Cords: Keyframe Control of Curves with Physical Properties

Patrick Coleman and Karan Singh
Dynamic Graphics Project, University of Toronto
August 11, 2004
Motivation

• Precise interactive control of curves with physical appearance properties
• String, wire, rubber bands, etc.
Motivation

• Artistic control of primitives that interact with geometry
Motivation

- Ryan
Design Requirements

- Intuitive parameter space
- Interactive and precise control
- Continuous shape for keyframe animation
- No dependence on simulation data
Related Work

• Physical simulation
 – Terzopoulos et al. 87, Pai 02

• Empirical simulation
 – Brown 04

• Faking dynamics
 – Barzel 97
Traditional Curve Modeling

• Animators and modelers understand the control point editing paradigm

• Interaction with scene geometry can require arbitrarily complex shapes
 – Too many control points
 – Shape and detail change with animation
Simulation

• Animators control initial state, environment, and simulation parameters
 – Excellent for reactive motion
 – Adheres to a given physical model

• Control
 – Hard to achieve desired response
 – Can’t specify shape at arbitrary time
Contributions

• Precise control for keyframe animation

• Automatic bending and wrapping

• Intuitive parameter space for predictable response

• Easy to code algorithms
Cords Approach

• User controls general path with a guide curve
 – Arbitrary parametric curve in space \(f(t) \)
Cords Approach

• Procedural generation of cord
 – Analytic, continuous shape that follows guide curve
 – Material-like properties of length, stiffness, elasticity
Cords Approach
Cords Workflow

• Generation follows path of guide curve, wrapping around scene geometry

• User positions the guide curve and edits cord properties
Cords Workflow
Cords Algorithm

• Initialize Cord to $f(0)$.
• Grow the Cord by **stepping** along f.

 if (ray from Cord to f intersects geometry)

 grow cord to intersection

 else

 grow cord by a stiffness factor s along the ray

• Adjust Cord to given **length, elasticity**.
Cords Algorithm

• Adjust Cord to given length, elasticity:
 - stretched length: length to reach f(1)
 - elastic length: linear interpolation between length and stretched length

 if (elastic length < stretched length) clip cord
 else extend cord along final tangent

• Maintains continuous response to parameters
Cords Analysis

• Cords have a piecewise analytic form
 – Regions of “bending:” small linear steps
 – Longer straight regions when intersection found

• Notation for any region: $p_0, p_1, p_2 \ldots$
 – First region: $p_0 = f(0)$
Cords Analysis

• We want the **stiffness** user parameter to be invariant to the guide curve step size Δt.
• $s = \text{stiffness} \times \Delta t$ will accomplish this.
• **stiffness = 0**
 – No proportional steps
 – String-like appearance
• **stiffness = 1**
 – Linear approximation of guide curve
 – Bounds cord shape
Analytic Form

Proportional step:

\[p_i = p_{i-1} + s \ast (f(i \Delta t) - p_{i-1}) \]

Recurrence relation:

\[p_m = (1 - s)^m p_0 + s \sum_{i=1}^{m} f(i \Delta t)(1 - s)^{m-i} \]

Analytic form as \(\Delta t \to 0 \):

\[g(t) = e^{-at}p_0 + ae^{-at} \int_0^t f(x)e^{ax} \, dx \]
Invariance to Δt
Continuity

• G1 continuity at join points, when stiffness > 0

• Cord has continuity characteristics of guide curve along bending regions
Wide and Thick Cords

- Replace ray intersection with shape intersection
- Apply parameterized orientation
Psychorealism and *Ryan*
Cords in *Ryan*

- Fit a cubic polynomial curve with uniform parameterization
- Attach paint effects brush strokes that procedurally generate hair effect
- Animators “grew” the hair as it wrapped around characters
Cords in *Ryan*
Cords in *Ryan*
Cords in *Ryan*
Cords in *Ryan*
Conclusions

- Interactive curve primitive with physical appearance properties
- Precise, analytic control for keyframe animation
- Bending and wrapping around 3D scene geometry
Future Work

- Generation algorithms incorporating the analytic form
- Higher order continuity along cord
- Surfaces
- Hybrid models incorporating simulation
More on *Ryan*

Special Electronic Theater Presentation
Chris Landreth, Director
Electronic Theater Hall K
Today, 4:00 pm
Open to all attendees
Acknowledgments

• Chris Landreth and the *Ryan* crew

• DGP Lab at the University of Toronto

• NFB Canada, Seneca College

• Alias, Pixar
Technical Development for Ryan
Patrick Coleman and Karon Singh

Nonlinear projection: how Ryan might see the world

One of the major themes in Ryan is that people see the world in unique ways, dependent on their attitudes and life experiences. The character Ryan, having been through drug addiction and alcoholism, offers the chance to explore how different states of mind affect our perception of the space around us. Computer animation software is built upon the rules of linear perspective, but it was necessary to break these rules in subtle ways to express how the characters of Ryan see their world. A nonlinear projection system was developed that allows animators to create multiple points of view and combine them in various ways to achieve a desired affect.

R4AN: Rendering Your Animation Nonlinearly projected, NPAR 2004

Cords: tying up the animators

In Ryan, the two main characters suffer assaults upon themselves by metaphysical extensions of their own minds. Represented as celestial hairs growing from the character's heads, the cords called for animator control of string-like primitives. Typically, hair and other passive rope-like objects are animated with physical simulations, but this approach is difficult to control when the animated objects are a primary source of motion. Cords address this problem by allowing animators to keyframe animatic curves that are restricted to behave like string of wire, with relative control properties, such as stiffness and elasticity. In addition, cords are procedurally generated such that they appear to wrap around scene geometry. In Ryan, cords were used in conjunction with procedural brush strokes generated with Maya's paint effects system to animate the hair as it ties up the main characters.

Cords: Keyframe Control of Curves with Physical Properties, SIGGRAPH 2004 Sketches.

www.dgp.toronto.edu/~patrick/ryanTech