
Feature–Based Implicit Function Shaping with

Isocontour Embedded Curves

Patrick Coleman

December 19, 2005

Abstract

Implicit functions are used for many applications, including shape
modeling, shape editing, and character rigging. However, techniques
for shaping implicit functions are primarily restricted to applying math-
ematical operations to primitive shapes. This report describes an inves-
tigation into an alternate methodology for shaping implicit functions.
Users embed features into the implicit function domain, which alter
the shape of the implicit function such that it has spatial features or-
thogonal to the function’s local gradient. To facilitate this embedding,
features are embedded into extracted isosurfaces. Such features can
potentially take the form of points, curves, and surfaces. In this re-
port, we focus on the design of curve based features. Implicit surface
modeling is used as a demonstration application for visualization pur-
poses, although the technique is amenable to other implicit function
applications.

1 Introduction

Feature–based modeling and editing has become an increasingly accepted
methodology for developing shape and form in computer graphics applica-
tions. Users have historically exploited the underlying mathematical struc-
ture of surface models to impart features (such as groups of control points)that
they can manipulate and animate as a whole. More recently, technical ap-
proaches have been developed that allow users to specify a feature, which is
then algorithmically selected and manipulated based on more of a concep-
tual modeling framework.

Feature based structure is also imparted for applications such as charac-
ter rigging and shading. This is typically done by hand or with special–case

1

procedural methods by working with primitive functions and mathemati-
cal combination operations. More recently, as implicit functions have been
adopted for physical simulation [8], user controllable function primitives have
been used to control and animate the simulation parameters in time [15].

Current methodologies for specifying feature are based on selecting a set
of function primitives and applying mathematical operations such as union,
min, and max to achieve desired function shapes. This is analogous to CSG
methods in shape modeling. As this approach to shape modeling has not
proven popular, we believe more direct approaches to function manipulation
might provide users with more expressive control.

This report presents an approach that takes a given implicit function
representation, along with feature primitives embedded in isosurfaces, to
produce a new implicit function. We build our formulation around implicit
offset functions defined relative a skeleton shape [3], as they can be shaped
using any underlying skeleton. Given such a function and the user–provided
features, the new implicit function is created using the skeleton of the orig-
inal function (known as the core), and evaluation is defined in terms of
projections of points to the core, relative to the feature. From a conceptual
standpoint, the function’s core is extended into space along the gradient at
the feature point.

2 Related Work

Implicit functions have a long history of development in computer graph-
ics [2, 12, 18]. Originally presented as a surface modeling methodology [3],
they have gained greater acceptance as methods for shape editing and defor-
mation, including application to creating parameterized surfaces for charac-
ter animation. As arbitrary surfaces can be converted to an implicit repre-
sentation [17], implicit function–based editing can provide a powerful tech-
nique for editing shape.

In character rigging, surfaces are typically parameterized by transfor-
mations and deformations with local shape control [13]. This local shape
control is often expressed as implicit weight functions that attenuate the de-
formation as distance to some central region increases [14]. As an example,
Singh and Fiume presented an approach to shape modeling and deformation
in which the underlying curve form of the implicit function defined the defor-
mation and attenuation [16]. Such implicitly–defined attenuation functions
have found use in other applications, including styled projection [5].

Explicit implicit function shaping is done by positioning multiple implicit

2

function primitives and applying mathematical operations such as min, max,
union, and intersection [3]. These operations have various tradeoffs, how-
ever, especially in regard to function continuity. The approach presented
in this report, in contrast, constructs entirely new functions from the given
implicit function and a set of features.

Feature–based techniques have become increasingly predominant for mod-
eling applications. Parametric surfaces can be manipulated with points and
curves corresponding to control points and rows of control points. Extra
knots can be inserted to provide controls at desired locations [7]. Feature
based techniques are also becoming popular for mesh editing. Igarashi and
colleagues incorporate user–sketched curves representing desired feature pro-
files to construct and edit meshes [10]. More recently, sketched curves have
been used to re–mesh and edit meshes to create desired surface features [11].
Subdivision surfaces can be defined in terms of adaptive rules that allow
users to embed curve based features [9, 6].

3 Implicit Function Construction from Isocontour
Features

To add features to implicit functions, users position points, curves, or sur-
faces on isocontours of an initial implicit function, referred to as the core
function. This core function is represented as an offset implicit function; such
functions can be reconstructed from arbitrary surface representations [17].
For purposes of this report, we use curve based features. We reconstruct
an isosurface of the core function using a tracking algorithm [3], and users
position curves on this reconstructed surface using a modified version of the
cords algorithm (modifications are described in Appendix B) [4].

3.1 Offset Implicit Functions

Offset implicit functions are defined using a skeleton shape, which can be a
point, curve, or surface (Figure 1). Within the skeletal region, the function
is defined to have a value of one. Outside the skeleton, the function is
defined relative to the distance from the surface. Beyond some radius, this
value is defined to be zero, and within that radius, it is defined as a smooth
falloff with G1 continuity (Appendix A). In terms of our framework, our core
function i(x) is defined in terms of the core skeleton C and a radius RC .

3

Rc

Figure 1: The mathematical form of offset implicit functions as used in this
report. Within the blue core region C, i(x) = 1. Outside the red falloff
region, specified by a radius Rc, i(x) = 1. In the falloff region, i(x) is a
smooth falloff function.

f
c(f)

Rc

Figure 2: To specify the location of a feature, a connected set of points.
This report describes techniques for point and curve features. In this ex-
ample a point feature f is specified on some isocontour of the function i(x).
The feature point f has a corresponding core feature point c(f). f can lie
anywhere within the falloff region.

4

3.2 Defining the New Function

To specify the new function, users position a feature on an isocontour. Fig-
ure 2 illustrates this with a feature point f embedded on the i(x) = 1
isocontour. Given this feature, we defined the core feature c(f) such that
every feature point maps to the closest point on the core skeleton.

x

P1(x)

f
c(f)

Df

WfRf

Rc

(a)

x

P2(x)
f

c(f)

Df

Wf

Rf
Rc

(b)

Figure 3: The modified implicit function includes a modified core. The
feature core is defined orthogonal to the surface at the feature point. This
feature core is parameterized by a width Wf and a depth Df , as well as a
separate radius Rf . Function evaluation includes a projection to the tangent
plane through the core feature point c(f). If this projection is parallel to
f − c(f), the feature core edges are parallel (a). If the projection maps to
the closest core point sufficiently close to c(f), the feature edges will be
orthogonal to the original core (b). This quality if called flare.

Users have control over a number of feature parameters (Figure 3). The
feature width Wf represents the width of a region that evaluates to one; this
width is defined at the feature point f . The feature depth Df represents the
depth of the region that evaluates to one. The feature radius Rf represents
the width of a function falloff region, which is independent of the core radius
RC . As such, the final form is not a true offset function. These parameters
and their affect on the shape are illustrated in Figures 4 and 5.

Function evaluation is defined in terms of a projection to the core skele-
ton. We consider one of two projections. To create a feature whose sides
are parallel to the gradient at the feature point, we define the projection
p1(x) to the plane normal to the function gradient at the core feature.
To create a feature whose sides are parallel to the local gradient, we de-
fine the projection p2(x) to a point on the core “near” the core feature.

5

(a) (b)

Figure 4: Example creation of implicit function features. Given an isosurface
of the core function, users can embed curves to define features (a). The new
implicit function, an isocontour of which is given in b, includes features that
lie along the path off the curve.

We use a closest point evaluation from the point x to the core (this has
some complications, described in Section 5). A feature distance value can
then be computed, for either projection, as ||p(x) − c(f)||. Given this dis-
tance, an implicit function can be defined over the falloff region of the fea-
ture as k(x) = s(||p(x) − c(f)||;Wf ,Wf + Rf) (see Appendix A for de-
tails of the falloff function s(x)). We provide a user control called flare,
which allows for a smooth transition between the two projections, and in-
terpolate the resulting feature distances with this control. We then have
k(x) = flare ∗ ||p2(x) − c(f)|| + (1 − flare) ∗ ||p1(x) − c(f)||.

Given this function k(x), we define our final function f(x) as an inter-
polation between the core function i(x) and the feature–distance function
j(x). j(x) is defined as an offset function with a falloff region more dis-
tant to the core skeleton than the initial falloff region as j(x) = s(||x −
c(x)||;RC + Df + Wf ;Rc + Df + Wf + Rf). For efficiency, we evaluate it to
zero whenever k(x) = 0. The final form of the function with the feature is
f(x) = k(x) ∗ j(x) + (1 − k(x)) ∗ i(x), which results in a smoothly varying
form near the edge of the feature.

4 Results

Figures 6 to 9 demonstrate how user controls affect the shape of the function,
as well as how the function can be visualized as an interpolation between

6

(a) (b) (c)

Figure 5: Users can edit the feature parameters to achieve particular cross–
sectional shapes. Features can be made taller or deeper (a), wider (b), and
the amount of flare can be controlled (c).

two functions by a third. In Figure 6a, a user has generated an isocontour to
position a curve. This results in the new function f(x) as shown in Figure 6b.
By reducing Wf , the feature becomes narrower (Figure 7a). By increasing
Df , the feature becomes taller (Figure 7b). Flare control represents how
much the feature expands or contracts with respect to distance to the core,
as shown in Figure 8. Figure 9 illustrates the decomposition of f(x) into
i(x) (blue), j(x) (light blue), and k(x) (yellow–orange). j(x) appears to
fall off sharply with distance, which is due to the efficiency culling of its
evaluation when k(x) = 0, although it does have a smooth definition.

(a) (b)

Figure 6: Example curve on a core function isocontour (a) and the corre-
sponding isocontour of the new implicit function (b).

7

(a) (b)

Figure 7: the feature From Figure 6 is edited to be (a) narrower by decreasing
the feature width Wf and (b) taller by increasing the feature depth Df .

(a) (b)

Figure 8: Flare can be continuously adjusted to result in feature side per-
pendicular to the surface (a) or parallel to the feature core (b). The inter-
polation is in the distance metric of the two projections of the evaluation
point x to the feature core point c(f).

8

(a) (b) (c)

Figure 9: The definition of the feature–inclusive implicit function can be
represented as an interpolation between (a) the core implicit function i(x)
(blue) and the feature implicit function j(x) (light blue) by (b) an interpo-
lating implicit function k(x) (yellow–orange), which lies in the falloff region
the feature core surrounding the feature curve (c). The core feature implicit
function j(x) incorrectly appears to have jagged edges due to an efficiency–
motivated discontinuity outside the interpolation region, to which the iso-
surface extraction does not easily converge. The oscillatory pattern in k(x)
is due to numerical inaccuracies resulting from the piecewise linear core
function isocontour used to generate the feature curve.

5 Discussion and Conclusion

This report presents a technique for defining new implicit functions in terms
of an existing implicit offset function and user–positioned features that lie
in an isocontour of the original function. While the approach allows users
to creatively shape the form of an implicit function, it is the result of ex-
ploratory design, and some improvements could by made. For example, flare
is defined such that it is dependent on the curvature of the core function
isocontours. A curvature–independent form would also be useful and worth
designing.

Currently, the projection p2(x) is implemented with a closest point eval-
uation. This can be problematic for locally convex surfaces, as the closest
point might not be near the feature when the evaluation point is in the region
intended to be part of the feature. To avoid this problem, multiple evalua-
tions on subsurfaces of the core are considered and the maximum evaluation
value is retained. A more efficient approach would be worth investigating.
The surface cord technique does not handle local isocontour concavities; an
alternate technique that handles such concavities would be useful.

The current implementation only supports point and curve features; an

9

extension to surface features would be worthwhile. Various parameters could
also be parameterized by the feature. For example, the curve–based feature
could follow a contour by parameterizing Df in terms of the curve’s arc
length.

Finally, the practical usefulness of these implicit functions defined with
features can be explored for applications ranging from deformation and char-
acter rigging to shading and even physical simulation control.

A Piecewise Smooth Falloff Functions

Falloff functions for implicit functions are typically defined such that for
some region [a, b], the falloff function s has the properties s(a; a, b) = 1 and
s′(a; a, b) = 0. Similarly s(b; a, b) = 0 and s′(b; a, b) = 0. Outside the region
[a, b], s is constant while maintaining tangent continuity at x = a and x = b.
This is typically defined using a piecewise cubic polynomial; a reversal of
the smoothstep function smoothstep(x, a, b) is used here [1]. This has the
properties that s(x; a, b) = smoothstep(−x,−b,−a).

B Surface Cords

Surface cords are user–controllable curves that wrap around locally con-
vex surfaces without requiring specification of a surface embedding. Users
instead position a guide curve near a surface, and a cord is generated that in-
terpolates the guide curve endpoints while wrapping around the surface [4].
Surface cords are a modified cord form, in which the cord originates at an
arbitrary surface point near the guide curve start point f0 and ends at an-
other surface point, near the end point fn. The closest surface point to the
starting point of the guide curve is used as the starting point p0 of the sur-
face cord. Surface cord generation follows the form of inelastic, non–stiff
cords, but growth terminates when (fn−pi) · (pi+1−pi) < 0, at which point
the partial segment pi + ((fn − pi) · (pi+1 − pi))/||pi+1 − pi|| is appended.
This termination point is continuous with respect to changes of shape to the
guide curve.

References

[1] Anthony A. Apodaca and Larry Gritz. Advanced Renderman: Creating
CGI for Motion Pictures. Morgan Kaufmann, 2000.

10

[2] James F. Blinn. A Generalization of Algebraic Surface Drawing. ACM
Trans. Graph., 1(3):235–256, 1982.

[3] Jules Bloomenthal. Introduction to Implicit Surfaces. Morgan Kauf-
mann, 1997.

[4] Patrick Coleman and Karan Singh. Cords: Keyframe Control of Curves
with Physical Properties. In SIGGRAPH 2004 Sketches, 2004.

[5] Patrick Coleman and Karan Singh. RYAN: Rendering Your Animation
Nonlinearly projected. In NPAR ’04: Proceedings of the 3rd Inter-
national Symposium on Non–Photorealistic Animation and Rendering,
pages 129–156, New York, NY, USA, 2004. ACM Press.

[6] Tony DeRose, Michael Kass, and Tien Truong. Subdivision Surfaces
in Character Animation. In SIGGRAPH ’98: Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques,
pages 85–94, New York, NY, USA, 1998. ACM Press.

[7] Gerald Farin. Curves and Surfaces for Computer Aided Geometric De-
sign: A Practical Guide. Morgan Kaufmann, 2001.

[8] Nick Foster and Ronald Fedkiw. Practical Animation of Liquids. In
SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, pages 23–30, New York,
NY, USA, 2001. ACM Press.

[9] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert
Jin, John McDonald, Jean Schweitzer, and Werner Stuetzle. Piece-
wise Smooth Surface Reconstruction. In SIGGRAPH ’94: Proceedings
of the 21st Annual Conference on Computer Graphics and Interactive
Techniques, pages 295–302, New York, NY, USA, 1994. ACM Press.

[10] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A
Sketching Interface for 3D Freeform Design. In SIGGRAPH ’99: Pro-
ceedings of the 26th Annual Conference on Computer Graphics and In-
teractive Techniques, pages 409–416, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[11] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or.
A Sketch–Based Interface for Detail–Preserving Mesh Editing. ACM
Trans. Graph., 24(3):1142–1147, 2005.

11

[12] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakara, and
K. Omura. Object Modeling by Distribution Functions. Electronic
Communications, 68(4):718–725, 1985.

[13] Rick Parent. Computer Animation: Algorithms and Techniques. Mor-
gan Kaufmann, 2001.

[14] Michael Pratscher, Patrick Coleman, Joe Laszlo, and Karan Singh.
Outside–In Anatomy Based Character Rigging. In SCA ’05: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pages 329–338, New York, NY, USA, 2005. ACM
Press.

[15] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw. Directable Photorealistic Liquids.
In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 193–202, New York, NY,
USA, 2004. ACM Press.

[16] Karan Singh and Eugene Fiume. Wires: A Geometric Deformation
Technique. In SIGGRAPH ’98: Proceedings of the 25th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pages 405–414,
New York, NY, USA, 1998. ACM Press.

[17] Karan Singh and Rick Parent. Joining Polyhedral Objects Using Im-
plicitly Defined Primitives. The Visual Computer, 17:415–428, 2001.

[18] G. Wyvill, C. McPheeters, and B. Wyvill. Data Structures for Soft
Objects. The Visual Computer, 2:227–234, 1986.

12

