
Homework Assignment 1: Semantics, Knowledge Bases and Proofs

CSC 384 – Winter 2003

Out: January 22, 2003
Due: February 5, 2003: in class

Be sure to include your name and student number with your assignment. If your handwriting is even
possibly illegible, be sure to hand in your assignment in some typed form.

1. Consider a simple language to compare currencies. It consists of three constant symbols c1, c2, c3
one binary predicate symbol higher than and no function symbols. Using this language, we may
build the following knowledge bases:

� KB � =
�
higher than(c1,c2). �

� KB � =
�
higher than(X,Y). �

� KB � =
�
higher than(X,Z) <- higher than(X,Y), higher than(Y,Z). �

Let’s analyze the possible interpretations ���
	���
���
���� where ��� �
CDN$ 
 US$ 
 EURO � .

(a) How many interpretations of the above language exist using the domain � ?

(b) Are the interpretations where ����������� CDN$, ����� �!��� US$ and �"�$#&%$'(#*) + ,-#/.102
 CDN$ 
 US$ ���
,3+�45) models of KB � ? Explain why.

(c) How many interpretations are models of KB � ? Give a brief justification for your answer.

(d) Give an interpretation that is not a model of KB �
(e) How many interpretations are models of KB � ? Give a brief justification for your answer.

(f) How many interpretations are models of KB � ? Give a brief justification for your answer.

2. Imagine a new online university offering courses over the web. The university would like an auto-
mated tool to determine when a student is ready to graduate. In other words, this tool can verify
whether a student satisfies all the requirements of her study program. In this question, you will design
such a tool by axiomatizing the domain (i.e., specifying a knowledge base) in Prolog.

The university would like this tool to be generic enough to work for any study program and any
student. Given the requirements of a program and the transcript of a student, the tool will determine
whether the student can graduate. Here are a set of predicates to specify the requirements of a program
and the transcript of a student.

� allCourses(List) – asserts that List is the list of all courses available for a study pro-
gram. This list consists of a set of [Course id,No credits] pairs indicating the name of
each course and its associated number of credits.

allCourses([[c1,2],[c2,3],[c3,1],[c4,2],[c5,2],[c6,3],[c7,2],[c8,3],[c9,2]]).

1



� requiredCredits(No credits) – asserts the minimum number of credits that must be
earned for graduation.

requiredCredits(30).

� group(Group id, N, CourseList) – asserts that N courses in CourseList refered
to by Group id must be passed (grade of at least d-) in order to graduate.

group(g1, 3, [c1, c2, c3]).
group(g2, 1, [c5, c6]).
group(g3, 2, [c7, c8, c9]).

When the number of courses required in a group is equal to the cardinality of the group, then all
courses of that group are required. This is the case of g1. Note also that some courses may not
be part of any group, which means that they are electives. This is the case of c4 and c5.

� groupList(GroupList)– asserts that GroupList is a list of group ids identifying groups
of courses (see above).

groupList([g1, g2, g3]).

� equivalent(CourseList) – asserts that all courses in CourseList are equivalent. In
other words, the credits of only one course in CourseList may count towards graduation.
Similarly, only one course in CourseListmay count towards a group requirement.

equivalent([c7, c9]).

Here we can assume that equivalent courses are always part of the same group and have the same
number of credits. In the above example, taking c7 or c9 yields 2 credits either way and counts
as one course towards g3.

� transcript(List) – asserts that List is a list of [Course id,Grade] pairs that are
part of a student transcript. This list contains only the courses the student registered for.

transcript([[c1,a], [c2,b_plus], [c3,a_minus], [c4,f], [c4,c], [c5,w]]).

The possible grades are a plus, a, a minus, b plus, b, b minus, c plus, c, c minus,
d plus, d, d minus, f and w. Here fmeans “fail” and wmeans “withdraw”. To pass a course,
the grade must be at least d minus. Note also that it is possible for a student to take the same
course twice. In the above example, the student first failed c4 and then passed it with grade c.

Using the above predicates, we can summarize in a knowledge base the requirements for a study
program and the transcript of a student. Here is an example:

allCourses([[c1,2],[c2,3],[c3,1],[c4,2],[c5,2],[c6,3],[c7,2],[c8,3],[c9,2]]).
requiredCredits(30).
group(g1, 3, [c1, c2, c3]).
group(g2, 1, [c5, c6]).
group(g3, 2, [c7, c8, c9]).
groupList([g1, g2, g3]).
equivalent([c7, c9]).
transcript([[c1,a], [c2,b_plus], [c3,a_minus], [c4,f], [c4,c], [c5,w]]).

2



A student is eligible for graduation when she has passed enough courses in each group and when she
has accumulated enough credits. We define the predicate graduate accordingly:

graduate :- transcript(L), enoughCourses(L), enoughCredits(L).
enoughCredits(L) :- totalCredits(L,TotCred), requiredCredits(ReqCred),

TotCred >= ReqCred.

Your task is to define the predicates enoughCourses and totalCredits. For parts (a) and (b)
you should hand in a listing of your Prolog program with all defined predicates. Be sure to document
your definitions. You should also hand in a clean script (i.e., free of extraneous information) of a
Prolog session in which you run each test case provided. A set of test cases will be posted to the
course website within a week of the assignment being handed out.

(a) Define a predicate enoughCourses(L) that is true iff the student has passed enough courses
in each group. Be careful not to count courses that were failed or withdrawn from. Also, make
sure to count only one course in each equivalent list. Finally do not double count courses taken
more than once.

(b) Define a predicate totalCredits(L,TotCred) that is true iff the student has accumulated
TotCred credits. Again, do not count courses that were failed or withdrawn from. Also, make
sure to count only one course in each equivalent list. Finally do not double count courses taken
more than once.

(c) We are currently storing in the knowledge base the requirements of a single program and the
transcript of a single student. This allows us to formulate the query ?graduate. with respect
to the student and program stored in the kowledge base. How should we modify the predicates
defined above to allow simultaneous storage of requirements for several programs and many
student transcripts? In particular explain what argument(s) need to be added to each predicate.
How should we formulate a query asking: who’s ready to graduate? You don’t need to imple-
ment your solution.

3. Consider the following knowledge base:

1. q(Y) <- s(Y,Z) & r(Z).
2. p(X) <- q(f(X)).
3. s(f(a),b).
4. s(f(b),b).
5. s(c,b).
6. r(b).

Show the set of (ground atomic) consequences derivable from this KB. Assume that a bottom-up
proof procedure is used and that at each iteration (when a clause is selected), the clause selected is
the first applicable clause in the order shown (e.g., if clauses 3 and 4 are applicable, we select clause
3 and derive its head first). Furthermore, applicable substitutions are chosen in “alphabetic order” if
more than one applies to a given clause (e.g., if ��� . and ����� are both applicable for clause 2 at some
iteration, derive ����. � first). In what order are consequences derived?

3



4. Consider the following knowledge base:

1. student(william).
2. student(mary).
3. prof(diane).
4. prof(ming).
5. parent(diane, karen).
6. parent(diane, robyn).
7. parent(susan, sarah).
8. parent(susan, ariel).
9. parent(karen, mary).
10. parent(karen, todd).
11. has_access(X, office) <- has_keys(X).
12. has_access(X, gym) <- prof(X).
13. has_access(X, gym) <- student(X).
14. has_access(X, gym) <- has_access(Y, gym) & parent(Y, X).

(a) Provide a top-down SLD derivation of the fact has access(todd, gym). You can follow
the style of Example 2.32 in the textbook.

(b) The fact has access(mary, gym) has two straightforward, but quite distinct, SLD deriva-
tions. Give both of them.

(c) Does there exists an SLD derivation for has access(ariel, gym)? Briefly, why or why
not?

(d) Argue that the set of answers to the query ?has access(X,office) is empty. If the clause
has keys(X) <- prof(X) is added to KB, what is the set of answers to this query?

4


