subsurface scattering

patrick coleman
january 30, 2006

Pixar

amazon.com

Dror Bar-Natan subsurface scattering

Jensen et al. 2001

BRDF vs. BSSRDF

Jensen et al. 2001
Fresnel effects

- absorption
- emission
- out scattering
- in scattering
- extinction

scattering processes

$$
d L_{o}(\mathbf{p}, \mathbf{w})=-\sigma_{a}(\mathbf{p}, \mathbf{w}) L_{i}(\mathbf{p},-\mathbf{w}) d t
$$

$$
e^{\int_{0}^{d} \sigma_{a}(\mathbf{p}+t \mathbf{w}) \mathbf{w} d t}
$$

absorption

$$
Q(p, w)
$$

emission

$$
d L_{o}(\mathbf{p}, \mathbf{w})=-\sigma_{s}(\mathbf{p}, \mathbf{w}) L_{i}(\mathbf{p},-\mathbf{w}) d t
$$

out scattering

$$
\sigma_{t}(\mathbf{w}, \mathbf{w})=\sigma_{a}(\mathbf{w}, \mathbf{w})+\sigma_{s}(\mathbf{w}, \mathbf{w})
$$

extinction

$$
\operatorname{tr}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=e^{-\int_{0}^{d} \sigma_{t}(\mathbf{p}+t \mathbf{w}) d t}
$$

transmittance

$$
\tau\left(p \rightarrow p^{\prime}\right)=\int_{0}^{d} \sigma_{t}(p+t w, w) d t
$$

optical thickness

- distance between partcles many times larger than radius
- describe with phase functions

phase functions

$$
(w \cdot \nabla) L(x, w)=-\sigma_{t} L(x, w)+\sigma_{s} \int_{4 \pi} p\left(w, w^{\prime}\right) L\left(x, w^{\prime}\right) d w^{\prime}+Q(x, w)
$$

radiative transport

- bidirectional subsurface scattering reflectance distribution function
- bidirectional surface scattering distribution function
- bidirectional scattering surface reflectance distribution function

BSSRDF

$$
L(x, w)=\int_{H^{2}} \int_{S} S\left(x^{\prime}, w^{\prime} ; x, w\right) L\left(x, w^{\prime}\right) \cos \theta^{\prime} d w^{\prime}
$$

BSSRDF

- scattered light enters at one point
- based on linear trannsport theory
- infinite homogeneous plane
- constant illumination

analytic models

- HG phase function, Rayleigh scattering
- derived from a statistical model of scattering events
- layer of clouds or dust

Blinn I982

Blinn 1982

- derived from radiative transport theory
- multiple layers
- captures directional effects

Hanrahan and Krueger 1990

Hanrahan and Krueger I990

Hanrahan and Krueger 1990

Hanrahan and Krueger I990

- convergence independent of dimension - error decrease $O(\operatorname{sqrt}(\mathrm{~N}))$

Monte Carlo

- application: weathered stone layer
- cast photon map into layer
- sample along penetration depth

Dorsey 1999

Dorsey 1999

- abstraction of scattering functions
- layer-to-layer interaction described by a set of adding equations

Pharr 2000

Pharr 2000

$$
\begin{array}{r}
\mathbf{S}(z)=\int_{0}^{z} \mathrm{e}^{-\sigma_{t}\left(1 / \mu_{i}+1 / \mu_{o}\right)\left(z-z^{\prime}\right)}\left(\mathbf{k}\left(z^{\prime}\right)+\mathbf{k}\left(z^{\prime}\right) \mathbf{S}\left(z^{\prime}\right)+\right. \\
\left.\mathbf{S}\left(z^{\prime}\right) \mathbf{k}\left(z^{\prime}\right)+\mathbf{S}\left(z^{\prime}\right) \mathbf{k}\left(z^{\prime}\right) \mathbf{S}\left(z^{\prime}\right)\right) \mathrm{d} z^{\prime} .
\end{array}
$$

Pharr 2000

$$
\begin{aligned}
& \mathrm{S}\left(z, r_{i} \rightarrow r_{o}\right)=\int_{0}^{z} \mathrm{e}^{-\left(\sigma_{t}\left(x_{i}\right) / \mu_{i}+\sigma_{t}\left(x_{o}\right) / \mu_{o}\right)\left(z-z^{\prime}\right)}\left(\mathrm{k}\left(r_{i}\left(z^{\prime}\right) \rightarrow r_{o}\left(z^{\prime}\right)\right)+\frac{1}{4 \pi} \int_{\mathbb{R}_{M^{2}\left(z^{\prime}\right)}^{+}} \mathrm{k}\left(r_{o} \rightarrow-r^{\prime}\right) \mathrm{S}\left(z^{\prime}, r_{i} \rightarrow r^{\prime}\right) \frac{\mathrm{d} r^{\prime}}{\mu_{r^{\prime}}^{2}}+\right. \\
&\left.\frac{1}{4 \pi} \int_{\mathcal{R}_{M^{2}\left(z^{\prime}\right)}^{+}} \mathrm{S}\left(z^{\prime}, r^{\prime} \rightarrow r_{o}\right) \mathrm{k}\left(r_{i} \rightarrow r^{\prime}\right) \frac{\mathrm{d} r^{\prime}}{\mu_{r^{\prime}}^{2}}+\frac{1}{16 \pi^{2}} \int_{\mathbb{R}_{M^{2}\left(z^{\prime}\right)}^{+}} \int_{\mathcal{R}_{M^{2}\left(z^{\prime}\right)}^{+}} \mathrm{S}\left(z^{\prime}, r^{\prime \prime} \rightarrow r_{o}\right) \mathrm{k}\left(-r^{\prime} \rightarrow-r^{\prime \prime}\right) \mathrm{S}\left(z^{\prime}, r_{i} \rightarrow r^{\prime}\right) \frac{\mathrm{d} r^{\prime}}{\mu_{r^{\prime}}^{2}} \frac{\mathrm{~d} r^{\prime \prime}}{\mu_{r^{\prime \prime}}^{2}}\right) \mathrm{d} z^{\prime}
\end{aligned}
$$

Pharr 2000

Pharr 2000

- assumes homogeneous media
- fast evaluation for multiple scattering with many events (milk, skin)
- diffusion for multiple scattering introduced by Stam in 95 for participating media

diffusion for multiple scattering

$$
S\left(x_{i}, w_{i} ; x_{o}, w_{o}\right)=S_{d}\left(x_{i}, w_{i} ; x_{o}, w_{o}\right)+S^{(1)}\left(x_{i}, w_{i} ; x_{o}, w_{o}\right)
$$

- exact single scattering
- dipole approximation of diffusion model for multiple scattering

Jensen 2001

single scattering

multiple scattering

MC evaluation

Jensen 01

Jensen 01

$$
E E
$$

- decouple sample irradiance computation from diffuse approximation computation
- hierachical evaluation of multiple scattering term

Jensen 02

Jensen 02

- build octree model of (irradiance, centroid, total area)
- depth criteria: solid angle for evaluation point to total area < eps.

Jensen 02

Jensen 02

Jensen 02

- dipole diffusion approximation breaks down
- assumption of infinite depth: no transmittance though to opposite side

thin objects

- multipole approximation
- frequency space Kubelka Munk model for interaction among multiple layers
- rough surfaces: replace fresnel attenuation with a BRDF

Donner 05

Donner 05

Donner 05

Donner 05

- MC evaluation until ray passes a depth threshold
- diffusion approximation in core

Li 05

a. Monte Carlo (246 min)

b. Hybrid method (33 min)

c. Jensen et al. (10 min)

Li 05

- diffusion approximation for multiple scattering blurs out local variation

nonhomogeneities

- model mesostructure and volumetric nonhomogeneity in region near surface
- fit "shell texture function" to high quality data in volume
- evaluate core using diffusion approximation
- evaluate shell with STF

Chen 04

- two scale model: fine nonhomogeneities, course diffusion approximation
- local scattering effects: local reflectance, mesostructure entrance function, mesostructure exit function
- texture synthesis of local model.

Tong 05

$$
\begin{aligned}
& 5 \times 5 \\
& 5 \times 5
\end{aligned}
$$

