speci�c model description that
includes the physical properties such as mass, damping, elasticity, etc. Once the position
and velocity of the model is initialized, the motion speci�cation is completely automatic
and depends entirely on the external forces acting on the model.

2.2.2 Modeling Animate Objects

There has been a substantial amount of research devoted to physics-based modeling of
animate objects, such as humans and animals (Armstrong and Green, 1985; Wilhelms, 1987;
Hodgins et al., 1995; Miller, 1988; Tu and Terzopoulos, 1994; Lee, Terzopoulos and Waters,
1995). The distinguishing feature that di�erentiates inanimate models from animate models
is the ability of the latter to generate internal control forces through the use of internal
actuators.

Physical models of animals are among the most complex in computer graphics. People
are very sensitive to the perceptual inaccuracies in the simulation of animals, especially of
humans. Therefore the complexity of the models needs to be high in order to achieve the
desired realism. The complexity of a physical model leads to numerous di�culties, one of
which is the time devoted to the physical simulation. The control of complex models with
multiple actuators is a daunting task.

2.3 Control of Physics-Based Models

The issue of control is central to physics-based animation research. The existing methods
can be divided into two groups: the constraint based approach and motion synthesis.

2.3.1 Constraint-Based Control

The constraint-based approach to control is characterized by the imposition of kinematic
constraints on the motion of objects (Platt and Barr, 1988). An example of this approach
is when a user speci�es that a body needs to follow a certain path. There are two dominant
techniques for satisfying the constraints: inverse dynamics and constraint optimization.

Inverse dynamics techniques compute a set of \constraint forces" that satisfy a set of
kinematic constraints imposed by the user. This approach has been applied to control
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both rigid models (Isaacs and Cohen, 1987; Barzel and Barr, 1988) and deformable models
(Witkin and Welch, 1990). The resulting motions are physically correct because the bod-
ies exhibit a realistic response to forces. However, this approach is computationally very
expensive.

Constraint optimization methods formulate the control problem in terms of an objective
function which must be maximized over a time interval, subject to the di�erential equations
of motion of the physical model (Brotman and Netravali, 1988; Witkin and Kass, 1988;
Cohen, 1992; Liu, Gortler and Cohen, 1994). The objective function often includes a
term that is inversely proportional to the control energy expenditure due to locomotion.
The underlying assumption is that motions that require less energy are preferable. This
method results in an open-loop controller that satis�es the constraints and maximizes the
objective. This approach requires expensive numerical techniques. The need to symbolically
di�erentiate the equations of motion renders it impractical for all but the simplest physical
models.

2.3.2 Motion Synthesis

The motion synthesis approach toward locomotion control is better suited for complex
physical models and appears more consistent with theories of learning in animals. Since
this approach uses actuators to drive the dynamical model, it automatically constrains the
control forces to the proper range and does not violate physics. This paradigm allows
sensors to be freely incorporated into the models which establishes sensorimotor coupling
or closed-loop control. The models can therefore react to changes in the environment and
synthesize realistic controllers. To produce realistic results, motion synthesis requires high
�delity models.

Motion synthesis limits signi�cantly the amount of control that the animator has over
the model, since it adds yet another level of indirection between the control parameters
and the resulting motion. Therefore, the derivation of suitable actuator control sequences
becomes a fundamental task in motion synthesis. Motion speci�cation complicates as the
number of actuators grows, since getting the model to move often involves �nding the right
coordination between di�erent actuators. For the most part suitable controllers have been
synthesized by hand but recently a signi�cant amount of research has been done to try to
automate control synthesis.

Hand-Crafted Controllers

Manual construction of controllers involves hand crafting control functions for a set of
muscles. Although generally quite di�cult, this method works well on models based on
animals with well known muscle activations. Miller (Miller, 1988), for example, reproduced
familiar motion patterns of snakes and worms using sinusoidal contraction of successive
pairs of muscles along the body of the animal. Terzopoulos et al. (Terzopoulos and Waters,
1990; Lee, Terzopoulos and Waters, 1995) used hand-crafted controllers to coordinate the
actions of di�erent groups of facial muscles to produce meaningful expressions. But the
most impressive set of controllers developed manually for deformable models to date was
constructed by Tu (Tu and Terzopoulos, 1994) for her �sh model. She derived a highly
realistic set of controllers that uses hydrodynamic forces to achieve forward locomotion
over a range of speeds, to execute turns, and to alter body roll, pitch and yaw so that the
�sh can move freely within its 3D virtual world.



Chapter 2. Related Work 10

Hand-crafted controllers have been most often designed for rigid, articulated �gures.
Wilhelms (Wilhelms, 1987) developed \Virya" { one of the earliest human �gure animation
systems that incorporates both forward and inverse dynamics simulation. Raibert (Raib-
ert and Hodgins, 1991) synthesized useful controllers for hoppers, kangaroos, bipeds, and
quadrupeds by decomposing the problem into a set of simple manageable control tasks.
Hodgins et al. (Hodgins et al., 1995) used similar techniques to animate a variety of mo-
tions associated with human athletics. McKenna et al. (McKenna and Zeltzer, 1990) used
coupled oscillators to simulate di�erent gaits of a cockroach. Brooks (Brooks, 1991) hand
crafted similar controllers for his robots. Stewart and Cremer (Stewart and Cremer, 1992)
created a dynamic simulation of a biped walking by de�ning a �nite-state machine that
adds and removes constraint equations. A good survey of the work reviewed here is the
book `Making Them Move' (Badler, Barsky and Zeltzer, 1991).

Manual construction of controllers is both tedious and di�cult, but one can use opti-
mization techniques to derive control functions automatically.

Controller Synthesis

The approach is inspired by the \direct dynamics" technique which was described in the
control literature by Goh and Teo (Goh and Teo, 1988) and earlier references cited therein.
Direct dynamics prescribes a generate-and-test strategy that optimizes a control objective
function through repeated forward dynamic simulation and motion evaluation. This ap-
proach resembles trial-and-error learning process in humans and animals and is therefore
often referred to as \learning". It di�ers from the constraint optimization approach in that
it does not treat physics as constraints and it represents motion in actuator-time space and
not state-time space.

The direct dynamics technique was developed further to control articulated muscu-
loskeletal models in (Pandy, Anderson and Hull, 1992) and it has seen application in the
mainstream graphics literature to the control of planar articulated �gures (van de Panne
and Fiume, 1993; Ngo and Marks, 1993). Pandy et al. (Pandy, Anderson and Hull, 1992)
search the model actuator space for optimal controllers, but they do not perform global
optimization. Van de Panne and Fiume (van de Panne and Fiume, 1993) use simulated an-
nealing for global optimization. Their models are equipped with simple sensors that probe
the environment and use the sensory information to inuence control decisions. Ngo and
Marks' (Ngo and Marks, 1993) stimulus-response control algorithm presents a similar ap-
proach. They apply the genetic algorithm to �nd optimal controllers. The genetic algorithm
is also used in the recent work of Sims (Sims, 1994). Ridsdale (Ridsdale, 1990) reports an
early e�ort at controller synthesis for articulated �gures from training examples using neural
networks. Grzeszczuk and Terzopoulos (Grzeszczuk and Terzopoulos, 1995) target state-of-
the-art animate models at the level of realism and complexity of the snakes and worms of
Miller (Miller, 1988) and the �sh of Tu and Terzopoulos (Tu and Terzopoulos, 1994). Their
models �rst acquire a set of basic motor skills, store them in memory using compact rep-
resentations, and �nally reuse them to synthesize aggregate behaviors. In ((van de Panne,
1996)), van de Panne automatically synthesizes motions for physically-based quadrupeds.

2.4 Neural Networks

Research in neural networks dates as far back as the 1960s, when Widrow and co-workers
proposed networks they called adalines (Widrow and Lehr, 1990). The name adaline is an
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acronym derived from ADAptive LINear Element, and it refers to a single processing unit
with threshold non-linearity. At approximately the same time, Rosenblatt (Rosenblatt,
1962) studied similar single layer networks which he called perceptrons. He developed a
learning algorithm for perceptrons and proved its convergence. This result generated much
excitement and ignited hopes that neural networks can be used as a basis for arti�cial
intelligence. Although quite successful at solving certain problems, perceptrons failed to
converge to a solution on other seemingly similar tasks. Minsky and Papert (Minsky and
Papert, 1969) pointed out that the convergence theorem for single-layer networks applies
only to classi�cation problems of sets that are linearly separable, and therefore are not
capable of universal computation.

Although researchers had realized that the limitations of the perceptron could have been
overcome by networks having more layers of units, they failed to develop a suitable weight
adjustment algorithm for training such networks. In 1986, Rumelhart, Hinton and Williams
(Rumelhart, Hinton and Williams, 1986) proposed an e�cient technique for training multi-
layer feed-forward neural networks which they called the backpropagation algorithm. The
algorithm de�nes an approximation error which is a di�erentiable function of the weights
of the network, and computes recursively the derivatives of the error with respect to the
weights. The derivatives can be used to adjust the weights so as to minimize the error.
Similar algorithms had been developed by a number of researchers including Bryson and
Ho (Bryson and Ho, 1969), Werbos (Werbos, 1974), and Parker (Parker, 1985).

The class of networks with two layers of weights and sigmoidal hidden units has proven
to be important for practical applications. It has been shown that such networks can ap-
proximate arbitrarily well any multi-dimensional functional mapping. Many papers have ap-
peared in the literature discussing this property including (Cybenko, 1989; Hornik, Stinch-
comb and White, 1989).

Minsky and Papert (Minsky and Papert, 1969) showed that any recurrent network can
be represented as a feed-forward network by simply unfolding the units of the network
over time. Rumelhart et al. (Rumelhart, Hinton and Williams, 1986) showed the correct
form of the learning rule for such a network and used it to train a simple network to be
a shift register and to complete sequences. The learning algorithm is a special version of
the backpropagation algorithm commonly referred to as backpropagation through time. In
this work, the emulator networks form a special class of recurrent neural networks, and
backpropagation through time constitutes the backbone of the control learning algorithm.

2.5 Connectionist Techniques for Adaptive Control

Our work is closely related to research described in the mainstream neural network literature
on connectionist techniques for the adaptive control of physical robots. Barto gives a concise,
yet informative, introduction to connectionist learning for adaptive control in (Barto, 1990).
Motor learning is usually formulated as an optimization process in which the motor task to
be learned is �rst speci�ed in terms of an objective function and an optimization method
is then used to compute the extremum of the function.

2.5.1 Reinforcement Learning

Reinforcement learning, an approach described by Mendel and McLaren (Mendel andMcLaren,
1970), addresses the problem of controlling a system. Reinforcement learning involves two
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Figure 2.1: Reinforcement learning builds an approximation|the adaptive critic|that
learns the e�ects of current actions on future events. It then uses the system performance
information supplied by the critic to synthesize a controller.

problems. The �rst requires the construction of a critic that evaluates the system perfor-
mance according to some control objective. The second problem is how to adjust controls
based on the information supplied by the critic. Fig. 2.1 illustrates this process.

Reinforcement learning is most often used when a model of the system is unavailable and
when its performance can be evaluated only by sampling the control space. This means we
only have the performance signal available, but not its gradient, and we are therefore forced
to search by actively exploring di�erent control actions and incorporating those giving good
results into the control rules. Reinforcement learning technique resembles learning by trial
and error which selects behaviors according to its likelihood of producing reinforcement|
hence the name \reinforcement learning".

Reinforcement learning builds an approximation|the adaptive critic|that learns the
e�ects of current actions on future events (Sutton, 1984). The critic outputs the estimate of
the total future utility which will arise from present situations and actions. Reinforcement
learning performs in essence a gradient descent on the evaluation surface that it builds from
the discrete examples obtained during the trial-and-error search through the control space.
This approach is illustrated by the pole balancing example of Barto, Sutton and Anderson
(Barto, Sutton and Anderson, 1983). Related methods that combine reinforcement learning
with the gradient have also been studied (Sutton, 1984; Anderson, 1987; Barto and Jordan,
1987; Williams, 1988).

Since the active critic synthesis requires many trials, it is costly. Reinforcement is
therefore ine�cient, but it's very general. Werbos writes in (Werbos, 1990): \Adaptive
critic is an approximation to dynamic programming which is the only exact and e�cient
method available to control motors or muscles over time so as to maximize the utility
function in a noisy, nonlinear environment, without making highly specialized assumptions
about this environment."

The controller synthesis techniques described in Section 2.3.2 resemble reinforcement
learning in that they actively explore the control space of the system searching for optimal
control actions. They di�er in that they do not synthesize the active critic and are therefore
less e�cient.
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Figure 2.2: During training of the forward model, the input to the network x(t) is the same
as the input to the system, and the system output y(t) forms the target output for the
network. The neural network is trained through the use of the prediction error, y(t)�yi(t),
that measures the di�erence between the target output of the network and its true output.

2.5.2 Control Learning Based on Connectionist Models

Connectionist control learning techniques often rely on an internal model in the form of
a neural network that gives the robot system knowledge about itself and its environment.
For example, the system builds an internal model of its dynamics so that it can predict its
response to a force stimulation. Alternatively, it can build a model of its inverse dynamics
so that it can predict a control sequence that will result in a speci�c action. These internal,
neural network models need not be highly accurate approximations. Even an inaccurate
model of inverse dynamics can provide a satisfactory control sequence whose error can be
corrected with a feedback controller. Similarly, an inaccurate model of forward dynamics
can be used within an internal feedback loop which corrects the controller error.

In several cases, connectionist approximations of dynamical systems have been con-
structed as a means to robot control. In this approach, a neural network learns to act like
the dynamical system by observing the system's input-output behavior as shown in Fig. 2.2.
The neural network is trained through the use of the prediction error: y(t)�yi(t). A neural
network trained to approximate the dynamical system is referred to as the forward model.

A neural network can approximate the inverse of a dynamical system, which then can
be used for control purposes. Jordan (Jordan, 1988) calls this the direct inverse approach.
Fig. 2.3 shows a simple scenario where the dynamical system receives torque inputs x(t)
and outputs the resulting trajectory y(t). The inverse dynamics model is set in the opposite
direction, i.e., it receives y(t) as input and outputs x(t). Since the inverse model forms a
map from desired outputs y(t) to inputs x(t) that produce those outputs, it is in essence a
controller that can be used to control the system.

This approach was proposed and used by Albus (Albus, 1975), Widrow et al. (Widrow,
McCool and Medo�, 1978), Miller et al. (Miller, Glanz and Kraft, 1987), and Jordan
(Jordan, 1988). The method has been used to learn inverse kinematics (Kuperstein, 1987;
Grossberg and Kuperstein, 1986), and inverse dynamics (Kawato, Setoyama and Suzuki,
1988). Atkeson and Reinkensmeyer (Atkeson and Reinkensmeyer, 1988) used content ad-
dressable memories to model the inverse dynamics, that accomplish learning in just one
iteration by performing a table lookup. The �rst prediction application using a non-linear
neural network was published in (Lapedes and Farber, 1987). See also (Weigend and Ger-
shenfeld, 1994).

The direct inverse modeling technique has a number of limitations. Most importantly,
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Figure 2.3: The inverse dynamics model is set in an opposite direction to that of the
dynamical system.

the identi�cation of the inverse dynamics model is problematic when the inverse is not well
de�ned. Ill-posedness occurs when the mapping from outputs to inputs is many-to-one,
in which case the network tends to average over the various targets mapping to the same
input (Jordan, 1988). Additionally, the training of the inverse model requires extensive
sampling of the control space in order to �nd an acceptable solution. However, since the
control learning process requires the actual system output, extensive data collection might
not always be feasible. An additional disadvantage of this approach is its o�-line character.

An alternative class of algorithms learn the controller indirectly through the use of the
forward model of the system. This approach comprises two stages|stage one learns the
forward model as described above, stage two uses the forward model to learn the controller.

With a di�erentiable forward model one can solve problems of optimization over time
using the backpropagation through time algorithm that essentially integrates the system
model over time to predict future outcome and then backpropagates the error derivative
back in time to compute precisely the e�ect of current actions on future results. When
working with large sparse systems this methods permits the computation of derivatives of
the utility very quickly. This technique was described by Werbos (Werbos, 1974; Werbos,
1988), Jordan and Rumelhart (Jordan and Rumelhart, 1992), and Widrow (Widrow, 1986;
Nguyen and Widrow, 1989). Narendra and Parthasarathy (Narendra and Parthasarathy,
1991) propose a quicker optimization alternative to using backpropagation through time.

This method has advantages over the direct identi�cation of the system inverse when the
inverse is not well de�ned (Jordan and Rumelhart, 1992). The ill-posedness of the problem
does not prevent it from converging to a unique solution since it uses gradient information
to adjust the control signal in order to reduce the performance error. The system heads
towards one of the solutions; the direct inverse, on the other hand, does not converge to a
correct solution. An additional feature of this approach is the use of a uniform parameter
adjustment mechanism (the backpropagation algorithm) during the system identi�cation
stage and the control learning stage.

Control learning techniques that utilize the forward model become particularly useful
when the system itself is not analyzable or it is not possible to di�erentiate it, which is
often the case for complex systems.

Forward and Inverse Modeling

Jordan and Rumelhart (Jordan and Rumelhart, 1992) proposed a scheme to combine the
forward model and its inverse. The �rst stage of this process learns the forward model of the
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Figure 2.4: The control learning phase of the inverse modeling algorithm of Jordan and
Rumelhart. This method backpropagates the prediction error through the forward model
to calculate the error in the motor command, which is then used as the error signal for
training the inverse. The dashed line shows the error signal pass through the forward
model before reaching the inverse model during the backpropagation step.

controlled object using the technique described in Section 2.5.2. The second stage, shown in
Fig. 2.4, trains the inverse dynamics model. During the control learning phase, the algorithm
feeds the forward model network the desired trajectory y(t) which computes the feedforward
motor command xi(t). The prediction error, y(t) � yi(t), is then backpropagated through
the forward model to calculate the error in the motor command, which is then used as the
error signal for training the inverse. During the control learning phase the parameters of
the forward model are �xed and only the parameters of the controller are adjusted. When
the control learning stage is �nished the controller together with the forward model form
an identity transformation.

The Truck Backer-Upper

The control learning strategy presented in this thesis resembles most closely the approach
used by Nguyen and Widrow in (Nguyen and Widrow, 1989) where they develop a two-
stage control learning process. The �rst stage trains a neural network to be an emulator for
the truck and trailer kinematics using the technique for system identi�cation described in
Section 2.5.2. The second stage trains a neural-network controller to control the emulator.
Once the controller knows how to control the emulator, it is then able to control the actual
truck.

Fig. 2.5 illustrates the procedure for adapting the controller. In the �gure, the block
labeled T represents the trailer truck emulator. The truck emulator takes as input the state
of the model at time i and the steering signal, and outputs the state of the model at time
i + 1. The block labeled C represents the neural network controller that takes as inputs
the state of the model and outputs the steering signal for the truck. The �rst step of this
process, shown in the top half of the �gure, computes the motion trajectory of the truck for
a given controller through the forward simulation. The second step of this process, shown
in the bottom half of the �gure, uses the trajectory obtained in the �rst step to evaluate the
error in the objective function, and then computes the derivative of this error with respect
to the controller weights using backpropagation through time.

The control learning process starts by setting the truck initial position, and choosing
the controller weights at random. The truck backs up, until it stops. The �nal error in
the truck position is used by the backpropagation algorithm to adapt the controller. The
weights are changed by the sum of error deltas computed over all iterations using steepest
descent.
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Figure 2.5: Forward emulation of the truck kinematics (top) and training of a neural-network
controller to control the emulator (bottom).

The synthesized controller can park the truck in the desired position from any initial
con�guration. Since the solution learned by the controller is substantially general, it is
rather di�cult to �nd. To arrive at the solution, the control learning algorithm needs to
process a large set of training examples and therefore converges slowly. Additionally, since
the training data must have examples corresponding to di�erent initial con�gurations of
the truck, it must be generated o�-line. Finally, the main disadvantage of the proposed
controller representation is its static character|every time the objective function changes
the controller needs to be completely relearned. This approach is therefore not suitable for
dynamic environments where control objectives change over time.

Although related to Nguyen and Widrow's paper, the work presented in this thesis
di�ers signi�cantly from it: In order to achieve a better performance, the emulators have
been trained to approximate a chain of evaluations of a numerical simulator as described
in Section 4.1. Hierarchical emulators, discussed in Section 4.4, have been introduced to
approximate highly complex, deformable models used in computer graphics.

Our technique also o�ers a di�erent controller synthesis approach that works well in
dynamic environments with changing control objectives. Our controllers solve the problem
of getting from a given initial con�guration to a given �nal con�guration, and therefore
are much easier to synthesize than the general controllers used by Nguyen and Widrow.
Since our control synthesis algorithm works on-line from a few training examples that get
updated after each iteration, it converges very rapidly.

2.6 Summary

To date, network architectures have found rather few applications in computer graphics.
One application has been the control of animated characters. Ridsdale (Ridsdale, 1990)
reports a method for skill acquisition using a connectionist model of skill memory. The
sensor-actuator networks of van de Panne and Fiume (van de Panne and Fiume, 1993) are
recurrent networks of units that take sensory information as input and produce actuator
controls as output. Sims (Sims, 1994) employs a network architecture to structure simple
\brains" that control evolved creatures. Our work di�ers fundamentally from these e�orts;
it is more closely related to the neural netowrk research on control.
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As we have seen in this chapter, neural network researchers have devoted a signi�cant
amount of attention to control. Although we draw upon their work, especially that in
(Nguyen and Widrow, 1989), we must adapt existing techniques to �t the requirements of
computer animation. The theme of our work is to use connectionist techniques to tackle
the fundamental problems of physics-based computer animation: How to produce realistic
motions of complex physics-based models e�ciently and how to synthesize controllers for
these models.



Chapter 3

Arti�cial Neural Networks

In this chapter we de�ne a common type of arti�cial neural network and discuss techniques
for training it. We describe the backpropagation algorithm|a popular optimization method
used to train neural networks and to synthesize controllers. Additionally, we present exten-
sions of this technique, and describe other optimization scenarios in relation to our work.
Finally, we outline a strategy for building networks that avoid serious over�tting, yet are
exible enough to approximate highly nonlinear mappings.

3.1 Neurons and Neural Networks

In mathematical terms, a neuron is an operator that maps <p 7! <. Referring to Fig. 3.1,
neuron j receives a signal zj that is the sum of p inputs xi scaled by associated connection
weights wij:

zj = w0j +
pX

i=1

xiwij =
pX

i=0

xiwij = xTwj; (3.1)

where x = [x0; x1; : : : ; xp]
T is the input vector, wj = [w0j ; w1j ; : : : ; wpj ]

T is the weight vector
of neuron j, and w0j is the bias parameter, which can be treated as an extra connection
with constant unit input, x0 = 1, as shown in the �gure. The neuron outputs a signal
yj = g(zj), where g is a continuous, monotonic, and often nonlinear activation function,
commonly the logistic sigmoid g(z) = �(z) = 1=(1 + e�z).

A neural network is a set of interconnected neurons. In a simple feedforward neural

network, the neurons are organized in layers so that a neuron in layer l receives inputs only
from the neurons in layer l � 1. The �rst layer is commonly referred to as the input layer
and the last layer as the output layer. The intermediate layers are called hidden layers.

Fig. 3.1 shows a fully connected network with only a single hidden layer. We use this
popular type of network in our algorithms. The hidden and output layers include bias
units that group together the bias parameters of all the neurons in those layers. The
input and output layers use linear activation functions, while the hidden layer uses the
logistic sigmoid activation function. The output of the jth hidden unit is therefore given
by hj = �(

Pp
i=0 xivij).

The backpropagation network used in our experiments is well suited for the approx-
imation and the emulation of physics-based models. This type of network can estimate
high-dimensional maps with a relatively small number of hidden units and therefore works
e�ciently. The alternative network architectures, e.g., locally-tuned networks proposed by

18
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Figure 3.1: Mathematical model of a neuron j (a). Three-layer feedforward neural network
N (b). Bias units are not shaded.

Moody and Darken (Moody and Darken, 1989), often learn very quickly but require many
processing units to accurately approximate high-dimensional maps and therefore are ine�-
cient. For our application, the slow learning rate of the backpropagation network is not a
limiting factor since the emulator needs to be trained only once. However, the emulation
e�ciency of the backpropagation network is of primary importance during the emulation.

3.2 Approximation by Learning

We denote a 3-layer feedforward network with p input units, q hidden units, r output
units, and weight vector w as N(x;w). It de�nes a continuous map N : <p 7! <r. With
su�ciently large q, a feedforward neural network with this architecture can approximate as
accurately as necessary any continuous map � : <p 7! <r over a compact domain x 2 X
(Cybenko, 1989; Hornik, Stinchcomb and White, 1989); i.e., for an arbitrarily small � > 0
there exists a network N such that

8x 2 X ; E(x;w) = k�(x)�N(x;w)k2 < �; (3.2)

where E is the approximation error.
A neural network can learn an approximation to a map � by observing training data

consisting of input-output pairs that sample �. The training sequence is a set of examples,
such that the �th example comprises the pair(

x� = [x�1 ; x
�
2 ; : : : ; x

�
p]
T ;

y� = �(x� ) = [y�1 ; y
�
2 ; : : : ; y

�
r ]
T (3.3)

where x� is the input vector and y� is the associated desired output vector. The goal
of training is to utilize the examples to �nd a set of weights w for the network N(x;w)
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such that, for all inputs of interest, the di�erence between the network output and the true
output is su�ciently small, as measured by the approximation error (3.2).

3.3 Backpropagation Algorithm

The backpropagation algorithm is central to much current work on learning in neural net-
works. Invented independently several times, by Bryson and Ho (Bryson and Ho, 1969),
Werbos (Werbos, 1974), and Parker (Parker, 1985), it has been popularized by Rumelhart,
Hinton and Williams (Rumelhart, Hinton and Williams, 1986). The algorithm describes an
e�cient method for updating the weights of a multi-layer feedforward network to learn a
training set of input-output pairs (x� ;y� ).

A crucial realization leading to the backpropagation algorithm is that the neural network
output forms a continuous, di�erentiable function of the network inputs and weights. Based
on this fact, there exists a practical, recursive method for computing the derivatives of the
outputs with respect to the weights. The derivatives are then used to adjust the weights so
that the network learns to produce the correct outputs for each input vector in the training
set. This is called the weight update rule.

The traditional backpropagation algorithm can be used to compute the derivatives of
the network outputs with respect to its inputs, assuming �xed weights. This gradient
information tells us how to adjust the network inputs in order to produce the desired
outputs, and is therefore very important for control learning where one often needs to �nd
a set of control inputs that will yield a speci�c state output. This is called the input update
rule. It forms the essential step of the control learning algorithm described in Section 5.

In the next two sections, we �rst outline the weight update rule, then the input update
rule.

3.3.1 Weight Update Rule

The weight update rule adjusts the network weights so that the network learns an example
set (x� ;y� ). For input vector x� 2 X and weight vector w 2W, the algorithm de�nes the
network approximation error as

E� (w) = E(x� ;w) = jj�(x� )�N(x� ;w)jj2; (3.4)

and it seeks to minimize the objective

E(w) =
1

2

nX
�=1

E� (w); (3.5)

where n is the number of training examples. The simplest implementation of the algorithm
uses gradient descent to obtain the update rule. The on-line version of the algorithm adjusts
the network weights after each training example � :

wl+1 = wl � �wrwE
� (wl) (3.6)

where �w < 1 denotes the weight update learning rate, and l denotes the current iteration
of the algorithm. Fig. 3.2 illustrates this process.

Appendix B derives the on-line weight update rule for a simple feedforward neural
network with one hidden layer and includes a C++ implementation of the algorithm.
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Figure 3.2: The backpropagation algorithm learns a map � by adjusting the weights w of
the network N in order to reduce the di�erence between in the network output N(x� ;w)
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Figure 3.3: The network computes the derivative of E(x) with respect to the input x by
backpropagating the error signal through the network N. The derivative is used to adjust
the inputs in order to minimize the error.

3.3.2 Input Update Rule

The input update rule adjusts the network inputs to produce the desired network outputs.
It assumes that the weights of the network have been trained to approximate a map �, and
that they are �xed during the input adjustment step. During the input update rule we seek
to minimize the objective de�ned as

E(x) = jjNd �N(x)jj2; (3.7)

where Nd denotes the desired network output. The simplest implementation of the algo-
rithm uses gradient descent to obtain the update rule. The on-line version of the algorithm
adjusts the inputs using the following rule

xl+1 = xl � �xrxE(x
l) (3.8)

where �x < 1 denotes the input update learning rate, and l denotes the iteration of the
algorithm. Fig. 3.3 illustrates this process.

Appendix C derives the on-line input update rule for a simple feedforward neural network
with one hidden layer and includes a C++ implementation of the algorithm.
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Figure 3.4: The gradient descent on a simple quadratic surface of two variables. The surface
minimum is at +, and the ellipses show the contours of constant error. The left trajectory
was produced using the gradient descent with a small learning rate. The solution moves
towards the minimum in tiny steps. The right trajectory uses the gradient descent with a
larger learning rate. The solution moves towards the solution slowly due to wide oscillations.

3.4 Alternative Optimization Techniques

The simple gradient descent used in the update rules (3.6) and (3.8) can be very slow if the
learning rate is small, and it can oscillate widely if the learning rate � is too large. Fig. 3.4
illustrates this idea for a simple quadratic surface of two variables.

However, the performance of the gradient descent algorithm can be improved, or in
some cases the algorithm can be replaced altogether with a more e�cient optimization
technique. We briey describe here some popular optimization techniques used in the con-
nectionist literature. For a more thorough overview, we refer the reader to many standard
textbooks which cover the non-linear optimization techniques, including (Polak, 1971; Gill,
Murray and Wright, 1981; Dennis and Schnabel, 1983; Luenberger, 1984; Fletcher, 1987).
Also, (Hinton, 1989) o�ers a concise but thorough overview of the connectionist learning
techniques.

This chapter explains the di�erence between the on-line mode and the batch mode
training and presents the optimization techniques relevant to our work. Finally, it de-
scribes possible improvements to the gradient descent algorithm, and reviews some more
sophisticated optimization algorithms.

All the algorithms presented in this chapter are described in terms of the weight updates.
If an algorithm can be also used for the input updates, we state it without writing the
equations explicitly.

3.4.1 On-Line Training vs. Batch Training

The on-line implementation of the backpropagation algorithm updates the optimization
parameters after each training example, as in Equations (3.6) and (3.8). However, if the
training data can be generated before the network training initiates, it often is more practical
to use the batch mode. In the batch mode, the optimization parameters get updated once
after all the examples have been presented to the network. The corresponding batch mode
weight update rule can be expressed mathematically as

wl+1 = wl � �wrwE(w
l); (3.9)

where E(w) was de�ned in (3.5).

Generally, it is advantageous to use the o�-line training method since it often converges
faster than the on-line training method. Additionally, some of the techniques described
below work only in the batch mode. However, on-line training is useful in certain situations.
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Since the on-line training behaves like a stochastic process if the patterns are chosen
in a random order, it can produce better results than the batch learning when applied to
large networks with many weights that tend to have numerous local minima and saddle
points. Additionally, the on-line training works faster on problems with highly redundant
data. In practice, we found that a hybrid approach that divides the training data into
small batches, each having about 30-40 training examples, works best on large networks.
Unlike the batch mode algorithm that updates the network weights only after processing all
the training examples, this algorithm makes a modi�cation after evaluating the examples
in each mini-batch. This simple strategy often exceeds the performance of a batch mode
algorithm when applied to a complex network that requires a large data set, and for which
the batch mode updates become exceedingly rare.

3.4.2 Momentum

The strategy of this method is to give each optimization parameter, whether it is a weight
or an input, some inertia or momentum, so that it changes in the direction of the time-
averaged downhill force that it feels, instead of rapidly changing the descent direction after
each update. This simple strategy increases the e�ective learning rate without oscillating
like the simple gradient descent. It augments the gradient descent update rule with a
momentum term, which chooses the descent direction of the optimization process based on
the previous trials. After each example � , the momentum term computes the weight deltas
using the following formula

�wl+1 = ��wrwE
� (wl) + �w�w

l; (3.10)

where the momentum parameter �w must be between 0 and 1. The on-line implementation
of this technique updates the weights after each training example

wl+1 = wl + �wl+1: (3.11)

In the batch mode, the weights are updated after all the training examples

wl+1 = wl +
nX

�=1

�wl+1: (3.12)

Interestingly, there is a close relationship between the update rule that uses the momentum
term and the law of inertia. To draw this parallel, let imagine a point mass moving through
the weight space under the force of gravity. Let wl denote the position of the point in
the weight-space at time l, and �wl the change in position, or velocity, of the point at
time l. We can now interpret (3.10) as describing the point mass acceleration generated
by the gravity force represented in the equation by the gradient term. According to this
interpretation, the momentum term produces a \physically correct" update rule that applies
a force to change the velocity of the point. The same physical analogy applied to the
standard gradient descent method (Eq. 3.6) produces a \physically incorrect" update rule
that uses the \gradient force" to change the position of the point mass, instead of its velocity.

The use of the momentum term is not only physically more appealing, it also has
practical advantages. The new update rule reduce oscillations in the optimization trajectory,
but it also increases the learning rate if the oscillations are not present. If at every step the
algorithm moves in the same direction, then the e�ective learning rate becomes �w=(1��w).
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Figure 3.5: The gradient descent on a simple quadratic surface of Fig. 3.4. The left tra-
jectory was generated using simple gradient descent and therefore oscillates widely. The
right trajectory was produced by adding the momentum term. In this case the oscillations
become damped and the algorithm converges much more quickly towards the minimum.

Since �w is usually chosen to be 0.9, this leads to a ten times higher learning rate than
simple gradient descent.

The momentum term is useful in both on-line and batch mode updating. We use it both
for the training of networks (the mini-batch weight update), and for the control learning
(input update rule used by the control learning algorithm).

3.4.3 Line Searches

Function minimization can be made much more e�cient through the use of line searches

along selected directions. At each iteration of the algorithm using the line search, we move
along a �xed direction d, but we can perform multiple function evaluations to determine
the optimal stepsize �l

wl+1 = wl + �ldl: (3.13)

One common approach that uses a line search is the steepest descent method. The algorithm
descends along the gradient direction dl = �rwE(w

l), but it updates the stepsize �l

through a minimization done along the line of descent. Although the algorithm requires
multiple function evaluations at each iteration, it generally converges in far fewer steps than
simple gradient descent.

At each iteration of steepest descent the new gradient direction is perpendicular to its
predecessor, thus the algorithm approaches the minimum along a zigzag path. A variant
of the steepest descent algorithm|the conjugate gradient method|chooses the new search
direction to be a compromise between the gradient direction and the previous search direc-
tion

dl+1 = �rEw(w
l) + �dl (3.14)

where one possible choice for � is the Polak-Ribiere variant

� =
(rEw(w

l)�rEw(w
l�1))TrEw(w

l)

rEw(wl�1)2
: (3.15)

When transformed by the Hessian, the conjugate gradient method, applied to an n-dimensional
problem, keeps the last n search directions mutually perpendicular, and therefore each new
line search spoils as little as possible the result achieved by the previous steps. On a
quadratic surface in n dimensions this technique reaches the minimum in exactly n iter-
ations. Fig. 3.6 illustrates steepest descent and conjugate gradient on a simple quadratic
surface.

Conjugate gradient and gradient descent with the momentum term share an interest-
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Figure 3.6: Line minimizations on a simple quadratic surface of Fig. 3.4. The left trajectory
was generated using steepest descent and therefore zigzags towards the minimum. The
right trajectory was produced by the conjugate gradient method and therefore reaches the
minimum in exactly two steps.

ing property|neither technique precisely follows the gradient direction. Because of this
relationship, gradient descent with the momentum term can be thought of as a rough ap-
proximation to conjugate gradient.

3.5 The Xerion Neural Network Simulator

Most of the techniques described here have been implemented as part of a neural network
simulator called Xerion which was developed at the University of Toronto and is avail-
able publically.1 Public availability of software such as Xerion contributes to making our
NeuroAnimator approach easily accessible to the graphics community.

Xerion is a collection of C libraries that can be used to train many types of neural
networks. The simulator makes the construction of complex networks simple through the
use of a command line interface. The interface is written using Tcl and Tk|a simple
scripting language developed by John Ousterhout at the University of California at Berkley
that can be easily extended.

Xerion describes networks using a set of objects. The main top-level objects are nets

that de�ne the structure of the network. Inside nets are layers that de�ne groups that
combine the units with common characteristics. Finally, at the bottom-level of the hierarchy
are units and links.

The other top-level objects are: example sets that contain the data necessary to train
and test a network, and minimizers that train nets on example sets using any of several
optimization techniques. Xerion interpreter has commands for building and manipulating
these objects. Appendix F gives an example of a Xerion script.

1Available from ftp://ftp.cs.toronto.edu/pub/xerion



Chapter 4

From Physics-Based Models to

NeuroAnimators

This chapter explains the practical application of neural network concepts to the con-
struction and training of di�erent classes of NeuroAnimators. This includes network in-
put/output structure, the issue of network size in proper �tting of the training data, and
the use of hierarchical networks to tackle physics-based models with large state spaces. The
last section presents a sequence of modi�cations that we apply to the emulator to improve
its approximation quality. This includes the notation used to present the operations, a
detailed description of each transformation, and �nally the architecture of this structured
NeuroAnimator.

4.1 Emulation

Our task is to construct neural networks that approximate � in the dynamical system gov-
erned by (1.1). We propose to employ backpropagation to train feedforward networks N�

to predict future states using super timesteps �t = n�t while containing the approxima-
tion error so as not to appreciably degrade the visual realism of the resulting animation.
Analogous to (1.1), the basic emulation step is

st+�t = N�[st;ut; ft]: (4.1)

The trained emulator network N� takes as input the state of the model, its control
inputs, and the external forces acting on it at time t, and produces as output the state
of the model at time t + �t by evaluating the network. A sequence of such evaluations
constitutes the emulation process. After each evaluation, the network control and force
inputs receive new values, and the network state inputs receive the emulator outputs from
the previous evaluation. Fig. 4.1 illustrates the emulation process. The �gure represents
each emulation step by a separate network whose outputs become the inputs to the next
network. In reality, the emulation process uses a single network that uses its outputs as
inputs to the subsequent evaluation step.

Since the emulation step is large compared with the physical simulation step, we often
�nd the sampling rate of the motion trajectory produced by the emulator to be too coarse
for the purposes of animation. To deal with the problem, we sample the motion trajectory
at the animation frame rate computing the desired states through linear interpolation of

26
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Figure 4.1: Forward dynamics emulation using a neural networks. At each iteration, the
NeuroAnimator output becomes the state input at the next iteration of the algorithm. Note
that the same network is used iteratively.

samples obtained from the emulation. Linear interpolation produces satisfactory smooth
motion, although a more sophisticated scheme could improve the result.

4.2 Network Structure

The emulator network has a single set of output variables specifying st+�t. The number of
input variable sets depends on whether the physical model is active or passive and the type
of forces involved. A dynamical system of the form (1.1), such as the multi-link pendulum
illustrated in Fig. 4.2(a), with control inputs u comprising joint motor torques is known as
active, otherwise, it is passive. If we wish, in the fully general case, to emulate an active
model under the inuence of unpredictable applied forces, we employ a full network with
three sets of input variables: st, ut, and ft, as shown in the �gure. For passive models, the
control ut = 0 and the network simpli�es to one with two sets of inputs, st and ft.

In the special case when the forces ft are completely determined by the state of the
system st, we can suppress the ft inputs allowing the network to learn the e�ects of these
forces from the state transition training data. For example, the active multi-link pendulum
illustrated in Fig. 4.2(a) is under inuence of gravity g and joint friction forces � . However,
since both g and � are completely determined by st, they do not have to be given as the
emulator inputs. A simple emulator with two input sets st and ut can learn the response
of the multi-link pendulum to those external forces.

The simplest type of emulator has only a single set of inputs st. This emulator can ap-
proximate passive models acted upon by deterministic external force. Fig. 4.2(b) illustrates
di�erent emulator input/output structures.
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Figure 4.2: Three-link physical pendulum and network emulators. (a) An active pendulum
with joint friction �i, motor torques ui, and applied forces fi and gravity g. Without motor
torques, the pendulum is passive. (b) Di�erent types of emulators.
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Figure 4.3: Depicted in a low-dimensional setting, a neural network with too few neurons
under�ts the training data. One with too many neurons over�ts the data. The solid curve
represents a properly chosen network which provides a good compromise between approxi-
mation (�ts the training data) and generalization (generates reasonable output values away
from the training examples).

4.2.1 Weights, Hidden Units, and Training Data

This section describes at a general level some of the issues relating to the emulator design.
We explain how we choose the network size and its structure, how we determine the number
of hidden units, and how many training examples we use to train a network. Subsequent
chapters elaborate on some of the issues raised here.

Training of a neural network to approximate a functional mapping is analogous to �tting
a polynomial to data and it su�ers from the same problems. Mainly, a network with
two few free parameters (weights) will under�t the data, while a network with too many
free parameters will over�t the data. Duda and Hart (Duda and Hart, 1973) described
this problem thus: \In general, reliable interpolation or extrapolation cannot be obtained
unless the solution is overdetermined." Fig. 4.3 depicts these problems in a low-dimensional
scenario. In our case, the under�tting is not an issue because we use networks with a
su�cient number of weights. To avoid over�tting, we make sure that we use su�cient
training data. We use 8-10 times as many examples as there are weights in the network,
which seems su�cient to avoid serious over�tting or under�tting.

The optimal number of the hidden units depends on the dimensionality of the input
and output, the amount of data available, and the predictability of the output from the
input. A network with more hidden units is more exible, and it therefore can approximate
a mapping more accurately. Unfortunately, the additional units also make the network
training harder, because a larger network prolongs the evaluation time, requires a larger
training set, and needs more iterations of the learning algorithm for the convergence.

The choice of the number of hidden units is therefore a tradeo� between the necessary
exibility of the model and the time it takes to train the network. We usually start with
a relatively small number of hidden units and increase it until we are satis�ed with the
approximation quality of the network. Unfortunately, the network needs to be fully retrained
after each modi�cation of its structure.

Networks that have one hidden layer of sigmoid units can approximate any functional
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mapping to an arbitrary accuracy. However, the networks with multiple layers of hidden
units can model some more complex input-output mappings with a smaller number of
weights (LeCun et al., 1989). Unfortunately, training of such networks is hard and one often
has to spend an extra time designing the structure of the network to reect the underlying
problem. The emulation problem that we are trying to solve does not have a well de�ned
structure|the number of inputs and outputs, as well as their values, vary a lot between the
di�erent instances of the problem. Despite the di�culties we build a structured network that
does reect some of the emulation invariances. Section 4.3 describes the detailed structure
of a special emulator that minimizes the approximation error.

4.3 Input and Output Transformations

The accurate approximation of complex functional mappings using neural networks can
be challenging. We have observed that a simple feedforward neural network with a single
layer of sigmoid units has di�culty producing an accurate approximation to the dynamics
of physical models. In practice, we often must transform the emulator to ensure a good
approximation of the map �, as we explain next.

A fundamental problem is that the state variables of a dynamical system can have a
large dynamic range (e.g., the position and velocity of an unconstrained particle can take
values from �1 to +1). A single sigmoid unit is nonlinear only over a small region of
its input space and approximately constant elsewhere. To approximate a nonlinear map �
accurately over a large domain, we would need to use a neural network with many sigmoid
units, each shifted and scaled so that their nonlinear segments cover di�erent parts of the
domain. The direct approximation of � is therefore impractical.

A successful strategy is to train networks to emulate changes in state variables rather
than their actual values, since state changes over small timesteps will have a signi�cantly
smaller dynamic range. Hence, in Fig. 4.4(a) we restructure our simple network N� as a
network N�

� which is trained to emulate the change in the state vector �st for given state,
external force, and control inputs, followed by an operator T�

y that computes st+�t =
st +�st to recover the next state.

We can further improve the approximation power of the emulator network by exploiting
natural invariances. In particular, note that the map � is invariant under rotation and
translation; i.e., the state changes are independent of the absolute position and orientation
of the physical model relative to the world coordinate system. Hence, in Fig. 4.4(b) we
replace N�

� with an operator T0

x that converts the inputs from the world coordinate system
to the local coordinate system of the model, a network N0

� that is trained to emulate state
changes represented in the local coordinate system, and an operator T0

y that converts the
output of N0

� back to world coordinates.

A �nal improvement in the ability of the NeuroAnimator to approximate the map �
accrues from the normalization of groups of input and output variables. Since the values
of state, force, and control variables can deviate signi�cantly, their e�ect on the network
outputs is uneven, causing problems when large inputs must have a small inuence on
outputs. To make inputs contribute more evenly to the network outputs, we normalize
groups of variables so that they have zero means and unit variances. With normalization,
we can furthermore expect the weights of the trained network to be of order unity and
they can be given a simple random initialization prior to training. Hence, in Fig. 4.4(c) we
replace N0

� with an operator T�
x that normalizes its inputs, a network N�

� that assumes
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Figure 4.4: Transforming a simple feedforward neural network N� into a practical emu-
lator network N�

� that is easily trained to emulate physics-based models. The following
operators perform the appropriate pre- and post-processing: T0

x transforms inputs to local
coordinates, T�

x normalizes inputs, T�
y unnormalizes outputs, T0

y transforms outputs to

global coordinates, T�
y converts from a state change to the next state (see text).
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zero mean, unit variance inputs and outputs, and an operator T�
y that unnormalizes the

outputs to recover their original distributions.

Although the �nal emulator in Fig. 4.4(c) is structurally more complex than the standard
feedforward neural network N� that it replaces, the operators denoted by the letter T are
completely determined by the state of the model and the distribution of the training data,
and the emulator network N�

� is much easier to train.
The next section introduces the notation used to describe the transformations discussed

above. Following this section, each transformation is described in detail.

4.3.1 Notation

This section introduces the notation used in the ensuing derivation. Consider a simple rigid-
body model. We represent the state of the model at time t as st = [pt;qt;vt;!t] where
pt denotes the position, qt the orientation, vt the velocity, and !t the angular velocity of
the body. We specify all orientations using quaternions. If the orientation is de�ned using
an alternative representation it must undergo an initialization step that converts it to a
quaternion. Appendix D outlines quaternion algebra.

Since the state description for deformable models does not explicitly specify the ori-
entation, it simpli�es to st = [pt;vt]. We represent the change in state of the model as
�st = st+�t � st = [�pt;�qt;�vt;�!t].

Let N denote a neural network, x denote a vector of neural network inputs, and y

denote a vector of neural network outputs. The operation y = Nx represents the forward
pass through network N with input x.

Let q = [qr; qx; qy; qz] = [r;v] and q1 = [qr1; q
x
1 ; q

y
1 ; q

z
1 ] = [r1;v1] be two quaternion

rotations. Rotation addition in quaternion space amounts to quaternion multiplication

qq1 = rr1 + v � v1 + rv1 + r1v + v � v1: (4.2)

However, we �nd it is much more convenient to represent quaternion multiplication in the
matrix form

qq1 = Qq1 =

2
6664
qr �qx �qy �qz

qx qr qz �qy

qy �qz qr qx

qz qy �qx qr

3
7775
2
6664

qr1
qx1
qy1
qz1

3
7775 : (4.3)

Let

R =

2
64 r11 r12 r13
r21 r22 r23
r31 r32 r33

3
75 (4.4)

denote a 3 � 3 rotation matrix. The operation Ra rotates vector a through the rotation
matrix R.

4.3.2 An Emulator That Predicts State Changes

Chapter 4 suggests training the emulator to predict a chain of evaluations of � that enables
it to take a super timestep �t

st+�t = N�[st;ut; ft] (4.5)

A single sigmoid unit is nonlinear only over a small region of the input space, and it is
approximately constant outside of this region. To accurately approximate a function that is
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Figure 4.5: An emulator that utilizes a network N�
� predicting the state changes. First,

the emulator N� passes its inputs to the network N�
� that predicts the state changes, then

it computes the forward pass through this network to arrive at the vector of state changes
�st. The last operation of the emulation step sums st and �st to produce the new state
st+�t which becomes the emulator output.

nonlinear over a large domain, we need to use a neural network with multiple sigmoid units.
In such a network, each sigmoid unit is shifted and scaled so that its nonlinear segment
covers a di�erent part of the domain. Clearly, the map we are trying to approximate using
N� is nonlinear over an in�nite domain. The direct approximation of this map is therefore
impractical because it would require a network with an in�nite number of hidden units.

To build a better approximation, we modify the network N� to use a subnetwork N�
�

that predicts the state changes
�st = N�

� [st;ut; ft] (4.6)

Fig. 4.5 shows the new architecture. First, the emulatorN� passes its inputs to the network
N�

� that predicts the state changes, then it computes the forward pass through this network
to arrive at the vector of state changes �st. The last operation of the emulation step sums
st and �st to produce the new state st+�t which becomes the emulator output.

Clearly, the new emulator still approximates the map �, but it works much more ac-
curately than the original emulator. Since the state changes are always small compared to
the state values, a network that predicts the state changes has a small approximation error
relative to the state value. On the other hand, a network that predicts the state values has
a much larger approximation error relative to the state values which negatively impacts its
accuracy. By building a network that predicts state changes we essentially eliminate a very
large eigenvalue from the data.

It is easy to show the equivalence between the simple network N� and the emulator
that utilizes the network that predicts the state changes. Let x�t be the input to N�

� , and
let y�t be the output of N�

� . Similarly, let xt be the input to N�, and let yt be the output
of N�. The following equations are true

x�t = xt

y�t = N�
�x

�
t

yt = T�
y y

�
t = st + y�t
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Figure 4.6: Rotation and translation invariant emulator uses translation and rotation to
convert between the local and the global coordinate system. The network N0

� operates in
the local coordinate system. Dotted squares mark the subnets for which the weights change
at each simulation step. See text for details.

and therefore the desired equivalence between the two emulators holds

yt = N�xt = T�
y N

�
�xt: (4.7)

4.3.3 Translation and Rotation Invariant Emulator

We can further improve the approximation properties of the emulator by recognizing that
the map � is invariant under rotation and translation, i.e., the state changes of a physical
model do not depend on the position and orientation of the model in the global coordinate
system. To this end, we build an invariant network that performs the same operation as
N�

� , but uses a subnet N0

� that operates in the local coordinate system of the model.
Fig. 4.6 shows such a network. In essence, this network transforms the inputs from the
global coordinate system to the coordinate system attached to the center of mass of the
model through translation and rotation. It then feeds forward the localized inputs through
the network N0

� that computes the vector of localized state changes, and �nally converts
the output vector y0t back to the global coordinate system. The details of the forward step
follow.

Before the emulation step depicted in the �gure begins, the system �rst computes the
center of mass of the model ct, the rotation matrix Rt describing the orientation of the
model with respect to the global coordinate system, and the quaternion rotation matrix
Qt that describes the same orientation as Rt. Assuming that, at the beginning of the
emulation, the local coordinate system of the emulator is aligned with the global coordinate
system, matrix Rt rotates the body aligned with the axes of the global coordinate system
to its orientation at time t, and vector ct translates the center of mass of the body from the



Chapter 4. From Physics-Based Models to NeuroAnimators 35

global origin to its position at time t.

Subsequently, these quantities are used to initialize the network weights responsible
for the rotation and the translation, and shown in the �gure as dotted squares. When
the initialization step is �nished, the emulator starts the forward propagation of the input
signals. First comes the translation operation �ct that gets applied only to the positional
variables pt. The consecutive step applies the rotation. The reader should note that the
rotation does not apply to the vector of controls u since its elements are scalar, and does not
apply to the vector of angular velocities !t since the vector is de�ned in the local coordinate
system of the model by de�nition. Also, since the orientation vector qt is a quaternion, it is
rotated using the quaternion multiplication matrix QT

t . All the other groups are multiplied
by the traditional rotation matrix RT

t .

At this point the input vector has been aligned with the local coordinate system of the
model. Next we perform the forward pass through network N0

� which outputs the vector of
state changes described in the coordinate system of the model. The last operation converts
this vector back to the global coordinate system by undoing the transformations applied to
the input signals of N�

� . This operation amounts to the rotation of quaternions by Qt, and
rotation by Rt of all other elements. Note that the state changes should not be translated
by ct since they are de�ned in relative terms.

Our experiments show that it is much more e�ective to compute the map N�
� using the

network N0

� than it is to do so directly.

We show now that the network in Fig. 4.6 is equivalent to N�
� . Let x

0

t be the input to
N0

�, and let y0t be the output of N
0

�, and as before, let x�t denote the inputs to N�
� , and

let y�t denote the outputs of N�
� . The following equations are true:

x0t = T0

xx
�
t = [RT

t (pt � ct); Q
T
t qt; R

T
t vt; !t; R

T
t ft; ut]

y0t = N0

�x
0

t

y�t = T0

yy
0

t = [Rt�p
0

t; Qt�q
0

t; Rt�v
0

t; �!
0

t];

and therefore the desired equivalence between the two networks holds

y�t = N�
�x

�
t = T0

yN
0

�T
0

xx
�
t : (4.8)

4.3.4 Pre-processing and Post-processing of Training Data

Generalization performance of the network can be further improved through the pre-processing
and the post-processing of the training data. In the emulation case, the pre-processing refers
to a simple linear rescaling of the inputs, while the post-processing denotes the same oper-
ation applied to the outputs of the network.

As was explained earlier, the emulator inputs form groups of variables that can repre-
sent 3 di�erent quantities: state variables, control forces, and external forces. Since the
values of the variables can deviate signi�cantly between the di�erent groups, the impact of
each group on the output of the network is not well distributed. This becomes a problem
when the inputs with large sizes are relatively unimportant in determining the required out-
puts. Furthermore, when given unnormalized inputs with widely varying scale, multi-layer
sigmoidal networks often become linear regressors.

To make each group contribute more evenly to the network output, we need to rescale
its variables. Rescaling also helps initialize the weights of the network. If both inputs and
outputs are normalized to have a zero mean and a unit variance, we can expect the network
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weights should also be of order unity. The weights can then be given a suitable random
initialization prior to network training.

Although it is reasonable to assume that the variables within each group are similar,
variables that belong to di�erent groups can vary signi�cantly and need to be treated
independently. To make the variables across di�erent groups uniform, we normalize each
variable so that it has zero mean and unit variance as follows:

~xnk =
xnk � �xi

�xi
; (4.9)

where the mean of the ith group of inputs is

�xi =
1

NK

NX
n=1

ki+KiX
k=ki

xnk ; (4.10)

and its variance is

�xi =
1

(N � 1)(K � 1)

NX
n=1

ki+KiX
k=ki

(xnk � �i)
2: (4.11)

Here n = 1; : : : ; N indexes the training example, k = ki; : : : ; ki +Ki indexes the variables
in group i, Ki represents the size of group i, and xnk denotes the kth input variable for the
nth training example. A similar set of equations computes the means �yj and the variances
�yj for the output layer of the network:

~ynk =
ynk � �yj

�yj
: (4.12)

The normalization of inputs and output enables a systematic procedure for initializing
weights of a network and further improves emulation quality. Fig. 4.7 illustrates such a
network. The �rst step through this network pre-processes the inputs. This operation
subtracts from each input variable the mean of the group to which the variable relates, and
divides the result by the group's variance. The outcome of this operation becomes the input
to N�

�. Subsequently, the emulator implements the forward pass through N�
� generating a

vector of post-processed outputs. The last step through the network undoes the e�ect of
output post-processing. This operation multiples each output variable by the variance of
the group to which the variable relates, and adds the group's mean to the result.

We now show that the network shown in Fig. 4.7 is equivalent to N0

�. Let x�t be the
input to N�

�, and let y�t be the output of N�
�, and as before, let x0t denote the inputs to

N0

�, and let y0t denote the outputs of N
0

�. The following equations are true:

x�t = T�
xx

0

t = [(x01 � �x1)=�
x
1 ; : : : ; (x

0

6 � �x6)=�
x
6 ]

y�t = N�
�x

�
t

y0t = T�
yy

�
t = [y�1�

y
1 + �y1; : : : ;y

�
6�

y
6 + �y6]

where x0i denotes the ith input group of x0t, and y�i denotes the ith output group of y�t .
The above equations validate the equivalence between the two networks

y0t = N0

�x
0

t = T�
yN

�
�T

�
xx

0

t: (4.13)
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Figure 4.7: The network inputs and outputs are rescaled to have a zero mean and a unit
variance to enable a better weights initialization. For each box, the operator proceeding its
label denotes the operation applied to all the group's incoming signals.

4.3.5 Complete Step through Transformed Emulator

The operations outlined in this chapter form a cascade of transformations that we combine
into a single emulation step, as shown in Fig. 4.4. Naturally, a NeuroAnimator that uses the
cascade of transformations achieves the same functional mapping as the original network
N�. This is easy to prove using the results from the previous sections. Since (4.7) shows the
equivalence between N� and the network in Fig. 4.5, (4.8) shows the equivalence between
N�

� and the network in Fig. 4.6, and (4.13) shows the equivalence between N0

� and the
network in Fig. 4.7, we can combine these results to prove the desired result

yt = T�
y T

0

yT
�
yN

�
�T

�
xT

0

xxt: (4.14)

4.4 Hierarchical Networks

As a universal function approximator, a neural network should in principle be able to
approximate the map � governed by (1.1) for any dynamical system, given enough sigmoid
hidden units and training data. In practice, however, signi�cant performance improvements
accrue from tailoring the neural network to the physical model.

In particular, neural networks are susceptible to the curse of dimensionality. The number
of neurons needed in hidden layers and the amount of training data required grows quickly
with the size of the neural network, often making the training of large networks impractical.
For all but the simplest mechanical models, we have found it prudent to structure the
NeuroAnimator as a hierarchy of smaller networks rather than as a single large, monolithic
network. The strategy behind a hierarchical state representation is to group state variables
according to their dependencies and approximate each tightly coupled group with a subnet
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that takes part of its input from a parent net.
A natural example of hierarchical networks arises when approximating complex artic-

ulated models, such as Hodgins' mechanical human runner model (Hodgins et al., 1995)
which has a tree structure with a torso and limbs. Rather than collect all the 30 controlled
degrees of freedom into a single large network, it is prudent to emulate the model using 5
smaller networks: a torso network plus left and right arm and leg networks. Fig. 4.8 shows
the model and the emulator networks. The torso network would include as state variables
the center of mass position and orientation and its linear and angular velocity, as well as
relative angles and angular velocities of the neck and waist with respect to the shoulders.
Each arm network would include relative angles and angular velocities for the shoulder,
elbow, and wrist joints. Each leg network includes relative angles and angular velocities for
the hip, knee, ankle, and metatarsus joints.

Hierarchical representations are also useful when confronted with deformable mod-
els with large state spaces, such as the biomechanical model of a dolphin described in
(Grzeszczuk and Terzopoulos, 1995) which we use in our experiments. The mass-spring
dolphin model (Fig. 4.9) consists of 23 point masses, yielding a state space with a total of
23 � 3 = 69 positions and 69 velocities, plus 3 controlled degrees of freedom (3 actuators
each consisting of 2 opposed muscle pairs). Rather than constructing a monolithic neural
network with 69 + 69 = 138 state inputs st and outputs st+�t, we subdivide hierarchically.
A natural subdivision is to represent each of the 6 body segments as a separate sub-network
in the local center of mass coordinates of the segment, as shown in the �gure.

4.5 Training NeuroAnimators

This section discusses the practical issues of training a neural network to accurately ap-
proximate a dynamical simulator. First, it describes a strategy for generating independent
training examples that ensure good generalization properties of the network. Subsequently,
it presents the conversion step that the training data undergoes before it can be used to
train the structured emulator. Finally, it lists the di�erent optimization techniques used for
neural network training.

4.5.1 Training Data

To arrive at a NeuroAnimator for a given physics-based model, we train the constituent
neural network(s) by invoking the backpropagation algorithm on training examples gener-
ated by simulating the model. Training requires the generation and processing of many
examples, hence it is typically slow, often requiring several CPU hours. However, it is im-
portant to realize that training takes place o�-line, in advance. Once a NeuroAnimator is
trained, it can be reused readily to produce an in�nite variety of fast animations. Training
a NeuroAnimator is quite unlike recording motion capture data. In fact, the network never
observes complete motion trajectories, only sparse examples of individual state transitions.
The important point is that by generalizing from the sparse examples that it has learned, a
trained NeuroAnimator will produce an in�nite variety of extended, continuous animations
that it has never seen.

More speci�cally, each training example consists of an input vector x and an output
vector y. In the general case, the input vector x = [sT0 ; f

T
0 ;u

T
0 ]

T comprises the state of the
model, the external forces, and the control inputs at time t = 0. The output vector y = s�t

is the state of the model at time t = �t, where �t is the duration of the super timestep.
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Figure 4.8: (a) Human model (source: (Hodgins et al., 1995)). (b) Torso, leg, and arm
emulator networks. Two arm and two leg networks are attached to a torso network to
emulate the mechanical human model.
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Figure 4.9: Hierarchical state representation for the dolphin mechanical model with num-
bered local centers marked by green (light) nodes and point masses marked by red (dark)
nodes. Green lines connect point masses to associated local center.

To generate each training example, we would start the numerical simulator of the physics-
based model with the initial conditions s0, f0, and u0, and run the dynamic simulation for
n numerical time steps �t such that �t = n�t. In principle, we could generate an arbitrarily
large set of training examples fx� ;y� g, � = 1; 2; : : :, by repeating this process with di�erent
initial conditions.

To learn a neural network approximation N� of the map � in (1.1) for some physics-
based model, it would seem sensible to sample the map by evaluating � as uniformly as
possible over its domain. As the domain is usually of high dimensionality, this is di�cult.
However, we can avoid wasted e�ort by sampling those values of st, ut and ft inputs that
typically occur in practice. To this end, we generate the training data by uniformly sampling
the subset of useful control inputs as densely as possible. That is, among the set of all
possible control sequences U , we choose a subset of practical control sequences P (Fig. 4.10).
We then repeatedly simulate the physical model using the controls in P generating the
training examples during the simulation. This approach clusters the training data in a
subset SP of the state space S, but the system is more likely to visit a state s 2 SP than
any state outside SP .

Sampling of the Control Space

We generate the set P of practical control sequences using a similar control discretization
approach as in (Grzeszczuk and Terzopoulos, 1995); i.e., we express the ith control function
as a B-spline ui(t) =

PM
i=1 u

j
iB

j(t), where the Bj(t) are uniform B-spline basis functions,

and we uniformly step each of the control points uji to obtain a set of control functions
which we apply to the dynamic model. Numerically simulating the motion trajectory with
a �xed timestep �t, we record state, and possibly also control, and force information at
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Figure 4.10: The sampling method used to explore the state space. To produce the training
data we explore a subset P of the control space U that is more likely to produce a reasonable
motion. We then repeatedly simulate the physical model using the controls in P generating
the training examples during the simulation. This approach clusters the training data in a
subset SP of the state space S, but the system is more likely to visit a state s 2 SP than
any state outside SP .

tk (where tk denotes the kth sample time), as well as state information at tk +�t, where
�t = n�t, to produce the kth example.

Fig. 4.11 illustrates an e�ective sampling strategy using the dynamic dolphin model
as an example.1 We simulate the model over an extended period of time with a �xed
timestep �t. During the simulation, we apply typical control inputs to the model. For the
dolphin, the control inputs are coordinated muscle actions that produce locomotion. At
well-separated times t = tk during the simulation, we record a set of training examples
f[sTtk ; f

T
tk
;uTtk ]

T ; stk+�tg, k = 1; 2; : : : The lag between successive samples is drawn randomly
from a uniform distribution over the interval �t � (tk+1 � tk) � 5�t. The considerable
separation of successive samples in time helps reduce the correlation of the training data,
improving learning. Furthermore, we randomize the order of the training samples before
starting the backpropagation training algorithm. Clearly, the network observes many inde-
pendent examples of typical state transitions, rather than any continuous motion.

4.5.2 Training Data For Structured NeuroAnimator

As mentioned earlier, to train the emulator shown in Fig. 4.4(c) we need only train the
network N�

� because the operators denoted by the letter T are predetermined. As shown
in Fig. 4.12 before presenting the training data to the network N�

�, we transform the
inputs of the training set through the operators T0

x and T�
x and transform the associated

outputs through the operators (T�
y )

�1, (T0

y)
�1, and (T�

�)
�1 which are the inverses of the

corresponding operators used during the forward emulation step shown in Fig. 4.4(c).

1The reader should note that the data used to train the runner emulator had not been generated as
described in this section. The method used to produce the training data for this particular problem is
described in the results chapter.
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Figure 4.11: An e�ective state transition sampling strategy illustrated using the dynamic
dolphin model. The dynamic model is simulated numerically with typical control input
functions u. For each training example generated, the blue model represents the input
state (and/or control and external forces) at time tk, while the red model represents the
output state at time tk + �t. The long time lag enforced between samples reduces the
correlation of the training examples that are produced.
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Figure 4.12: Transforming the training data for consumption by the network N�
� in

Fig. 4.4(c). The inputs of the training set are transformed through the operators on the
input side of the network in Fig. 4.4(c). The outputs of the training set are transformed
through the inverses of the operators at the output side of the network in Fig. 4.4(c).
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4.5.3 Network Training in Xerion

We begin the o�-line training process by initializing the weights of N�
� to random values

from a uniform distribution in the range [0; 1] (due to the normalization of inputs and
outputs). Xerion automatically terminates the backpropagation learning algorithm when it
can no longer reduce the network approximation error (3.2) signi�cantly.

We use the conjugate gradient method to train networks of small and moderate size. This
method converges faster than gradient descent, but the e�ciency becomes less signi�cant
when training large networks. Since this technique works in batch mode, as the number
of training examples grows, the weight updates become too time consuming. For this
reason, we use gradient descent with the momentum term (Section 3.4.2) when training
large networks. We divide the training examples into small sets, called mini-batches, each
consisting of approximately 30 uncorrelated examples, and update the network weights after
processing each mini-batch.

Appendix F contains an example Xerion script which speci�es and trains a NeuroAni-
mator.



Chapter 5

NeuroAnimator Controller

Synthesis

In this chapter we turn to the problem of control; i.e., producing physically realistic anima-
tion that satis�es goals speci�ed by the animator. We �rst describe the objective function
and its discrete approximation and then propose an e�cient gradient based optimization
procedure that computes derivatives of the objective function with respect to the control
inputs through the back-propagation algorithm.

5.1 Motivation

A popular approach to the animation control problem is controller synthesis (van de Panne
and Fiume, 1993; Ngo and Marks, 1993; Grzeszczuk and Terzopoulos, 1995). Controller syn-
thesis is a generate-and-test strategy. Through repeated forward simulation of the physics-
based model, it optimizes a control objective function that measures the degree to which
the animation generated by the controlled physical model achieves the desired goals. Each
simulation is followed by an evaluation of the motion through the function, thus guiding
the search.

While the controller synthesis technique readily handles the complex optimal control
problems characteristic of physics-based animation, it is computationally very costly. Eval-
uation of the objective function requires a forward dynamic simulation of the dynamic
model, often subject to complex applied forces and constraints. Hence the function is
almost never analytically di�erentiable, prompting the application of non-gradient opti-
mization methods such as simulated annealing (van de Panne and Fiume, 1993; Grzeszczuk
and Terzopoulos, 1995) and genetic algorithms (Ngo and Marks, 1993). In general, since
gradient-free optimization methods perform essentially a random walk through the huge
search space of possible controllers, computing many dynamic simulations before �nding
a good solution, they generally converge slowly compared to methods that are guided by
gradient directions. Although slow, this technique is very robust and can be applied to
complex computer models with little e�ort. Fig. 5.1 shows some of the models of animals
from (Grzeszczuk and Terzopoulos, 1995) that have used motion synthesis to successfully
learn actuator coordination necessary for locomotion.

The NeuroAnimator enables a novel, highly e�cient approach to controller synthesis.
One reason for the e�ciency of this new approach is the fast emulation of the dynamics
of the physical model. But the main reason for the e�ciency is that we can exploit the
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Figure 5.1: Complexity of some models that have used motion synthesis to successfully
learn actuator coordination necessary for locomotion.
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neural network approximation in the trained NeuroAnimator to compute partial derivatives
of output states with respect to control inputs. This enables the computation of a gradient,
hence the use of fast gradient-based optimization for controller synthesis.

In the remainder of this chapter, we �rst describe the objective function and its discrete
approximation. We then propose an e�cient gradient based optimization procedure that
computes derivatives of the objective function with respect to the control inputs through a
back-propagation algorithm.

5.2 Objective Function and Optimization

Using (4.1) we write a sequence of emulation steps

si+1 = N�[si;ui; fi]; 1 � i �M (5.1)

where i indexes the emulation step, and si, ui and fi denote, respectively, the state, control
inputs and external forces in the ith step. Fig. 4.1 illustrates forward emulation by the
NeuroAnimator according to this index notation.

Following the control learning formulation in (Grzeszczuk and Terzopoulos, 1995), we
de�ne a discrete objective function

J(u) = �uJu(u) + �sJs(s); (5.2)

a weighted sum (with scalar weights �u and �s) of a term Ju that evaluates the controller
u = [u1;u2; : : : ;uM ] and a term Js that evaluates the motion s = [s1; s2; : : : ; sM+1] produced
by the network model using that controller, according to (5.1) during a time interval t0 � t �
tM . We may wish to promote a preference for controllers with certain desirable qualities,
such as smooth lower amplitude controllers, via the controller evaluation term Ju. The
distinction between good and bad control functions also depends on the goals that the
animation must satisfy. In our applications, we used trajectory criteria Js such as the �nal
distance to the goal, the deviation from a desired speed, etc. The objective function provides
a quantitative measure of the progress of the controller learning process, with larger values
of J indicating better controllers.

A typical objective function used in our experiments seeks an e�cient controller that
leaves the model in some desired state sd at the end of simulation. Mathematically, this is
expressed as

J(u) =
�u
2

MX
i=1

u2i +
�s
2
(sM+1 � sd)

2; (5.3)

where the �rst term maximizes the e�ciency of the controller and the second term constrains
the �nal state of the model at the end of the animation.

5.3 Backpropagation Through Time

Assuming a trained NeuroAnimator with a set of �xed weights, the essence of our control
learning algorithm is to iteratively update the control parameters u so as to maximize the
objective function J in (5.2). As mentioned earlier, we exploit the NeuroAnimator structure
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Figure 5.2: The backpropagation through time algorithm. At each iteration the algorithm
computes the derivatives of the objective function with respect to the inputs of the emulator
using the chain rule and it adjusts the control inputs to decrease the value of the objective
function.

to arrive at an e�cient gradient ascent optimizer:

ul+1 = ul + �xruJ(u
l); (5.4)

where l denotes the iteration of the minimization step, and constant �x is the learning rate
parameter used during the input update.

At each iteration l, the algorithm �rst emulates the forward dynamics according to
(5.1) using the control inputs ul to yield the motion sequence sl, as is illustrated in Fig. 4.1.
Next, the algorithm computes the components of ruJ in an e�cient manner. The cascade
network structure enables us to apply the chain rule of di�erentiation within each net-
work and backwards across networks, yielding a variant of the backpropagation algorithm
called backpropagation through time. Instead of adjusting weights as in normal backpropa-
gation, however, the algorithm adjusts neuronal inputs as presented in Section 3.3.2. It thus
proceeds in reverse through the network cascade computing components of the gradient.
Fig. 5.2 illustrates the backpropagation through time process, showing the sequentially com-
puted controller updates �uM to �u0. See Appendix C for details on an e�cient, recursive
implementation of the input adjustment algorithm.

The forward emulation and control adjustment steps are repeated for each iteration of
(5.4), quickly yielding a good controller. The e�ciency stems from two factors. First, each
NeuroAnimator emulation of the physics-based model consumes only a fraction of the time
it would take to numerically simulate the model. Second, quick gradient ascent towards an
optimum is possible because the trained NeuroAnimator provides a gradient direction. An
additional advantage of the approach is that once an optimal controller has been computed,
it can be applied to control either the NeuroAnimator emulator or to the original physical
model, yielding animations that in most cases di�er only minimally.
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The control algorithm based on the di�erentiation of the emulator of the forward model
has very important advantages. First, the backpropagation through time can solve fairly
complex sequential decision problems where early decisions can have substantial e�ects
on the �nal results. Second, the algorithm can be applied to dynamic environments with
changing control objectives since it relearns very quickly. The system is therefore much
more adaptive than reinforcement learning where each change in the environment requires
complete policy reevaluation|a tremendously expensive computation.

5.3.1 Momentum Term

More e�cient optimization techniques can be applied to improve a slow convergence rate of
the gradient descent algorithm used in (5.4). Adding the momentum term (Section 3.4.2)
to the gradient descent rule improves the e�ective learning rate of the update rule

�ul+1 = �xruJ(u
l) + �x�u

l (5.5)

ul+1 = ul + �ul+1 (5.6)

where �x is the momentum parameter used to update the inputs, and l is the iteration of
the minimization step.

Learning with the momentum term is very fast and takes only a few iterations to solve
problems that would otherwise have taken much longer. Section 6.2 includes the perfor-
mance comparison for the di�erent optimization techniques.

5.3.2 Control Learning in Hierarchical NeuroAnimators

In Section 4.4 we presented hierarchically de�ned emulators, that combine a set of networks
trained on di�erent motion aspects of the model for more economic representation. The
hierarchical emulator has, in general, one network that represents the global aspects of
motion, and a set of networks that re�ne motion produced by the global network. We have
shown that the hierarchical emulators are faster to train and emulate more e�ciently. But
the hierarchical emulators make control learning easier as well. In the case of the dolphin
emulator, for example, we use the global deformation network only during the control
learning since the local deformations of the model do not impact the result. Similarly for
the human model, when learning a controller that uses a subset of joints, we only need to
evaluate the networks that represent this subset.

5.3.3 Extending the Algorithm to Arbitrary Objectives

Until now we have assumed that the objective is a function de�ned in terms of the states
and the controls of the model as in (5.2). Although this de�nition covers a wide range of
practical problems, the objective does not have to be such a function, but can be represented
instead by a scalar value V . Since we do not know the dependence of V on the states and
the controls, we need to �nd a mapping f(�) that de�nes the relation

V = f(u1; : : : ;uM ; s1; : : : ; sM+1) = f(u; s): (5.7)

The inuence of the control inputs on the map f(�) can be both direct|if f(�) contains
the controller evaluation term|and indirect since the control inputs determine the state
changes. The latter association is much harder to discover, but fortunately it is already
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embedded in the emulator. By makingN� a part of f(�), we can learn the objective function
quickly from a small number of examples.

Notice that the situation discussed here resembles reinforcement learning where the
system needs to construct a critic that evaluates the model's performance according to
some control objective. In general, building the critic is a tough problem that requires
many evaluations of the objective. However, we can combine the emulator N� with the
map f(�) that can be learned rather quickly, to form the critic with signi�cantly less e�ort.

5.4 Control Adjustment Step Through Structured NeuroAn-

imator

Section 4.3 introduced a NeuroAnimator that has been structured to approximate a physical
model very accurately. Fig. 4.4 shows the schematic representation of this emulator. The
input signals of this emulator pass through a sequence of standard transformations before
they reach the principal network N�

�. The forward pass through the main network produces
a set of inputs, which then undergo a second set of transformations.

The control learning algorithm computes the gradient of the objective function J with
respect to the inputs of the structured emulator for each emulation step. The algorithm
starts by evaluating the derivatives with respect to the last emulation step, and then pro-
ceeds to the earlier steps, accumulating the results along the way. This was explained in
Section 5.3. In this section we discuss the details of a single backpropagation step through
the structured emulator.

The backpropagation step starts at the output layer of the emulator that has been
initialized by the derivative computation for the previous emulation step. The algorithm
proceeds towards the inputs of the emulator, computing recursively the derivatives of J
with respect to each layer of units.

Note that there is a close relationship between the forward pass and the backward
pass through the NeuroAnimator. During the forward pass, the relation between the two
neighboring layers can be written down as

yj = g(
pX

i=1

xiwij): (5.8)

A similar relation holds between the derivatives in the neighboring layers of units during
the backward pass that we have derived in Appendix C:

�xi =
qX

j=1

�yjwijg
0(yj); (5.9)

where g0(�) denotes the derivative of the activation function, �yj is the derivative with
respect to the output j, and yj is the activation of this unit. Equation (5.9) simpli�es even
further in the case when g0(�) is the identity function

�xi =
qX

j=1

�yjwij : (5.10)

The last relation leads to some interesting observations that shed light into the imple-
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Figure 5.3: The backpropagation step through the emulator that utilizes a network predict-
ing state changes.

mentation of the derivative computation for the NeuroAnimator. Mainly, if y = sx, then
�x = s�y. This means that if during the forward pass we scale signal x by s, then during
the backward pass we also need to scale signal �y by s. If, on the other hand, y = Rx

where R is a rotation matrix, then �x = RT �y. This fact is easy to show since according
to (5.8)

yj =
3X

i=1

xiri:

where ri is the ith row of R, and according to (5.10)

�xi =
3X

j=1

�yjrj

where rj is the jth column of R. A similar relationship holds between the forward and the
backward pass for the quaternion rotation matrix Q, i.e., y = Qx during the forward pass
becomes �x = QT �y during the backward pass.

Figures 5.3{5.5 use the above relations to show the details of the backpropagation step
through each transformations introduced in Section 4.3, while Fig. 5.6 puts all these trans-
formations into a single backpropagation step. The reader should note that the hidden layer
of the network N�

� is the only layer of sigmoid units in the whole emulator. During the
backpropagation through this layer, the delta signals get multiplied by the derivative of the
objective functions.

5.5 Example

We will highlight some aspects of the control learning algorithm using a simple example.
Suppose we want to �nd an e�cient controller that leaves the dynamical system in some
desired state sd. We can express this objective mathematically as

J = �
1

2
(sd � sM+1)

2 �
1

2

MX
i=1

u2i = Js + Ju (5.11)



Chapter 5. NeuroAnimator Controller Synthesis 51

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

,

NΦ
∆

NΦ
,

Tx
,

Ty

δy1

δy2

δy3

δy4

δx1

δx2

δx3

δx4

δx5

δx6

RT
t

RT
t

QT
tRt

Qt

Rt

δ
δδδ

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆
Rt

Figure 5.4: The backpropagation step through the rotation and translation invariant emu-
lator. Note that the order of rotations is reversed and there is no translation.

222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222

2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222
2222

δy1

δy2

δy3

,

,

,

1
x

2
x

3
x

4
x

6
x

5
x

σ

σ

σ

σ

σ

σ

/

/

/

/

/

/

1
y

2
y

3
y

4
y

σ

σ

σ

σ

*

*

*

*

Tx
σ σNΦ

σTy

NΦ
∆

δy4
,

δx1

δx2

δx3

,

,

,

δx4
,

δx5

δx6

,

,

δ δ δ
δ

Figure 5.5: The backpropagation step through the network with inputs and outputs are
rescaled to have zero mean and unit variance for better weights initialization. Note that
during the backpropagation step the scaling factors remain the same as during the forward
step, but the translations disappear.
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Figure 5.6: The backpropagation step through the structured emulator. The process �rst
applies a set of transformations to the network outputs, then performs the backpropagation
step through the main subnetwork of the emulator N�

�, and �nally applies a second set
of transformation to the subnetwork inputs. The emulator structure has been designed to
compute the error derivatives with maximum accuracy.

where Js is the term responsible for the proper con�guration of the model at the end of the
simulation, and Ju is the term that maximizes the e�ciency of the controller.

The derivative of Js with respect to output sM+1 has a simple form

@Js
@sM+1

= sd � sM�1: (5.12)

Using the chain rule and (5.12) we get the expression for the derivative of Js with respect
to the input vector sM

@Js
@sM

= (sd � sM�1)
@sM+1

@sM
: (5.13)

Similarly, we can get the expression for the derivative of Js with respect to the input vector
uM

@Js
@uM

= (sd � sM�1)
@sM+1

@uM
: (5.14)

Appendix C shows the detailed computation of the partials occurring above. Since Ju does
not depend on the state, we have that

@J

@sM
=

@Js
@sM

(5.15)

and
@J

@uM
=

@Js
@uM

� uM : (5.16)

We have now computed the derivatives of the objective function with respect to the input
layer at the last iteration of the emulation. We can use the result to iteratively compute
the derivatives with respects to the inputs at the earlier iterations. Once we have all the
derivatives ready, we can adjust the control inputs using the on-line input update rule (3.8)

ul+1i = uli � �x
@J

@uli
: (5.17)
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Results

This chapter presents a set of trained NeuroAnimators and supplies performance bench-
marks and an error analysis for them. Additionally, the chapter discusses the use of the
regularization step during the emulation of nonrigid models and its impact on the ap-
proximation error. The second part of the chapter describes the results of applying the
new control learning algorithm to the trained NeuroAnimators. The report includes the
comparison of the new technique with the control learning techniques used previously in
computer graphics literature.

6.1 Example NeuroAnimations

We have successfully used the methodology described in the previous chapter to construct
and train several NeuroAnimators to emulate a variety of physics-based models, includ-
ing the 3-link pendulum from Fig. 4.2, a lunar lander spacecraft, a truck, a dolphin, and
a runner as pictured in the �gures that follow. We used SD/FAST1 to simulate the dy-
namics of the rigid body and articulated models, and we employ the simulator developed
in (Tu and Terzopoulos, 1994) to simulate the dynamics of the deformable-body dolphin.
Table 6.1 summarizes the structure of the NeuroAnimators emulating these models in our
experiments (note that for the hierarchical dolphin model of Fig. 4.9 we indicate the di-
mensions for one of the networks in the bottom layer, since the others are similar). In our
experiments we have not attempted to minimize the number of network weights required
for successful training. We have also not tried to minimize the number of hidden units, but
rather used enough to obtain networks that generalize well while not over�tting the train-
ing data. We can always expect to be able to satisfy these guidelines in view of our ability
to generate su�cient training data. Section 6 will present a detailed analysis of our re-
sults, including performance benchmarks indicating that the neural network emulators can
yield physically realistic animation one or two orders of magnitude faster than conventional
numerical simulation.

The runner NeuroAnimator di�ers from the other NeuroAnimator in that it can produce
only a single motion sequence, and is not a complete emulator of the model dynamics.
This limitation is due to the sparseness of the training data that we had available for the
model. The emulator used a 30 sec. simulation sequence produced at �t = 0:0027 sec.

1SD/FAST is a commercial system for simulating rigid body dynamics, available from Symbolic Dynamics,
Inc.
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Figure 6.1: The emulation of a simple dynamical system. The upper left display in each
of the 4 panels shows a numerically simulated physical model of a three-link pendulum
swinging freely in gravity. The other displays show NeuroAnimators faithfully emulating
the physical model. Each NeuroAnimator was trained using super timesteps corresponding
to 25, 50, and 100 simulator timesteps.
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Figure 6.2: Frames from the animation comparing the response of the physical system and
its emulator to the same set of control inputs for the case of the space ship. The model on
the left represents the physical system, the model on the right|its emulator.
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Figure 6.3: Frames from the animation comparing the response of the physical system and
its emulator to the same set of control inputs for the case of the truck. The model on the
left represents the physical system, the model on the right|its emulator.
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Figure 6.4: The far dolphin is animated by simulating its biomechanical model which is
actuated by internal muscle actions. The near dolphin is animated by a NeuroAnimator
that emulates the physical model at much less computational cost.
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Figure 6.5: Emulated motion produced by training a NeuroAnimator on state transi-
tion data generated by the Hodgins mechanical runner model, simulated numerically by
SD/FAST. The trained neural network emulator produces this running animation. The
data used for training the runner was a 30 sec. simulation sequence produced at �t = 0:0027
sec. using SD/FAST. From this sequence we generated 11,000 training examples to train
the networks for the runner model.

Model State Force Control Hidden State Training

Description Inputs Inputs Inputs Units Outputs Examples

Pendulum

passive 6 | | 20 6 2,400

active 6 | 3 20 6 3,000

ext. force 6 3 3 20 6 3,000

Lander 13 | 4 50 13 13,500

Truck 6 | 2 40 6 5,200

Dolphin

global net 78 | 6 50 78 64,000

local net 72 | 6 40 36 32,000

Runner

torso 23 | | 30 23 14,000

arm 12 | | 30 12 7,200

leg 12 | | 30 12 7,200

Table 6.1: Structure of the NeuroAnimators used in our experiments. Columns 2, 3, and 4
indicate the input groups of the emulator, column 4 indicates the number of hidden units,
and column 5 indicates the number of outputs. The �nal column shows the size of the data
set used to train the model. The dolphin NeuroAnimator includes six local nets, one for
each body segment.
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Model Physical N25

�
N50

�
N100

�
N50

�
with

Description Simulation Regularization

Passive Pendulum 4.70 0.10 0.05 0.02 |

Active Pendulum 4.52 0.12 0.06 0.03 |

Truck 4.88 | 0.07 | |

Lunar Lander 6.44 | 0.12 | |

Dolphin 63.00 | 0.95 | 2.48

Table 6.2: Comparison of simulation time between the physical simulator and di�erent neu-
ral network emulators. The duration of each test was 20,000 physical simulation timesteps.

using SD/FAST to generated 11,000 training examples to train the networks for the runner
model.

For each experiment, to ensure an unbiased evaluation of the generalization quality of
the emulators, we use the test data that comprises examples that were not part of the
training set.

6.1.1 Performance Benchmarks

An important advantage of using neural networks to emulate dynamical systems is the speed
at which they can be iterated to produce animation. Since the emulator for a dynamical
system with the state vector of size N never uses more than O(N) hidden units, it can be
evaluated using only O(N2) operations. Appendix A contains the computer code for the
forward step. By comparison, a single simulation timestep using an implicit time integration
scheme requires O(N3) operations.2 Moreover, a forward pass through the neural network
is often equivalent to as many as 50 or 100 physical simulation steps, so the acceleration is
even more dramatic, yielding performance improvements as great as 100 times faster than
the physical simulator.

In the remainder of this section we use Nn
� to denote a neural network model that was

trained with super timestep �t = n�t. Table 6.1.1 compares the physical simulation times
obtained using the SD/FAST physical simulator and 3 di�erent neural network models:
N25

� , N50
� , and N100

� . The neural network model that predicts over 100 physical simulation
steps o�ers a speedup of anywhere between 50 and 100 times depending on the type of the
system. In case of the deformable dolphin model, the �rst column indicates the simulation
time using the physical simulator described in (Tu and Terzopoulos, 1994), the third column
show the simulation time using N50

� emulator, and the last column shows the impact of
regularization on the emulation time. In this case, each emulation step includes 5 iteration
of the regularizer described in Section 6.1.3. For the car model and the lunar lander model
we have trained only the N50

� emulators.

6.1.2 Approximation Error

An interesting property of the neural network emulation, as Fig. 6.6 testi�es, is that the
error does not increase appreciably for emulators with increasingly larger super timesteps;

2Strictly speaking, the implicit numerical methods take O(N3) operations only if all the variables of the
physics-based model depend on each other. Most often, however, the physics-based models are sparsely
connected. If banded matrix techniques are used, then the numerical methods take O(p2N), where p is the
bandwidth of the matrix. For non-banded systems, (preconditioned) conjugate gradient can be used. If each
variable is connected to k others, then conjugate gradient converges in O(kN2).
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Figure 6.6: The error e(x) in the state estimation incurred by di�erent neural network
emulators, measured as the absolute di�erence between the state variables of the emulator
and the associated physical model. Plot (a) compares the approximation error for the
passive pendulum for 3 di�erent emulator networks: N25

� (solid), N50
� (dashed), N100

� (dot-
dashed). Plot (b) shows the same comparison for the active pendulum. In all experiments,
we averaged the error over 30 simulation trials and over all state variables. The duration
of each trial was 6000 physical simulation timesteps.

i.e., in the graphs, the error over time for N25
� , N50

� , and N100
� is nearly the same. This is

attributable to the fact that an emulator network that can predict further into the future
must be iterated fewer steps per given interval of animation than must an emulator that
can't predict so far ahead. Thus, although the error per iteration may be higher for the
longer-range emulator, the growth of the error over time can remain nearly the same for
both the longer and shorter range predictors. This means that the only penalty for using
emulators that predict far ahead might be a loss of detail (high frequency components
in the motion) due to coarse sampling. However, we did not observe this e�ect for the
physical models with which we experimented. This suggests that the physical systems are
locally smooth. Of course, it is not possible to increase the neural network prediction
time inde�nitely, because eventually the network will no longer be able to approximate the
physical system at all adequately.

Although it is hard to totally eliminate error, we noticed that for the purposes of com-
puter animation the approximation error remained within reasonable bounds. The neural
network emulation appears comparable to the physical simulation, and although the emu-
lated trajectory di�ers slightly from the trajectory produced by the physical simulator, the
emulator seems to reproduce all of the visually salient properties of the physical motion.

6.1.3 Regularization of Deformable Models

When emulating spring-mass systems in which the degrees of freedom are subject to soft
constraints, we discovered that the modest approximation error of even a well-trained em-
ulator network can accumulate as the network is applied repeatedly to generate a lengthy
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animation. Unlike an articulated system whose state is represented by joint angles and hence
is kinematically constrained to maintain its connectivity, the emulation of mass-spring sys-
tems can result in some unnatural deformations after many (hundreds or thousands of)
emulation steps. Accumulated error can be annihilated by periodically performing regular-
ization steps through application of the true dynamical system (1.1) using an explicit Euler
time integration step

vt+�t = vt + �tf(st);

xt+�t = xt + �tvt+�t;

where the state is st = [vt;xt]
T and f(st) is the spring deformation force at time t. It is

important to note that this inexpensive, explicit Euler step is adequate as a regularizer,
but it is impractical for long-term physical simulation because of its instability. In order to
apply the explicit Euler step we used a smaller spring sti�ness and larger damping factor
when compared to the semi-explicit Euler step used during the numerical simulation (Tu
and Terzopoulos, 1994). Otherwise the system would oscillate too much or would simply
become unstable.

We achieve the best results when performing a small number of the regularization steps
after each emulation step. This produces much smoother motion than performing more
regularization step but less frequently. To measure the deformation of the model we de�ne
the deformation energy

Ed =
1

2

mX
i=0

"
lci � lri
lri

#2

wherem is the number of springs, lci is the current length of spring i, and l
r
i is its rest length.

Fig. 6.7 shows how the regularization reduces the deformation energy of the model. The
solid line shows the deformation energy of the emulator that follows each emulation step
with 5 regularization steps. This is enough to keep the deformation approximately constant
and roughly at the same level as during the physical simulation. When the emulator does
not use the regularizer, the deformation energy continuously increases with time.

6.2 Control Learning Results

This section presents results of applying the new control learning algorithm to the trained
NeuroAnimators. The report includes the comparison of the new technique with the control
learning techniques used previously in the computer graphics literature.

We have successfully applied our backpropagation through time controller learning al-
gorithm to the trained NeuroAnimators. We �nd the technique very e�ective|it routinely
computes solutions to non-trivial control problems in just a few iterations.

For example, a swimming controller for the dolphin model was synthesized in just 20
learning emulations. The convergence rate is breathtaking compared with control synthe-
sis techniques that do not exploit gradient information (van de Panne and Fiume, 1993;
Grzeszczuk and Terzopoulos, 1995). In particular, (Grzeszczuk and Terzopoulos, 1995) re-
ports that the same swimming controller took 3000 physical simulations to synthesize using
simulated annealing, and 700 iterations using the simplex method. The e�ciency accrued
from our fast convergence rate is further ampli�ed by the replacement of costly physical
simulation with much faster NeuroAnimator emulation. These two factors yield enormous
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Figure 6.7: The plot compares deformation energy for 3 di�erent cases: emulation with
regularization, emulation without regularization, and physical simulation. The �rst case
performs 5 regularization steps after each emulation step. This is enough to keep the
deformation energy at the same level as during the physical simulation.

speedups|the synthesis of the swimming controller which took more than 1 hour using the
technique in (Grzeszczuk and Terzopoulos, 1995) now takes less than 10 seconds on the
same computer.

Fig. 6.8 shows the progress of the control learning algorithm for the 3-link pendulum.
The purple pendulum, animated by a NeuroAnimator, has a goal to end the simulation
with zero velocity in the position indicated by the green pendulum. We make the learning
problem very challenging by setting a low upper limit on the internal motor torques of the
pendulum, so that it cannot reach its target in one shot, but must swing back and forth to
gain the momentum necessary to reach the goal state. Our algorithm takes 20 iterations to
learn a controller that successfully achieves the goal.

Fig. 6.9 shows the lunar lander NeuroAnimator learning a soft landing maneuver. The
translucent lander resting on the surface indicates the desired position and orientation of
the model at the end of the animation. An additional constraint is that the downward
velocity upon landing should be small enough to land softly. A successful landing controller
was computed in 15 learning iterations.

Fig. 6.10 shows the truck NeuroAnimator learning to park. The translucent truck in the
background indicates the desired position and orientation of the model at the end of the
simulation. The NeuroAnimator produces a parking controller in 15 learning iterations.

Fig. 6.11 shows the dolphin NeuroAnimator learning to swim forward. Simple objec-
tive of moving as far forward as possible produces a natural looking, sinusoidal swimming
pattern.

All trained controllers are 20 seconds long, i.e., they take 2,000 physical simulation
timesteps, or 40 emulator super timesteps using N50

� emulator. The number of control
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Figure 6.8: Frames from the animation showing progress of the control learning algorithm
for the 3-link pendulum. The purple pendulum representing the emulator has a goal to end
the simulation in the position indicated by the green pendulum at zero velocity.
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Figure 6.9: Frames from the animation showing progress of the control learning algorithm
for the space ship. The model resting on the surface of the planet indicates the desired
position and orientation of the emulator at the end of the simulation. Minimal velocity at
landing constitutes an additional requirement.
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Figure 6.10: Frames from the animation showing the truck learning to park. The model far
in the background indicates the desired position and orientation of the emulator at the end
of the simulation.
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Figure 6.11: Frames from the animation showing the dolphin learning to swim. Simple ob-
jective of moving as far forward as possible produces a natural looking, sinusoidal swimming
pattern.
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variables optimized varies: the pendulum optimizes 60 variables, 20 for each actuator; the
lunar lander optimizes 80 variables, 20 for the main thruster, and 20 for each of the 3
attitude thrusters; the car optimizes 40 variables|20 for acceleration/deceleration, and 20
for the rate of turning; �nally, the dolphin optimizes 60 variables|one variable for every 2
emulator steps for each of the six muscles.

6.3 Directed vs Undirected Search in Control Space

This section compares the e�ciency of the gradient directed control learning algorithm
proposed in this thesis with the e�ciency of the undirected search techniques presented in
(Grzeszczuk and Terzopoulos, 1995).

We use the locomotion learning problem studied in (Grzeszczuk and Terzopoulos, 1995)
as the test case for our experiment. In this problem, the dolphin model needs to learn how
to actuate its 6 independent muscles over time in order to swim forward e�ciently. The task
is de�ned in terms of the objective function that measures the distance of the model from
some far away goal. Fig. 6.11 shows the frames from the animation depicting the learning
process.

Fig. 6.12 reports the results of the experiment for the di�erent algorithm as plots of the
progress of learning as a function of the number of iterations. The plot on the left has been
taken from (Grzeszczuk and Terzopoulos, 1995) and shows the progress of learning using
two undirected search methods: simulated annealing and simplex. 3 Plot on the right shows
the result for the gradient directed algorithm. While the older techniques take between 500
and 3500 iteration to converge because in the absence of the gradient information they
need to perform extensive sampling of the control space, the gradient directed algorithm
converges to the same solution in as little as 20 iterations. The use of the neural network
emulator o�ers, therefore, a two orders of magnitude reduction in the number of iterations
and a two orders of magnitude reduction in the execution time of each iteration.

6.3.1 Gradient Descent vs Momentum

Figures 6.13{6.15 compare the convergence of the simple gradient descent and the gradient
descent with the momentum term on the problem of control synthesis. Section 3.4.2 de-
scribes in detail the advantage of using the momentum term during the update step. The
two methods di�er in the implementation of the update rule.

xl+1 = xl + �xl+1: (6.1)

where the simple gradient descent de�nes �wl+1 as

�xl+1 = ��xrxE
� (xl); (6.2)

and the gradient descent with momentum de�nes this term as

�xl+1 = ��xrxE
� (xl) + �x�x

l: (6.3)

3In Fig. 6.12, the plot on the left shows the results for the controller de�ned using both global and local
basis functions. The plot on the right that illustrates the progress of learning of the gradient directed search
shows the result for the controller de�ned using the local basis functions only.
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Figure 6.12: Convergence rate comparison between the directed and the undirected opti-
mization methods on the problem of locomotion learning for the dolphin model. The plot
on the left shows the progress of learning for two optimization methods that do not use the
gradient information: simulated annealing and the simplex method. The plot on the right
shows the convergence of the algorithm that uses gradient to direct the search. The tech-
nique that uses gradient converges in 20 iteration, while the other techniques take between
500 and 3500 iterations to �nd the solution.
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Figure 6.13: Progress of learning for the 3-link pendulum problem. The plot on the left was
produced using the momentum term during, and therefore, converges faster than simple
gradient descent shown on the right.

Fig. 6.13 illustrates the progress of learning for the 3-link pendulum control learning problem
described in Section 6.2 and shown in Fig. 6.8. The results obtained using the momentum
term are shown in the plot on the left and were generated using the following parameters:
�x = 2:0, �x = 0:5. The results obtained using the simple gradient descent are shown in the
plot on the right and were generated using �x = 1:2|the largest learning rate that would
converge. Clearly, the momentum term decreases the error much more rapidly and permits
a larger learning rate.

Fig. 6.14 illustrates the progress of learning for the lunar lander problem described in
Section 6.2 and shown in Fig. 6.9. The results obtained using the momentum term are
shown in the plot on the left and were generated using the following parameters: �x = 1:5,
�x = 0:5. The results obtained using the simple gradient descent are shown in the plot on
the right and were generated using �x = 1:0|the largest learning rate that would converge.
As in the previous example, the momentum term decreases the error much more rapidly
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Figure 6.14: Progress of learning for the landing problem. The plots show the objective
as a function of the iteration of the control learning algorithm. The plot on the left was
produced using the momentum term, and therefore, converges faster than simple gradient
descent shown on the right.
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Figure 6.15: Progress of learning for the parking problem. The plots show the objective
as a function of the iteration of the control learning algorithm. The plot on the left was
produced using the momentum term, and therefore, converges faster than simple gradient
descent shown on the right.

and enables a larger learning rate.
Fig. 6.15 illustrates the progress of learning for the parking problem described in Sec-

tion 6.2 and shown in Fig. 6.10. The results obtained using the momentum term are shown
in the plot on the left and were generated using the following parameters: �x = 1:5, �x = 0:5.
The results obtained using the simple gradient descent are shown in the plot on the right
and were generated using �x = 1:5. Although both strategies use the same learning rate,
the momentum term damps the oscillation and therefore converges faster.
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Conclusion and Future Work

7.1 Conclusion

Animation through the numerical simulation of physics-based graphics models o�ers un-
surpassed realism, but it can be computationally demanding. Likewise, �nding controllers
that enable physics-based models to produce desired animations usually entails formidable
computational cost. This thesis demonstrates the possibility of replacing the numerical
simulation and control of model dynamics with a dramatically more e�cient alternative.
In particular, we propose the NeuroAnimator, a novel approach to creating physically re-
alistic animation that exploits neural networks. NeuroAnimators are automatically trained
o�-line to emulate physical dynamics through the observation of physics-based models in
action. Depending on the model, its neural network emulator can yield physically realistic
animation one or two orders of magnitude faster than conventional numerical simulation.
The e�ciency is due to the low cost of the neural network evaluation and the fact that the
network can accurately predict a long chain of evaluations of the physical simulator in a
single step. Furthermore, by exploiting the network structure of the NeuroAnimator, we in-
troduce a fast algorithm for learning controllers that enables either physics-based models or
their neural network emulators to synthesize motions satisfying prescribed animation goals.
We demonstrate NeuroAnimators for passive and active (actuated) rigid body, articulated,
and deformable physics-based models.

To minimize the approximation error of the emulation, we construct a structured Neu-
roAnimator that has intrinsic knowledge about the underlying model built into it. The
main subnetwork of the structured NeuroAnimator predicts the state changes of the model
in its local coordinate system. A cascade of smaller subnetworks forms an interface be-
tween the main subnetwork and the inputs and outputs of the NeuroAnimator. To limit
the approximation error that accumulates during the emulation of the deformable models,
we introduce the regularization step that minimizes the deformation energy.

For complex dynamical systems with large state spaces we introduce hierarchical emu-
lators that can be trained much more e�ciently. The networks in the bottom level of this
two level hierarchy are responsible for the emulation of di�erent subsystems of the model,
while the network at the top level of the hierarchy combines the results obtained by the
lower level.

Except for very simple cases for which one can derive an analytical description, the phys-
ical systems used in computer graphics are not di�erentiable. Controller synthesis without
gradient information necessitates brute force exploration of the control space that requires

70



Chapter 7. Conclusion and Future Work 71

many costly physical simulations and is therefore painfully slow. However, the NeuroAni-
mator forms a di�erentiable model of the underlying physical system and, hence, forms a
basis for an e�cient control algorithm that uses the gradient to guide the search through
the control space. In essence, the algorithm integrates the model over time to predict the
future result and then di�erentiates the error in the outcome back in time to compute the
e�ect of current actions on future results. This strategy proves very e�cient since it replaces
costly physical simulation with inexpensive neural emulation, and it synthesizes solutions
to complex control problems in a few iterations by using the gradient.

The heavy computational burden of physical simulation and the lack of suitable control
algorithms has retarded the penetration of physics-based models into commercial computer
graphics systems. The connectionist approach developed in this thesis addresses both of
these issues simultaneously in a uni�ed fashion. It promises to help make physical realism
in computer animation ubiquitous.

A neural network emulation o�ers a convenient handle for trading e�ciency and realism.
For example, if we care more for e�ciency than for realism we can approximate the physical
model using a network with a reduced number of weights and units, or we can train the
network to make larger time steps then the physical simulator. Connectionist emulation
therefore gives the user control over degree of physical realism.

7.2 Future Research Directions

7.2.1 Model Reconstruction

In the future, we foresee neural network emulators, similar to those presented in the disser-
tation, �nding applications in the reconstruction of physically realistic models. Suppose, for
example, that we have the training data describing physically correct state transitions of a
model, but not its physical properties, nor the control forces that caused these transitions.
The case we have in mind is that of motion capture which certainly produces physically
realistic data, but excludes a lot of information about the underlying physical model such
as control and contact forces. Given that the training data has enough diversity, we should
be able to compose an emulator for the model underlying the captured data that recovers
all its salient physical properties. In fact, we should be able to reconstruct the controllers
responsible for the state transitions in the training data without much di�culty. We think
this should be a very interesting line of research.

7.2.2 Emulator Improvements

We want to test the e�ect of using a committee of networks on the generalization quality
of the network. This method trains many di�erent candidate networks and then combines
them together to form a committee (Perrone, 1993; Perrone and Cooper, 1994). This leads
to signi�cant improvements in generalization, but incurs a performance penalty due to the
evaluation of multiple networks during each emulation step.

Yet another approach to improving network generalization we would like to evaluate is
the use of adaptive mixtures of local experts to divide the learning into subtasks, each of
which can be solved by a small and e�cient expert network (Jacobs et al., 1991; Jordan
and Jacobs, 1994).
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7.2.3 Neural Controller Representation

In the future, we would like to replace the current controller representation that uses control
variables to describe a set of control functions with a neural network. The existing controller
can learn to perform only a single control task while the controller network should be able
to learn a variety of them. In fact, it is possible that the controller network trained on a
repertoire of simple basic control problems will likely generalize to similar yet di�erent tasks.
We hope that the connectionist controller o�ers a su�ciently elaborate representation to
enable the emergence of complex behavior. We foresee that a controller network trained on a
variety of simple, low-level tasks, such as swimming forward and turning, will automatically
form an abstraction of controllers that solve higher-level problems, such as target tracking.
Furthermore, we believe that the connectionist formulation o�ers uniformity that will make
the interface between the separate control networks much more intelligible and elegant.

7.2.4 Hierarchical Emulation and Control

In the future, as we seek computer models that solve increasingly di�cult tasks requiring
extensive planning and taking a long time to execute, we will need to build emulators
at di�erent temporal scales. Even the best emulators cannot predict the behavior of the
underlying model accurately forever. We foresee that the control for complex tasks will
therefore have to be done hierarchically, where the control algorithm �rst solves the problem
at a high level of abstraction described at a coarse temporal level, and then learns to perform
each high-level task using low-level actions that take less time to execute.

7.2.5 NeuroAnimators in Arti�cial Life

In recent years, a new computation �eld has emerged, dubbed Arti�cial Life, that seeks
to gain a better understanding of complex biological systems through their computer sim-
ulation. Biologically inspired models of animals, or animats, have also been of interest to
computer animators who believe that such models will lead to more realistic results. The
work presented here is of interest to both disciplines since it makes computer models more
reactive and life-like through the use of biologically inspired neural networks.

One possible interpretation for the NeuroAnimators, that would be appealing from the
Arti�cial Life point of view, is that the emulation represents the retrospective mode of
the animat, while the simulation represents its active mode, and the animat uses them
interchangeably to make better decisions about the future actions. In this scenario, the
model is normally engaged in the execution mode, but breaks occasionally from it in order
to reect on its actions and plan future behavior. This is an interesting topic for future
work.



Appendix A

Forward Pass Through the

Network

The following is a C++ function for calculating the outputs of a neural network from the
inputs. It implements the core loop that takes a single super timestep in an animation
sequence with a trained NeuroAnimator.

BasicNet::forwardStep(void)

{

int i,j,k;

double *input = inputLayer.units;

double *hidden = hiddenLayer.units;

double *output = outputLayer.units;

double **ww = inputHiddenWeights;

double **vv = hiddenOutputWeights;

// compute the activity of the hidden layer

for (j=0;j<hiddenSize;j++) {

hidden[j] = biasHiddenWeights[j];

for (i=0;i<inputSize;i++)

hidden[j] += input[i]*ww[i][j];

hidden[j]=hiddenLayer.transFunc(hidden[j]);

}

// compute the activity of the output layer

for (k=0;k<outputSize;k++) {

output[k] = biasOutputWeights[k];

for (j=0;j<hiddenSize;j++)

output[k] += hidden[j]*vv[j][k];

output[k]=outputLayer.transFunc(output[k]);

}

}
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Appendix B

Weight Update Rule

In Section 3.3.1 we have presented the weight update rule that uses the on-line gradient
descent to train a network to approximate an example set (x� ;y� ). Here we derive an
e�cient, recursive implementation of the algorithm that constitutes the essential part of
the backpropagation algorithm (Rumelhart, Hinton and Williams, 1986). Although the
derivation is for a speci�c case of a simple feedforward neural network with one hidden
layer, we also show how to generalize the algorithm to a feedforward network with an
arbitrary topology. Fig. B.1 introduces the notation.

Recall that the algorithm de�nes the network approximation error as

E� (w) = E(x� ;w) = jj�(x� )�N(x� ;w)jj; (B.1)

and it seeks to minimize the objective

E(w) =
1

2

nX
�=1

E� (w); (B.2)

where n is the number of training examples. The on-line gradient descent implementation
of the algorithm adjusts the network weights after each training example k:

wl+1 = wl � �wrwE
�(wl) (B.3)

where �w < 1 denotes the weight update learning rate, and l speci�es the iteration of the
minimization step.

We derive here an e�cient, recursive rule for computing the derivatives in (B.3). The al-
gorithm �rst computes the derivative of the error with respect to the layer of weights directly
adjacent to the outputs, and then uses this result recursively to compute the derivatives with
respect to the earlier layers of weights. The name of the backpropagation algorithm stems
from this recursive computation, that in essence propagates the derivative information from
the network outputs back to its inputs.

We start the derivation by computing the error derivatives with respect to the hidden-to-
output connections. Using the chain rule of di�erentiation we get the following expression

@E� (w)

@wjk

=
@E� (w)

@yk

@yk
@wjk

(B.4)

Applying the chain rule twice, we get a similar expression for the derivatives with respect
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Figure B.1: Three-layer feedforward neural network N. Bias units are not shaded. xi
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between hidden unit j and output unit k.

to the input-to-hidden connections

@E� (w)

@vij
=

@E� (w)

@hj

@hj
@vij

=
@hj
@vij

rX
k=1

@E� (w)

@yk

@yk
@hj

(B.5)

All the derivatives occurring on the left side of (B.4) and (B.5) can now be easily calculated.
Based on the notation introduced in Fig. B.1, we have the following expressions describing
the activations of hidden and output units

hj = gh(
pX

i=1

xivij) = gh(xvj) (B.6)

yk = gy(
qX

j=1

hjwjk) = gy(hwk) (B.7)

where gh and gy are respectively the activation functions of the hidden and the output layer.
We use these expressions to derive the partial derivatives used in (B.4) and (B.5)

@yk
@wjk

= hjg
0

y(hwk) (B.8)

@yk
@hj

= wjkg
0

y(hwk) (B.9)

@hj
@vij

= xig
0

h(xvj) (B.10)

@hj
@xi

= vijg
0

h(xvj) (B.11)

where g0h and g0y indicate the derivatives of the activation functions. Assuming that the
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approximation error is de�ned as the squared distance between the output of the network
and the desired output and from B.2, we can additionally write

@E� (w)

@yk
=

1

2

@(tk � yk)
2

@yk
= �(tk � yk) = E�

k (B.12)

where tk is the target output for unit k and yk is the true output for this unit. Substituting
(B.12) and (B.8) into (B.4) we get the expression for the error derivatives with respect to
the hidden-to-output weights

@E� (w)

@wjk

= E�
k � hj � g

0

y(hwk) = hj�k (B.13)

where we have de�ned
�k = E�

k � g
0

y(hwk) (B.14)

Substituting (B.10), (B.12) and (B.9) into (B.5) we get the expression for the error deriva-
tives with respect to the input-to-hidden weights

@E� (w)

@vij
= xi � g

0

h(xvj)
rX

k=1

E�
k � wjk � g

0

y(hwk): (B.15)

Using (B.14), we can rewrite this expression as

@E� (w)

@vij
= xi � g

0

h(xvj)
rX

k=1

wjk�k = xi�j (B.16)

where we have de�ned

�j = g0h(xvj)
rX

k=1

wjk�k (B.17)

Based on (B.3), we can �nally write the on-line gradient descent rule for the hidden-to-
output layer

wl+1
jk = wl

jk � �whj�k; (B.18)

and for the input-to-hidden layer

vl+1ij = vlij � �wxi�j : (B.19)

Note that both update rules have the same form, and di�er only in the de�nition of �'s.
In fact, since (B.17) gives a recursive rule for computing �'s for the given layer of units
in terms of �'s from the previous layer, update rule (B.19) can be used in a feedforward
networks with an arbitrary number of layers. Incremental computation of the derivatives
makes the backpropagation algorithm very e�ciently.

Computation of the derivatives can be further simpli�ed if we take the implementation
speci�cs of an emulator under account. Since the emulator uses the identity function as the
input activation function gx and the output activation function gy, the functions derivatives,
g0x and g

0

y, become the identity. Also, the emulator always uses the logistic sigmoid function
as the activation function for the hidden layer, and this function has a useful property that
its derivative can be expressed in terms of the function itself: sig0(x) = sig(x)(1 � sig(x)).



Chapter B. Weight Update Rule 77

These facts enable us to write (B.17) as

�j = sig0(xvj)
rX

k=1

wjk�k = hj(1� hj)
rX

k=1

wjk�k; (B.20)

and (B.14) as
�k = E�

k � g
0

y(hwk) = E�
k : (B.21)

Since the new set of update rules reuses unit activations computed during the forward pass
through the network, it makes the backpropagation step simpler and more e�cient.

The following is a C++ function implementing the online version of the weight update
rule. We assume that before executing this function the network has been presented with
an input pattern for which there is a known target pattern, and that the activations of the
hidden and the output layers were calculated for the network based on this input using the
function presented in Appendix A. The update rule for the bias weights is the same as for
the other weights.

void

BasicNet::backpropUpdateWeightsStep(void)

{

int i, j, k; double value;

double *input = inputLayer.units;

double *hidden = hiddenLayer.units;

double *output = outputLayer.units;

double *hiddenDelta = hiddenDeltaLayer.units;

double *outputDelta = outputDeltaLayer.units;

double **v = inputHiddenWeights;

double **w = hiddenOutputWeights;

// compute the output layer deltas

for(k=0;k<outputSize;k++) {

outputDelta[k] = -(target[k] - output[k]);

ouputDelta[k] *= outputLayer.transDeriv(output[k]);

}

// update the hidden-to-output weights

for (j=0;j<hiddenSize;j++)

for(k=0;k<outputSize;k++) {

w[j][k] -= learningRate * hidden[j] * outputDelta[k];

biasOutputWeights[k] -= learningRate * outputDelta[k];

}

// compute the hidden layer deltas

for (j=0;j<hiddenSize;j++) {

hiddenDelta[j] = 0.0;

for(k=0;k<outputSize;k++)

hiddenDelta[j] += w[j][k] * outputDelta[k];
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hiddenDelta[j] *= hiddenLayer.transDeriv(hidden[j]);

}

// update the input-to-hidden weights

for(i=0;i<inputSize;i++)

for (j=0;j<hiddenSize;j++) {

v[i][j] -= learningRate * input[i] * hiddenDelta[j];

biasHiddenWeights[j] -= learningRate * hiddenDelta[j];

}



Appendix C

Input Update Rule

In Section 3.3.2 we have presented the input update rule that uses the on-line gradient de-
scent to alter the control inputs of the network in order to achieve the desired output. This
algorithm forms an essential part of the controller synthesis process described in Chapter 5.
The input update rule di�ers from the traditional version of the backpropagation algo-
rithm (Rumelhart, Hinton and Williams, 1986) in that it adjusts the inputs while keeping
the weights constant. However, the essential philosophy of the backpropagation algorithm
stays intact. For this reason, there is a signi�cant overlap between the weight update
rule (Appendix B) and the rule described here. Both derivations share the same notation
introduced in Fig. B.1.

Recall that the algorithm seek to minimize the objective de�ned as

E(x) = jjNd �N(x)jj2 (C.1)

where Nd denotes the desired output of the network. We can rewrite E as

E(x) =
1

2

rX
k=1

(tk � yk)
2 =

rX
k=1

Ek (C.2)

The on-line gradient descent implementation of the algorithm adjusts the network inputs
using the following rule

xl+1 = xl � �xrxE(x
l) (C.3)

where �x < 1 denotes the input update learning rate, and l describes the iteration of the
optimization step.

We derive here an e�cient, recursive rule for computing the derivatives in (C.3). Ap-
plying the chain rule of di�erentiation twice to the equation we get

@E

@xi
=

rX
k=1

@Ek

@xi
=

rX
k=1

@Ek

@yk

@yk
@xi

=
rX

k=1

@Ek

@yk

qX
j=1

@yk
@hj

@hj
@xi

(C.4)

We rearrange the terms to get

@E

@xi
=

qX
j=1

rX
k=1

@Ek

@yk

@yk
@hj

@hj
@xi

=
qX

j=1

@hj
@xi

rX
k=1

@Ek

@yk

@yk
@hj

(C.5)

Note that the bias units, which receive constant input signals and have therefore zero

79
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gradient, have been excluded from the summation term. Using (B.9) and (B.11), we simplify
the notation by introducing the following expressions

�k =
@Ek

@yk
= �(tk � yk)

�j =
rX

k=1

�k
@yk
@hj

=
rX

k=1

�k � wjk � g
0

y(hwk)

�i =
qX

j=1

�j
@hj
@xi

=
qX

j=1

�j � vij � g
0

h(xvj)

Based on (C.3), we can now write a very concise representation of the on-line gradient
descent rule for the ith input unit

xl+1i = xli � �x�i (C.6)

Since the rule for the input �'s is de�ned recursively in terms of the �'s in the previous
layers, the input update rule (C.6) can be used to compute the derivatives in a feedforward
network with an arbitrary number of layers.

We use the logistic sigmoid function as the activation function for the hidden layer
and the identity function for both the input and the output layer. The logistic sigmoid
function has the property that its derivative can be expressed in terms of the function
itself: sig0(x) = sig(x)(1 � sig(x)). These facts enable us to simplify the expression for �s

�j =
rX

k=1

�k � wjk � g
0

y(hwk) =
rX

k=1

�k � wjk

�i =
qX

j=1

�j � vij � g
0

h(xvj) =
qX

j=1

�j � vij � hj(1� hj)

This makes the backpropagation step easier to implement and more e�cient, because we
can evaluate the input adjustments using solely the unit activations computed during the
forward pass through the network.

The following is a C++ function implementing the online version of the input update
rule. We assume that before executing this function the network has been presented with
an input pattern for which there is a known target pattern, and that the activations of the
hidden and the output layers were calculated for the network based on this input using the
function presented in Appendix A.

void

BasicNet::backpropInputsUpdateRule(void)

{

int i, j, k; double value;

double *hidden = hiddenLayer.units;

double *output = outputLayer.units;

double *inputDelta = inputDeltaLayer.units;

double *hiddenDelta = hiddenDeltaLayer.units;

double *outputDelta = outputDeltaLayer.units;
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// compute the deltas for the output layer ( output deltas

// depend on the definition of the error function)

setOutputDeltas();

// compute the deltas for the hidden layer

for (j=0;j<hiddenSize;j++) {

hiddenDelta[j] = 0.0;

for (k=0;k<outputSize;k++) {

value = hiddenOutputWeights[j][k]*outputLayer.transDeriv(output[k]);

value *= outputDelta[k];

hiddenDelta[j] += value;

}

}

// compute the deltas for the input layer

for (i=0;i<inputSize;i++) {

inputDelta[i] = 0.0;

for (j=0;j<hiddenSize;j++) {

value = inputHiddenWeights[i][j]*hiddenLayer.transDeriv(hidden[j]);

value *= hiddenDelta[j];

inputDelta[i] += value;

}

}

// update the inputs to the network

for (i=0;i<inputSize;i++)

inputs[i] += learningRate*inputDelta[i];

}



Appendix D

Quaternions

A quaternion can represent an arbitrary 3D rotation using only four parameters, and ro-
tation interpolation in the quaternion space is simple and smooth. These two properties
make the quaternion encoding of rotation a better choice then its two alternatives: the
Euler angles and the rotation matrix. The Euler angles, such as yaw, pitch, and roll, can-
not represent an arbitrary rotation because of the singularity that occurs when the two
rotations axes collapse into one. The rotation matrix, on the other hand, requires as many
as nine parameters to encode the rotation and the interpolation of two rotation matrices
cannot be performed directly.

For the reasons outlined above we choose to represent the joint orientations of a rigid-
body using quaternions. However, the emulation and the control learning using quaternions
requires a distinct set of operations. Speci�cally, to compute the change in the orientation
of the model, we need to be able to subtract two quaternion rotations. We also need to know
how to interpolate smoothly between two joint orientations represented as quaternions to
obtain the motion of the model in-between the super timesteps. Finally, for the purposes of
backpropagation through time we need to know how to di�erentiate operations that involve
quaternions.

This appendix reviews the quaternion algebra related to our work. First we introduce
the quaternion notation as presented in the paper by Hart et al. (Hart, Francis and Kauf-
mann, 1994). This includes a matrix representation for quaternion multiplication used
by the emulation step. Subsequently, we review quaternion interpolation as presented in
(Shoemake, 1985). Finally, we derive the quaternion multiplication di�erentiation step, and
introduce the quaternion rotation error measure used to evaluate of the objective function.

D.1 Quaternion Representation

A quaternion q = r + xi + yj + zk = r + v consists of a real part r and a pure part
v = xi+ yj+ zk. Vectors i, j, k signify the three-dimensional vectors

i = (1; 0; 0); (D.1)

j = (0; 1; 0); (D.2)

k = (0; 0; 1): (D.3)
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Let q1 = r1 + v1 and q2 = r2 + v2 be the two quaternions. Their sum is

q1 + q2 = (r1 + r2) + (v1 + v2); (D.4)

and their product is

q1q2 = r1r2 + v1 � v2 + r1v2 + r2v1 + v1 � v2: (D.5)

The magnitude of q is de�ned as

kqk =
p
r2 + v � v:

Let q = a + bu be a quaternion such that kuk = 1 is the imaginary unit three-vector. Its
conjugate is �q = a� bu, and its magnitude is

kqk = q�q =
p
a2 + b2: (D.6)

Any quaternion q = a+ v can be represented as q = a+ bu through the relation

u =
x

kvk
i+

y

kvk
j+

z

kvk
k: (D.7)

D.2 Quaternion Rotation

Rotations are represented by unit quaternions, i.e., the quaternions of unit magnitude.
Shoemake (Shoemake, 1985) represents a rotation of � about the axis u as

q = cos
1

2
� + sin

1

2
�u: (D.8)

Hart et al. employ the notation used in engineering sciences, that represents a complex
number of unit magnitude as ei� = cos � + i sin �, to produce a very compact quaternion
representation

q = e
1

2
�u: (D.9)

D.2.1 Rotation Negation

From (D.6) it follows that to invert a unit quaternion, we simply negate its pure part

q�1 = �q: (D.10)

D.2.2 Rotation Summation

We multiply two quaternions to sum the rotations that they represent, analogously to the
operation done on the rotation matrices

e
1

2
�u = e

1

2
�1u1 � e

1

2
�2u2 = q1q2 (D.11)

where the multiplication is done according to the rule (D.5). Note, that it is much more
e�cient to add rotations represented as quaternions then it is when they are represented
using rotation matrices.
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D.3 Rotation Interpolation

Linear interpolation of two rotations, q1 and q2, requires that the rotation changes at a
constant speed. Shoemake showed that this can be done by interpolating on the unit sphere,
along the great circle arc between the two rotations. He gives the following formula for the
spherical linear interpolation from q1 to q2, with parameter u moving from 0 to 1

slerp(q1;q2; u) =
sin(1� u)�

sin �
q1 +

sinu�

sin �
q2; (D.12)

where q1 � q2 = cos �:

D.4 Matrix Representation of Quaternion Multiplication

The structured emulator introduced in Section 4.3 computes the joint orientation !t+�t by
adding two quaternion rotations: !t and �!t through quaternion multiplication according
to the rule(D.5). However, for the purposes of a connectionist implementation it is far more
convenient to represent quaternion multiplication in a matrix form that we present here.

Let q1 = [ qr1 q
x
1 qy1 q

z
1 ] and q2 = [ qr2 q

x
2 qy2 q

z
2 ] represent two quaternion rotations, and

let q = [ qr qx qy qz ] be the product of q1 and q2. Expanding the multiplication rule (D.5)
we get the following set of equations

qr = qr1q
r
2 � qx1q

x
2 � qy1q

y
2 � qz1q

z
2

qx = qr1q
x
2 + qx1q

r
2 + qy1q

z
2 � qz1q

y
2

qy = qr1q
y
2 + qy1q

r
2 + qz1q

x
2 � qx1q

z
2

qz = qr1q
z
2 + qz1q

r
2 + qx1q

y
2 � qy1q

x
2

(D.13)

which can be written concisely in a matrix form

q = q1q2 = Q1q2 =

2
6664

qr1 �qx1 �qy1 �qz1
qx1 qr1 qz1 �qy1
qy1 �qz1 qr1 qx1
qz1 qy1 �qx1 qr1

3
7775
2
6664
qr2
qx2
qy2
qz2

3
7775 : (D.14)

D.5 Di�erentiation of Quaternion Rotation

Since the emulation step performs quaternion multiplication, the backpropagation control
learning algorithm needs to compute the derivative of the output rotation q with respect
to the input quaternions q1 and q2. We use the expanded version of the quaternion multi-
plication (D.13) to compute the Jacobian of q with respect to q1

@q

@q1
=

2
6664

qr2 �qx2 �qy2 �qz2
qx2 qr2 qz2 �qy2
qy2 �qz2 qr2 qx2
qz2 qy2 �qx2 qr2

3
7775 (D.15)
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and with respect to q2

@q

@q2
=

2
6664
qr1 �qx1 �qy1 �qz1
qx1 qr1 �qz1 qy1
qy1 qz1 qr1 �qx1
qz1 �qy1 qx1 qr1

3
7775 : (D.16)

D.6 Orientation Error Metric in Quaternion Space

Since the control learning algorithm computes the error at the end of an emulation based
on the state of the model, we need to be able to determine what this error is for the
orientation de�ned as a quaternion. Let qM+1 be the orientation of the model at the end
of the emulation, and let qd = [ qrd q

x
d qyd q

z
d ] be the desired orientation of the model at this

point. We de�ne the orientation error as

ER =
1

2
(qu � qo)

2: (D.17)

where qu = [ 1 0 0 0 ] is the quaternion with zero rotation, and qo = q�qd. Using the
chain rule of di�erentiation, we obtain the following expression for the derivative of ER

with respect to q
@ER

@q
=

@ER

@qo

@qo
@q

(D.18)

where
@ER

@qo
= [qro � qru; q

x
o � qxu; q

y
o � qyu; q

z
o � qzu] (D.19)

and

@qo
@q

=

2
6664

�qrd ��qxd ��qyd ��qzd
�qxd �qrd �qzd ��qyd
�qyd ��qzd �qrd �qxd
�qzd �qyd ��qxd �qrd

3
7775 : (D.20)



Appendix E

Description of the Models

This appendix describes the physical models used as the emulator prototypes. For the rigid
bodies we include the SD/FAST script used to build the model and the forces computation
function used by the physical simulator.

E.1 Multi-Link Pendulum

The following is an SD/FAST script used to generate the equations of motion for the three-
link pendulum shown in Fig. 6.1. The model has 3 links|link0 attaches to the ground,
link1 attaches to link0, and �nally link2 attaches to link1. The links connect through the
pin joints that rotate around the y-axis. There is a gravity force acting on the model.

E.1.1 SD/FAST Script

gravity = 0 0 -9.8

body = link0 inb = ground joint = pin

mass = 1 inertia = 5 0 0 0 5 0 0 0 1

bodytojoint = 0 0 0.25 inbtojoint = 0 0 0

pin = 0 1 0

body = link1 inb = link0 joint = pin

mass = 1 inertia = 5 0 0 0 5 0 0 0 1

bodytojoint = 0 0 0.25 inbtojoint = 0 0 -0.25

pin = 0 1 0

body = link2 inb = link1 joint = pin

mass = 1 inertia = 5 0 0 0 5 0 0 0 1

bodytojoint = 0 0 0.25 inbtojoint = 0 0 -0.25

pin = 0 1 0

E.1.2 Force Computation Function

The following is a C function for calculating the external torques acting on the joints of the
model. Each torque is a sum of the control force and the friction force that depends on the
angular velocity of the joint.
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Figure E.1: The geometrical model of the lunar lander. Underlying it is a physical model
that can rotate freely in 3D.

void sduforce(double time, double *pos, double *vel)

{

int i; double torque;

// loop through all the joints

for (i=0;i<jointCount;i++) {

// compute the torque

torque = controlForce[i] - frictionCoef*vel[i];

// apply the torque to the joint

sdhinget(i,0,torque);

}

}

E.2 Lunar Lander

The following is an SD/FAST script used to generate the equations of motion for the lunar
lander model shown in Fig. E.1. Physical representation of the model consists of a rigid
block that can rotate freely in 3D. The model has 4 internal controls|the main jet that
propels the lander, and 3 orthogonal thrusters that change the orientation of the model.
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E.2.1 SD/FAST Script

body = ship inb = ground joint = sixdof

mass = 100.0

inertia = 5 0 0 0 5 0 0 0 2

bodytojoint = 0 -1 0.0 inbtojoint = 0 0 0

pin = 1 0 0

pin = 0 1 0

pin = 0 0 1

E.2.2 Force Computation Function

extern int globalControlCount;

extern double* globalControls;

The following is a C function for calculating the external torques

acting on the joints of the model. Each torque is a sum of the control

force and the friction force that depends on the angular velocity of

the joint.

void sduforce(double time, double *pos, double *vel)

{

// jet positions

double shipPos[3] = { 0.0, 0.0, 0.0};

double jet0[3] = { 0.25, 0.0, 0.0};

double jet1[3] = {-0.25, 0.0, 0.0};

// jet forces

double mainJet[3] = {0.0,0.0,10.0};

double azim0[3] = { 0.0, 0.5, 0.0};

double azim1[3] = { 0.0,-0.5, 0.0};

double incl0[3] = { 0.0, 0.0, 0.5};

double incl1[3] = { 0.0, 0.0,-0.5};

mainJet[2] *= globalControls[0];

azim0[1] *= globalControls[1];

azim1[1] *= globalControls[1];

incl0[2] *= globalControls[2];

incl1[2] *= globalControls[2];

// apply the main jet force

sdpointf(0,shipPos,mainJet);

// apply the orientation jets

sdpointf(0,jet0,azim0);

sdpointf(0,jet0,incl0);
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sdpointf(0,jet1,azim1);

sdpointf(0,jet1,incl1);

// apply linear friction force

double linIn[3], linOut[3];

for (int i=0;i<3;i++) {

linIn[i] = -0.2*vel[i];

}

sdtrans(-1,linIn,0,linOut);

sdpointf(0,shipPos,linOut);

// apply angular friction force

double angIn[3], angOut[3];

for (i=0;i<3;i++) {

angIn[i] = -0.2*vel[i+3];

}

sdbodyt(0,angIn);

}

E.3 Truck

The following is an SD/FAST script used to generate the equations of motion for the truck
model shown in Fig. E.2. Physical representation of the model consists of a rigid block that
can slide on the plane z = 0, and rotate around the z axis. The model can exert two types
of forces|one that accelerates/decelerates in the forward direction, and one that changes
the orientation of the model.

E.3.1 SD/FAST Script

body = block inb = ground joint = planar

mass = 100.0

inertia = 5 0 0 0 5 0 0 0 2

bodytojoint = 0 -1 0 inbtojoint = 0 0 0.25

pin = 1 0 0

pin = 0 1 0

pin = 0 0 1

E.3.2 Force Computation Function

extern int globalControlCount;

extern double* globalControls;

void sduforce(double time, double *pos, double *vel)

{

// change the orientation

double stearPos[3] = { 0.0, 2.0, 0.0};

// stearing forces

double stear[3] = { 2.0, 0.0, 0.0};
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Figure E.2: The geometrical model of the truck. Underlying it is a physical model that
consists of a rigid block that can slide on the plane z = 0, and rotate around the z axis.
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stear[0] *= globalControls[0];

// apply the acceleration force

sdpointf(0,stearPos,stear);

Vector <double> forwardVec(0,1,0);

Vector <double> sideVec(1,0,0);

// get the car orientation

double dircos[3][3];

sdorient(0,dircos);

Matrix3 orientMat(dircos);

// convert the vectors to WCS

forwardVec = orientMat*forwardVec;

sideVec = orientMat*sideVec;

// find the joint velocity in WCS

double jointPos[3]; double absVel[3];

sdgetbtj(0,jointPos);

sdvel(0,jointPos,absVel);

Vector <double> absVelVec; absVelVec.setVec(absVel);

// compute the gas acceleration

double gas[3] = { 0.0, 10.0, 0.0};

gas[1] *= globalControls[1];

// apply the aceleration force

sdpointf(0,jointPos,gas);

double force[3], forceOut[3];

// compute the sideways friction

double sideFactor = -200.0*sideVec.dot(absVelVec);

Vector <double> sideForce(sideVec);

sideForce *= sideFactor;

sideForce.getVec(force);

sdtrans(-1,force,0,forceOut);

sdpointf(0,jointPos,forceOut);

// compute the forward friction

double forwardFactor = -0.2*forwardVec.dot(absVelVec);

Vector <double> forwardForce(forwardVec);

forwardForce *= forwardFactor;

forwardForce.getVec(force);

sdtrans(-1,force,0,forceOut);

sdpointf(0,jointPos,forceOut);

}
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E.4 Dolphin

E.4.1 Spring-Mass Model

The biomechanical model of the dolphin is constructed of nodal masses and springs, as is
detailed in Fig. E.3. The model's dynamics is speci�ed by the Lagrangian equations of
motion

mi�xi + i _xi +
X
j2Ni

f sij = fi (E.1)

where node i has mass mi, position xi(t) = [xi(t); yi(t); zi(t)], velocity _x, and damping
factor i, and where fi is an external force. Spring Sij , which connects node i to neighboring
nodes j 2 Ni, exerts the force f

s
ij(t) = �(cijeij + ij _eij)rij=jjrij jj on node i (and it exerts

the force �f sij on node j), where cij is the elastic constant, ij is the damping constant, and
eij(t) = jjrij jj � lij is the deformation of the spring with separation vector rij(t) = xj � xi.
The natural length of the spring is lij .

Some of the springs in the biomechanical model play the role of contractile muscles.
Muscles contract as their natural length lij decreases under the autonomous control of the
motor center of the arti�cial animal's brain (Tu and Terzopoulos, 1994). To dynamically
contract a muscle, the brain must supply an activation function a(t) to the muscle. This
continuous time function has range [0; 1], with 0 corresponding to a fully relaxed muscle of
length lrij and 1 to a fully contracted muscle of length lcij . More speci�cally, for a muscle
spring, lij = alcij + (1� a)lrij .
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Figure E.3: The geometrical model of the dolphin (top) and the underlying biomechanical
model (bottom). The model has six actuators consisting of a pair of muscles that share the
same activation function. The numbers along the body indicate the local centers of mass
used for building the hierarchical emulator. The cross-springs that maintain the structural
integrity of the body have not been indicated.



Appendix F

Example Xerion Script

Section 4.3 proposed a special NeuroAnimator structure that minimizes the emulation ap-
proximation error. Fig. 4.4 shows the architecture of the structured NeuroAnimator that
transforms the inputs to N� using a sequence of prede�ned transformations before feed-
ing the signal through the specialized network N�

�. The following is a Xerion script that
speci�es and trains the network N�

� used to build the NeuroAnimator for the lunar lander
model described in Section E.2 and shown in Fig. E.1.

#! /u/xerion/uts/bin/bp_sh

# The network has 13 inputs, 50 hidden units, and

# 13 outputs. The hidden layer uses the logistic

# sigmoid as the activation function (default).

uts_simpleNet landerNet 13 50 13

bp_groupType landerNet.Hidden {HIDDEN DPROD LOGISTIC}

# Initialize the example set. Read

# the training data from a file.

set trainSet "landerNet.data"

uts_exampleSet $trainSet

uts_loadExamples $trainSet landerNet.data

# Randomize the weights in the network.

random seed 3

uts_randomizeNet landerNet

# Initialize the minimizer and tell it to use

# the network and the training set defined above.

bp_netMinimizer mz

mz configure -net landerNet -exampleSet trainSet

# Start the training and save the weights

# of the network after the training is finished.

mz run

uts_saveWeights landerNet landerNet.weights

94
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#---End of script---

F.1 Training Data

This section describes the conversion process that produces training data in the format
required by the structured emulator. The example uses the physical model of the lunar
lander described in Section E.2. Its state consists of four groups s = [p q v !] where p =
[px py pz] describes the position, q = [qr qx qy qz] describes the orientation, v = [vx vy vz]
describes the linear velocity, and ! = [!x !y !z] describes the angular velocity. The model
has 4 internal actuators represented as u = [u1 u2 u3 u4]. The training data collected
during the physical simulation of the model is represented in the format suitable for the
input/output structure of the NeuroAnimator N�:

fpqv! ugt1 fpqv! ugt1+�t

fpqv! ugt2 fpqv! ugt2+�t

...

fpqv! ugtn fpqv! ugtn+�t

However, to train the structured emulator described in Section 4.3, the training data need to
be transformed to a di�erent format, suitable for the input/output structure of the subnet
N�

�. Section 4.5.2 describes the data conversion process, and Fig. 4.13 illustrates the idea.
As a result of the conversion, the original set of inputs x undergoes the following trans-

formation
x� = T�

xT
0

xx (F.1)

while the original set of outputs y is transformed through

y� = (T�
yT

0

yT
�
y )

�1y: (F.2)

The reader should note that the transformations applied to the input groups pt and qt
produce zero vectors as output. Based on the facts that = T0

xpt = RT
t (pt � ct) and

pt = ct, it follows that T
0

xpt = [0 0 0]. Similarly, from the facts that T0

xqt = QT
t qt and

QT
t qt = �qtq = [1 0 0 0], it follows that T0

xqt = [1 0 0 0]. Since there is no need to supply
constant values as inputs to the network, the �nal form of the transformed training data
looks as follows:

fv� !� u�gt1 fp� q� v� !� u�gt1+�t

fv� !� u�gt2 fp� q� v� !� u�gt2+�t

...

fv� !� u�gtn fp� q� v� !� u�gtn+�t



Appendix G

Controller Representation

Discrete-time neural network emulation (4.1) requires discretization of the controller u(t).
We parameterize the controller through discretization using basis functions. Mathemati-
cally, we express the ith control function as a B-spline

ui(t) =
MX
j=1

ujiB
j(t); (G.1)

where the uji are scalar parameters and the Bj(t), 1 � j �M are (vector-valued) temporal
basis functions. Backpropagation through time, used for control learning, constraints us
to use local controller discretization, for which the parameters uji are nodal variables and
the Bj(t) can be spline basis functions.1 In a typical discretization the control variables do
not span more than one super timestep �t, which is often equivalent to 50 simulation time
steps �t.

We use the Catmull-Rom family of splines to generate control functions that smoothly
interpolate the control points (Catmull and Clark, 1974). We choose a member of this
family for which the tangent vector at point uji is parallel to the line connecting points u

j�1
i

and uj+1i , as shown in Figure G. The representation for the jth segment of the ith control
function is

uji (t) =
1

2
�
h
t3 t2 t 1

i
2
6664
�1 3 �3 1
2 �5 4 �1

�1 0 1 0
0 2 0 0

3
7775
2
6664
uj�1i

uji
uj+1i

uj+2i

3
7775 :

For the �rst segment of the curve u1i (t) we make u0i = u1i , i.e., we duplicate the �rst
control point of each control function. Similarly, for the last segment of the curve uM�1

i (t)
we make uM+1

i = uMi , i.e., we duplicate the last control point of each control function.

1In our earlier work (Grzeszczuk and Terzopoulos, 1995), we proposed global controller discretization,
for which the support of the Bj(t) covers the entire temporal domain t0 � t � t1. We abandon this repre-
sentation in this work since globally discretized controllers are not suitable for the current implementation
of the control learning algorithm.
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u i
2 u i

3 u i
4 u      =ui

M−1u i
M−2u i

1u  =i
0

i
M

Figure G.1: A Catmull-Rom spline. The points are interpolated by the spline. Indicated
by the straight line is the direction of the curve at each point. The direction is parallel to
the line connecting two adjacent points. To extend the spline to the boundary points we
duplicate the �rst and last points.
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