Homework Assignment 2: Implicit Search Graphs

CSC 384 — Winter 2003

Out: February 7, 2003
Due: February 24, 2003: in class

Be suretoinclude your name and student number with your assignment.

In this assignment you are going to use three different search algorithms to solve the tower of Hanoi puzzle. The
bulk of this assignment will require that you implement a neighbor relation and three heuristic functions for the tower
of Hanoi puzzle. With these defined appropriately, you will then run two versions of A* search as well as IDA*
(iterative deepening A*) to attempt to solve the puzzle using each of the three heuristics. Finally, we’ll get you to
compare the performance of the three heuristics and the different search algorithms.

First, a bit of background. The tower of Hanoi puzzle is a simple (one-person) game. You are given a tower of N
disks initially stacked in increasing size (from top to bottom) on one of three pegs. The objective is to transfer the entire
tower to one of the other pegs (say the rightmost), moving only one disk at a time and never a larger one onto a smaller
one. You can play the game onlineat http://www.cut-the-knot.com/recurrence/hanoi.shtml. The
website has a nice applet as well as some explanation regarding an optimal strategy.

For the purpose of the assignment, we will allow any configuration of 4 disks (on 3 pegs) as a starting position. A
configuration is legal as long as the disks stacked on each peg are in increasing size (from top to bottom). For example,
in the figure below, we see four (legal) game configurations. Similarly, we will allow any (legal) game configuration to
be the goal configuration. The objective will simply be to move the disks from one peg to another (without ever putting
a larger disk on a smaller disk) until the goal configuration is obtained. Moving the smallest disk in configuration (a)
to the middle peg results in configuration (b). Moving the second smallest disk in configuration (b) to the leftmost
peg results in configuration (c). Finally, moving the smallest disk in configuration (c) to the leftmost peg results in
configuration (d).
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1. We will now model the game as a search problem. Each (legal) configuration corresponds to a state. Each
possible (legal) move of a disk from one peg to another corresponds to a directed arc linking two neighboring
states. Let’s analyze the size of the graph representing the game. How many states are there (assuming a game
with 4 disks)? What’s the maximum branching factor of any state (i.e., largest number of neighbors for any
node)?

2. Next, you should implement a neighbor predicate. For any state of the game State, the predicate nb (State, ArcList)
should hold iff ArcLi st contains the list of all neighboring states of State. To keep things uniform, you must
use the following representation of a state. A state is a list of pegs [LeftPeg,MiddlePeg, RightPeg]
ordered from left to right. In turn, each peg is a list of disks stacked in increasing order (from top to bottom).
Let’s label the disks according to their size (i.e., 4 for the largest and 1 for the smallest). Here are examples of
the state representations of the above four configurations:

(@ [[1,31,[4], [2]]
(b) [[31,11,4],[2]1]
(c) [[2,31,11,41,111]
(d) [r1,2,31,[41,[1]

In addition, in the predicate nb (State, ArcList), let ArcList be alist of arc (Nb, Cost) such that Nb
is a neighboring state reachable with cost Cost. In this game, we are interested in minimizing the number of
moves necessary to reach the goal configuration, so the cost will always be 1.

Following this syntax for the nb predicate should allow immediate integration with some code provided on the
course webpage to run A* and IDA* (see remainder of the assignment). In addition, for uniformity and ease of
marking, the ArcList you produce should list arcs in a specific order. Recall that each arc can be viewed as
moving a disk from one peg to another. Denoting L for left peg, M for middle peg and R for right peg, list the
arcs in the following order: L - M, M —- L, L - R, R — L, M — R and R — M. Of course, if some
of these moves are not possible or lead to an illegal configuration (e.g., larger disk on top of a smaller disk),
then they should not be in the list. For example, the query ?nb ([[1,2,3,4]1, [1, [1],ArcList) should
return ArcList = [arc([[2,3,4],[1]1,1(011,1),arc([[2,3,4],11,I[1]11,1)].

What to hand in: Hand in a listing of your code (all relevant predicate listings) and a printout of a prolog
session showing that your predicate nb works correctly on four well-chosen test cases. Choose those test cases
yourself and give a short (one sentence) explanation of what distinguishes each test case from the others.

3. You should next implement three predicates, h1, h2 and h3, defining heurisitic functions as follows.

e hl(State,Goal,Dist1) is true iff the distance between a State and the Goal configuration is
estimated to be Dist1 where Dist1 is the number of disks in State that are misplaced with respect
to the goal configuration. A disk is considered misplaced if (a) it is on the wrong peg or (b) one of
the disks that should be underneath it (in the goal configuration) is misplaced. Assuming the goal state
is [[1,1[1,3,4]1,[2]11, the estimated distance Dist1 for the four states above are 2, 2, 3, and 3,
respectively.

e h2 (State,Goal,Dist2) is true iff the distance between a State and the Goal configuration is
estimated to be Dist2 where Dist2 is the sum of some quantity g2 (mspDisk) for every misplaced disk
mspDisk. This quantity g»(mspDsk) is 1 + # of disks on top of mspDsk.

Dist2= Y (1+ #disks_on_top_of(mspDisk))

mspDsk

Intuitively, if a disk is misplaced, we must first move all the disks on top of it before moving it. Assuming
the goal state is [ [1, [1,3,4], [2]], the estimated distance Dist2 for the four states above are 3, 2,
4 and 6 respectively.



e h3 (State,Goal,Dist3) is true iff the distance between a State and the Goal configuration is
estimated to be Dist3 where Dist3 is the sum of some quantity g3 (mspDisk) for every misplaced disk
mspDisk. This quantity g3 (mspDsk) is exponential in the number of disks on top of mspDsk.

Dist3 = Z 2#diSkS_On_top_Of(mspDisk)
mspDsk

Intuitively, if a disk is misplaced, we must first move all the disks on top of it and this takes an exponential
number of moves. Assuming the goal state is [[1, [1,3,4], [2]1, the estimated distance Dist3 for
the four states above are 3, 2, 4 and 7 respectively.

Tip: first code a predicate that identifies misplaced disks in each peg, then use this predicate in each heuristic
predicate with, if necessary, an appropriate predicate to compute the quantity ¢ » or ¢3. Points will be deducted
for unnecessarily complex or inelegant definitions.

What to hand in: Hand in a listing of your code (all relevant predicate listings) and a printout of a prolog
session showing that your predicates h1, h2 and h3 work correctly on four well-chosen test cases. Choose
those test cases yourself and give a short (one sentence) explanation of what distinguishes each test case from
the others. Of course, choose test cases different from those given in example in this handout.

. 1 will post a version of standard A* on the course Web page, called asearch, but with some tweaks to allow
it to display solutions a little more clearly for this problem. You should test standard A* search on the tower of
Hanoi puzzle using all three heuristics. Some details of the implementation will be discussed at the end of this
document. You will be given a standard set of test problems (via the course Web site) within roughly a week
of the assignment being handed out. You should modify the programto help you count the number of expanded
nodesto help you answer question 7 below. Since the number of nodes expanded before the goal stateis reached
may be much larger than what you are willing to wait for, impose a limit of 4000 nodes on the number of nodes
that A* will expand.

What to hand in: Hand in a printout of the prolog session showing your program running on each problem in
the test set, using all three heuristics. You should clearly label each run so the marker can tell which heuristic
and case is being tested. Do not hand in a code listing for the program. Do not hand in a run that has many
lines of extra output, even if you need to modify the program for your own purposes to do this. Hand in only
runs of a version without output except the solution.

. Implement a second version of A* called asearchz2. This will not be too different from asearch (a lot of the
same predicates can be used). But asearch2 should perform multiple path checking. The simplest way to do
this is to maintain a closed list of nodes that have been expanded. You should probably add this as an argument
to the predicate asearch2. When you select a node from the frontier, it should not be expanded (i.e., its
neighbors are not added) if it is already on the closed list. You can modify the interface start searchto call
asearch2 appropriately. You can use predicates member and notmember (which will be made available
online) to implement your closed list test. Hand in a listing of your code.

You should test your A*-MPC search algorithm on the tower of Hanoi puzzle using all three heuristics. You
will be given a standard set of test problems (via the course Web site) within roughly a week of the assignment
being handed out. You should ensure your program expands no more than 4000 nodes.

What to hand in: Exactly as in Question 4, with the addition of your code listing.

. 1 will post a version of IDA* (iterative deepening A*) suitable for use with the tower of Hanoi puzzle. You
should test IDA* search on the puzzle using all three heuristics. You will be given a standard set of test prob-
lems (via the course Web site) within roughly a week of the assignment being handed out. You may wish to
modify the programto help you count the number of expanded nodes to help you answer question 7 below. You
should ensure your program expands no more than 9000 nodes.

What to hand in: Exactly as in Question 4.



7. Draw up a table that compares the number of nodes expanded by each of the three search algorithms (A*, A*-
MPC, IDA*) for each of the three heuristics and for each of the test cases posted. Your table should take the
form:

[ A* [ A~-MPC | IDA* |

Case 1, hl X X X

Case 1, h2 X X X

Case 1, h3 X X X

Case 2, hl X X X

Case 2, h2 X X X

Case 2, h3 X X X
etc. |

If any combination reaches the bound on the number of expanded nodes before solving the problem, please
indicate that fact in your table. You should indicate the number of nodes expanded before abnormal termination
in your table. What conclusions can you draw about the quality of the heuristics 21, h2 and h3?

8. The suggested implementation for multiple path checking using a closed list will not guarantee that A* finds
a least-cost path in general. But it will work if the heuristic function A satisfies the monotone restriction (see
p.139-140 of the text). Give a convincing (rigorous) argument that 21, h2 and h3 all satisfy the monotone re-
striction. The proofs for A1 and h2 should be relatively easy. The proof for 43 is a bit tricky so here is a hint: the
intuition behind A3 is that it takes at least 2™ to move a stack of n disks. Have a look at the sections Recursive so-
lutionand Recurrencerelationson the website ht tp: //www.cut -the-knot .com/recurrence/hanoi . shtml.

Appendix: Here are a few notes on the A* implementation you are given. The IDA* implementation is similar
in its representation of paths, etc. The predicate asearch (Frnt, Path, Count) is available from the course Web
page, and is implemented under the following assumptions and design choices:

e Neighbours are represented using a predicate of the formnb (N, [arc (N1, C1), arc(N2, C2) ...]1).
Here N is a node and N1, etc. are its neighbours, with corresponding arc costs C1, etc. (much like in the Bicycle
Courier handout, but using arc (N2, C2) instead of [N2, C21).

e Heuristic values are represented using a predicate of the form h (N, Hvalue) that tells you the heuris-
tic value of a given node N. In order for h to map to h1 say, define h (N, Hvalue) : - is goal (G),
hl (N,G,Hvalue). Here is_goal (g) is a predicate that you must define to indicate the goal state g.
Note that is_goal (g) is also used by A* to know when to end the search.

e The frontier is maintained as a priority queue. The queue is implemented as an ordered Prolog list, in which
each path on the queue is stored in ascending order of its f-value. (Recall f(n) = g(n) + h(n).)

e The frontier is managed efficiently using ordered insertion.

e Each element on the frontier is a data item containing a path with its g-value, and its f-value. The key by which
the queue is sorted is the f-value. We’ve used the data structure path (PC, P) for the path and their costs,
where PC is the path cost (its g-value) and P is the path (a list of nodes, from the last to the first). For instance,
thetermpath (3, [eif,al, mo]) represents the path frommo to al to eif, with an actual cost of 3.

e We have provided an interface to asearch in the form of predicate start search (Node, Path). This
calls the A* search procedure with start node Node and returns the solution Path (including its cost).

e Torunthe start search (Node, Path) predicate to solve a particular goal g, you must specify is_goal (g).



