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3 RESULTS AND DISCUSSION

Although the concept of a saliency map has been widely used in
FOA models [1], [3], [7], little detail is usually provided about its
construction and dynamics. Here, we examine how the feed-
forward feature-extraction stages, the map combination strategy,
and the temporal properties of the saliency map all contribute to
the overall system performance.

3.1 General Performance

The model was extensively tested with artificial images to ensure
proper functioning. For example, several objects of the same shape
but varying contrast with the background were attended to in the
order of decreasing contrast. The model proved very robust to the
addition of noise to such images (Fig. 5), particularly if the prop-
erties of the noise (e.g., its color) were not directly conflicting with
the main feature of the target.

                                       (1)                                                                   (2)                                                                    (3)

Fig. 4. (a) Examples of color images. (b) The corresponding saliency map inputs. (c) Spatial frequency content (SFC) maps. (d) Locations at
which input to the saliency map was higher than 98 percent of its maximum (yellow circles) and image patches for which the SFC was higher than
98 percent of its maximum (red squares). The saliency maps are very robust to noise, while SFC is not.
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Short Papers
A Model of Saliency-Based Visual Attention

for Rapid Scene Analysis

Laurent Itti, Christof Koch, and Ernst Niebur

Abstract—A visual attention system, inspired by the behavior and the
neuronal architecture of the early primate visual system, is presented.
Multiscale image features are combined into a single topographical
saliency map. A dynamical neural network then selects attended
locations in order of decreasing saliency. The system breaks down the
complex problem of scene understanding by rapidly selecting, in a
computationally efficient manner, conspicuous locations to be analyzed
in detail.

Index Terms—Visual attention, scene analysis, feature extraction,
target detection, visual search.

————————   !   ————————

1 INTRODUCTION

PRIMATES have a remarkable ability to interpret complex scenes in
real time, despite the limited speed of the neuronal hardware avail-
able for such tasks. Intermediate and higher visual processes appear
to select a subset of the available sensory information before further
processing [1], most likely to reduce the complexity of scene analysis
[2]. This selection appears to be implemented in the form of a spa-
tially circumscribed region of the visual field, the so-called “focus of
attention,” which scans the scene both in a rapid, bottom-up, sali-
ency-driven, and task-independent manner as well as in a slower,
top-down, volition-controlled, and task-dependent manner [2].

Models of attention include “dynamic routing” models, in
which information from only a small region of the visual field can
progress through the cortical visual hierarchy. The attended region
is selected through dynamic modifications of cortical connectivity
or through the establishment of specific temporal patterns of ac-
tivity, under both top-down (task-dependent) and bottom-up
(scene-dependent) control [3], [2], [1].

The model used here (Fig. 1) builds on a second biologically-
plausible architecture, proposed by Koch and Ullman [4] and at
the basis of several models [5], [6]. It is related to the so-called
“feature integration theory,” explaining human visual search
strategies [7]. Visual input is first decomposed into a set of topo-
graphic feature maps. Different spatial locations then compete for
saliency within each map, such that only locations which locally
stand out from their surround can persist. All feature maps feed, in
a purely bottom-up manner, into a master “saliency map,” which
topographically codes for local conspicuity over the entire visual
scene. In primates, such a map is believed to be located in the
posterior parietal cortex [8] as well as in the various visual maps in
the pulvinar nuclei of the thalamus [9]. The model’s saliency map
is endowed with internal dynamics which generate attentional
shifts. This model consequently represents a complete account of

bottom-up saliency and does not require any top-down guidance
to shift attention. This framework provides a massively parallel
method for the fast selection of a small number of interesting im-
age locations to be analyzed by more complex and time-
consuming object-recognition processes. Extending this approach
in “guided-search,” feedback from higher cortical areas (e.g.,
knowledge about targets to be found) was used to weight the im-
portance of different features [10], such that only those with high
weights could reach higher processing levels.

2 MODEL

Input is provided in the form of static color images, usually digit-
ized at 640 ¥ 480 resolution. Nine spatial scales are created using
dyadic Gaussian pyramids [11], which progressively low-pass
filter and subsample the input image, yielding horizontal and ver-
tical image-reduction factors ranging from 1:1 (scale zero) to 1:256
(scale eight) in eight octaves.

Each feature is computed by a set of linear “center-surround”
operations akin to visual receptive fields (Fig. 1): Typical visual
neurons are most sensitive in a small region of the visual space
(the center), while stimuli presented in a broader, weaker antago-
nistic region concentric with the center (the surround) inhibit the
neuronal response. Such an architecture, sensitive to local spatial
discontinuities, is particularly well-suited to detecting locations
which stand out from their surround and is a general computa-
tional principle in the retina, lateral geniculate nucleus, and pri-
mary visual cortex [12]. Center-surround is implemented in the
model as the difference between fine and coarse scales: The center
is a pixel at scale c Œ {2, 3, 4}, and the surround is the corresponding
pixel at scale s = c + d, with d Œ {3, 4}. The across-scale difference
between two maps, denoted “!” below, is obtained by interpolation
to the finer scale and point-by-point subtraction. Using several scales
not only for c but also for d = s - c yields truly multiscale feature
extraction, by including different size ratios between the center and
surround regions (contrary to previously used fixed ratios [5]).

2.1 Extraction of Early Visual Features

With r, g, and b being the red, green, and blue channels of the in-
put image, an intensity image I is obtained as I = (r + g + b)/3. I is
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Fig. 1. General architecture of the model.
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reached, a prototypical spike is generated, and the capacitive
charge is shunted to zero [14]. The SM feeds into a biologically-
plausible 2D “winner-take-all” (WTA) neural network [4], [1] at

scale s = 4, in which synaptic interactions among units ensure that
only the most active location remains, while all other locations are
suppressed.

The neurons in the SM receive excitatory inputs from ! and are
all independent. The potential of SM neurons at more salient loca-
tions hence increases faster (these neurons are used as pure inte-
grators and do not fire). Each SM neuron excites its corresponding
WTA neuron. All WTA neurons also evolve independently of each
other, until one (the “winner”) first reaches threshold and fires.
This triggers three simultaneous mechanisms (Fig. 3):

1)! The FOA is shifted to the location of the winner neuron;
2)! the global inhibition of the WTA is triggered and completely

inhibits (resets) all WTA neurons;
3)! local inhibition is transiently activated in the SM, in an area

with the size and new location of the FOA; this not only
yields dynamical shifts of the FOA, by allowing the next
most salient location to subsequently become the winner,
but it also prevents the FOA from immediately returning to
a previously-attended location.

Such an “inhibition of return” has been demonstrated in human
visual psychophysics [16]. In order to slightly bias the model to
subsequently jump to salient locations spatially close to the cur-
rently-attended location, a small excitation is transiently activated
in the SM, in a near surround of the FOA (“proximity preference”
rule of Koch and Ullman [4]).

Since we do not model any top-down attentional compo-
nent, the FOA is a simple disk whose radius is fixed to one-
sixth of the smaller of the input image width or height. The
time constants, conductances, and firing thresholds of the
simulated neurons were chosen (see [17] for details) so that the
FOA jumps from one salient location to the next in approxi-
mately 30–70 ms (simulated time), and that an attended area is
inhibited for approximately 500–900 ms (Fig. 3), as has been
observed psychophysically [16]. The difference in the relative
magnitude of these delays proved sufficient to ensure thorough
scanning of the image and prevented cycling through only a
limited number of locations. All parameters are fixed in our
implementation [17], and the system proved stable over time
for all images studied.

2.3 Comparison With Spatial Frequency Content Models

Reinagel and Zador [18] recently used an eye-tracking device to
analyze the local spatial frequency distributions along eye scan
paths generated by humans while free-viewing gray-scale images.
They found the spatial frequency content at the fixated locations to
be significantly higher than, on average, at random locations. Al-
though eye trajectories can differ from attentional trajectories un-
der volitional control [1], visual attention is often thought as a pre-
occulomotor mechanism, strongly influencing free-viewing. It was,
hence, interesting to investigate whether our model would repro-
duce the findings of Reinagel and Zador.

We constructed a simple measure of spatial frequency content
(SFC): At a given image location, a 16 ¥ 16 image patch is extracted
from each I(2), R(2), G(2), B(2), and Y(2) map, and 2D Fast Fourier
Transforms (FFTs) are applied to the patches. For each patch, a
threshold is applied to compute the number of nonnegligible FFT
coefficients; the threshold corresponds to the FFT amplitude of a
just-perceivable grating (1 percent contrast). The SFC measure is
the average of the numbers of nonnegligible coefficients in the five
corresponding patches. The size and scale of the patches were cho-
sen such that the SFC measure is sensitive to approximately the
same frequency and resolution ranges as our model; also, our SFC
measure is computed in the RGB channels as well as in intensity,
like the model. Using this measure, an SFC map is created at scale
four and is compared to the saliency map (Fig. 4).

Fig. 3. Example of operation of the model with a natural image. Parallel
feature extraction yields the three conspicuity maps for color contrasts
(" ), intensity contrasts (# ), and orientation contrasts ($ ). These are
combined to form input ! to the saliency map (SM). The most salient
location is the orange telephone box, which appeared very strongly in
" ; it becomes the first attended location (92 ms simulated time). After
the inhibition-of-return feedback inhibits this location in the saliency
map, the next most salient locations are successively selected.
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(a) (b) (c) (d)

Figure 2: (a) Commercial eye-trackers can be placed just underneath a computer display to monitor where the user looks on the screen. (b)
A still-life photograph which is presented to a user. (c) Eye movement data for this image. Each circle represents the point of regard at a
particular moment in time; eye gaze position is marked 60 times per second for a total duration of 5 seconds. (d) The fixations positions are
extracted from this data, where the diameter of the circle indicates fixation duration (the scale in the lower left indicates 1 second).

Many other types of movements are possible, such as those involved
in smooth pursuit; but it is the saccades and fixations that play the
largest role in gathering information from across a static image.

Much of what is known about eye movements comes from the
use of eye-trackers, which are sensors designed to record the move-
ments of the eyes. Although eye-trackers have used similar prin-
ciples for the last thirty years, recent advancements have made
them smaller, less invasive and inexpensive. When used for human-
computer interaction [Duchowski 2000; Duchowski and Vertegaal
2000; Jacob 1993; Sibert and Jacob 2000; Vertegaal 1999], eye-
trackers can be mounted directly on the user’s head to allow for
unencumbered viewing of a scene, or can be placed less invasively
in the work environment. Figure 2(a) shows our ISCAN ETL-500
eye-tracker (with an RK-464 pan/tilt camera) as we have placed
it, just below the computer monitor. In current applications, eye-
trackers are used as a “cursor” to select objects on the screen or in a
virtual environment [Sibert and Jacob 2000], to provide attentional
information to enable image or scene simplification [Duchowski
2000], or to provide indirect evidence about the attention of a user
[Vertegaal 1999] in teleconferencing. While using eye-trackers as a
voluntary selection mechanism is not a typical manner of looking,
evaluation of such systems indicates they are still quite beneficial
[Sibert and Jacob 2000].

After a brief calibration period (built into commercial systems),
eye-trackers are ready to gather observations of a viewer’s point
of regard. Upon viewing the image of a still-life in Figure 2(b)
for five seconds, a subject’s eye movements were tracked (at 60
Hz). The resulting eye movement pattern shown is displayed in
(c). Through analysis of this raw data (which is relatively noisy),
fixation locations (and their corresponding durations) are detected
using a simple velocity threshold [Duchowski and Vertegaal 2000].
Fixations from viewing this image are shown in Figure 2(d) as cir-
cles centered at the fixation location; the diameter of the circles is
proportional to the duration.

In gathering this data, the viewer is simply instructed to “look
at the image”. This encourages spontaneous looking [Kahneman
1973], whereby the viewer’s gaze tends to fall upon the most in-
formative or important parts of the image [Yarbus 1967]. The al-
ternative of asking the user to “look at the parts of this image you
find important” would set up a task for the user, and task-relevant
looking [Kahneman 1973] is more complex and difficult.

2.3 Painterly Rendering

The interactive painting system presented by Haeberli [1990] en-
abled the production of images formed from collections of brush
strokes. The placement of these brush strokes was entirely spec-
ified by the user. Automatic methods for orienting brush strokes,

including using the image gradient or a secondary image were pro-
vided.

Fully automatic methods for producing painterly images have
also been presented [Hertzmann 1998; Litwinowicz 1997; Shiraishi
and Yamaguchi 2000]. Automation was achieved in [Litwinowicz
1997] by covering the canvas with a jittered grid of strokes, painted
in random order. While strokes were still oriented using the im-
age gradient, they are also cut short to prevent them from cross-
ing edges in the image, resulting in a more coherent image with
crisper edges. Other edge-preserving approaches have been inves-
tigated, including the use of curved strokes [Hertzmann 1998] or
the approximation of the local structure of the image [Shiraishi and
Yamaguchi 2000]. A locally orderless image representation [Koen-
derink and van Doorn 1999], which preserves histograms of pixel
values within small regions of interest, provides some explanation
for why painterly approaches are effective, in addition to being an-
other way of producing a stylized display.

In some systems, brushes over a range of sizes are combined
to capture image structures at the various scales [Hertzmann 1998;
Shiraishi and Yamaguchi 2000]. This allows for the omission of
fine detail in the image that does not noticeably change the paint-
ing. This approach uniformly removes detail of a particular scale
across the entire image if it is not very different from its surround-
ings (in the same way lossy image compression works). Of course,
when used at coarser scales and higher tolerances, this same ap-
proach can be used to simplify an entire painting. A similar effect
was achieved using relaxation in [Haeberli 1990]. Note, however,
that this approach omits strokes based on frequency and intensity
difference alone, and not on content, and only produces reasonable
results in images with a single subject, and no distracting content.
The next section describes our painterly rendering approach which
uses eye-tracking data to select and emphasize structures in the im-
age that the user found important.

3 Painting using a Perceptual Model

Our implementation of a painterly rendering system combines as-
pects from several existing approaches [Haeberli 1990; Litwinow-
icz 1997; Hertzmann 1998]. The paintings consist of a collection of
curved strokes, defined on a jittered grid for a chosen set of image
scales, and painted in random order. Strokes are painted using a
single color and drawn from a palette with varying thickness.

The significant contribution of our work comes from its novel
use of a perceptual model that is modulated with eye-tracking data.
In a data-driven fashion, we transform the image by pruning in or-
der to select just those perceptual elements that people looked at
extensively, using an existing model of people’s visual sensitivity
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Figure 2: Curvature alone is inadequate for assessing saliency since
it does not adequately consider the local context. Image (a) shows
a part of the right leg of the Stanford Armadillo model. Image
(b) visualizes the magnitude of mean curvatures and (c) shows our
saliency values. While (b) captures repeated textures and fails to
capture the knee, (c) successfully highlights the knee.

In this paper we explore the application of mesh saliency to mesh
simplification and view selection in Sections 4 and 5.

The main contributions of this paper are:

1. Saliency Computation: There can be a number of defini-
tions of saliency for meshes. We outline one such method
for graphics meshes based on the Gaussian-weighted center-
surround evaluation of surface curvatures. Our method has
given us very promising results on several 3D meshes.

2. Salient Simplification: We discuss how traditional mesh sim-
plification methods can be modified to accommodate saliency
in the simplification process. Our results show that saliency-
guided simplification can easily preserve visually salient re-
gions in meshes that conventional simplification methods typ-
ically do not.

3. Salient Viewpoint Selection: As databases of 3D models
evolve to very large collections, it becomes important to au-
tomatically select viewpoints that capture the most salient at-
tributes of objects. We present a saliency-guided method for
viewpoint selection that maximizes visible saliency.

We foresee the computation and use of mesh saliency as an increas-
ingly important area in 3D graphics. As we engage in image synthe-
sis and analysis for ever larger graphics datasets and as the gap be-
tween processing capabilities and memory-access times grows ever
wider, the need for prioritizing and selectively processing graphics
datasets will increase. Saliency can provide an effective tool to help
achieve this.

2 Related Work

Low-level cues influence where in an image people will look and
pay attention. Many computational models of this have been pro-
posed. Koch and Ullman’s [1985] early model suggested that
salient image locations will be distinct from their surroundings. Our
approach is explicitly based on the model of Itti et al. [1998]. They
combine information from center-surround mechanisms applied to
different feature maps, computed at different scales, to compute
a saliency map that assigns a saliency value to each image pixel.
Tsotsos et al. [1995], Milanese et al. [1994], Rosenholtz [1999],
and many others describe other interesting saliency models. Among
their many applications, 2D saliency maps have been applied to se-
lectively compress [Privitera and Stark 1999] or shrink [Chen et al.
2003; Suh et al. 2003] images. DeCarlo and Santella [2002] use
saliency determined from a person’s eye movements to simplify an
image producing a non-photorealistic, painterly rendering.

(a) (b)

Figure 3: Saliency is relative to the scale. Image (a) shows the
saliency map of the Cyberware Dinosaur head at a small scale, and
image (b) shows the map of its saliency at a larger scale. In image
(a), the small-scale saliency highlights the small features such as
nose and mouth and in image (b), the large-scale saliency identifies
a larger feature such as the eye.

More recently, saliency algorithms have been applied to views of
3D models. Yee et al. [2001] use Itti et al.’s algorithm to com-
pute a saliency map of a coarsely rendered 2D projection of a 3D
dynamic scene. They use this to help decide where to focus com-
putational resources in producing a more accurate rendering. Man-
tiuk et al. [2003] use a real-time, 2D saliency algorithm to guide
MPEG compression of an animation of a 3D scene. Frintrop et
al. [2004] use a saliency map to speed up the detection of objects in
3D data. They combine saliency maps computed from 2D images
representing scene depth and intensities. Howlett [2004] demon-
strate the potential value of saliency for the simplification of 3D
models. Their work captures saliency by using an eye-tracker to
record where a person has looked at a 2D image of a 3D model.

These prior works determine saliency for a 3D model by finding
saliency in its 2D projection. There is little work that determines
saliency directly from 3D structure. Guy and Medioni [1996] pro-
posed a method for computing a saliency map for edges in a 2D
image, (such edge-based saliency maps were previously explored
by Shashua and Ullman [1988]). In [Medioni and Guy 1997] they
extend this framework to apply to 3D data. However, their approach
is mainly designed to smoothly interpolate sparse, noisy 3D data to
find surfaces. They do not compute an analog to the saliency map
for a 3D object. Watanabe and Belyaev [2001] have proposed a
method to identify regions in meshes where principal curvatures
have locally maximal values along one of the principal directions
(typically along ridges and ravines). Hisada et al. [2002] have pro-
posed a method to detect salient ridges and ravines by computing
the 3D skeleton and finding non-manifold points on the skeletal
edges and associated surface points.

3 Mesh Saliency Computation

Itti et al. [1998]’s method is one of the most effective techniques
for computing saliency for 2D images. Our method for comput-
ing saliency for 3D meshes uses their center-surround operation.
Unlike images, where color is the most important attribute, we con-
sider geometry of meshes to be the most important contributor to
saliency. At present our method for mesh saliency uses only geom-
etry, but it should be easy to incorporate other surface appearance
attributes into it as well. There are several possible characteristics
of mesh geometry that could be used for saliency. Before we decide
on one let us compare the desiderata of saliency in a 2D image with
the saliency of a 3D object. Zero saliency in an image corresponds
to a region with uniform intensity. The motivation behind this is that
the key image property whose variations are critical is the intensity.
In an image, intensity is a function of shape and lighting. For 3D
objects however, we have the opportunity to determine the saliency
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for graphics meshes based on the Gaussian-weighted center-
surround evaluation of surface curvatures. Our method has
given us very promising results on several 3D meshes.

2. Salient Simplification: We discuss how traditional mesh sim-
plification methods can be modified to accommodate saliency
in the simplification process. Our results show that saliency-
guided simplification can easily preserve visually salient re-
gions in meshes that conventional simplification methods typ-
ically do not.

3. Salient Viewpoint Selection: As databases of 3D models
evolve to very large collections, it becomes important to au-
tomatically select viewpoints that capture the most salient at-
tributes of objects. We present a saliency-guided method for
viewpoint selection that maximizes visible saliency.

We foresee the computation and use of mesh saliency as an increas-
ingly important area in 3D graphics. As we engage in image synthe-
sis and analysis for ever larger graphics datasets and as the gap be-
tween processing capabilities and memory-access times grows ever
wider, the need for prioritizing and selectively processing graphics
datasets will increase. Saliency can provide an effective tool to help
achieve this.

2 Related Work

Low-level cues influence where in an image people will look and
pay attention. Many computational models of this have been pro-
posed. Koch and Ullman’s [1985] early model suggested that
salient image locations will be distinct from their surroundings. Our
approach is explicitly based on the model of Itti et al. [1998]. They
combine information from center-surround mechanisms applied to
different feature maps, computed at different scales, to compute
a saliency map that assigns a saliency value to each image pixel.
Tsotsos et al. [1995], Milanese et al. [1994], Rosenholtz [1999],
and many others describe other interesting saliency models. Among
their many applications, 2D saliency maps have been applied to se-
lectively compress [Privitera and Stark 1999] or shrink [Chen et al.
2003; Suh et al. 2003] images. DeCarlo and Santella [2002] use
saliency determined from a person’s eye movements to simplify an
image producing a non-photorealistic, painterly rendering.
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Figure 3: Saliency is relative to the scale. Image (a) shows the
saliency map of the Cyberware Dinosaur head at a small scale, and
image (b) shows the map of its saliency at a larger scale. In image
(a), the small-scale saliency highlights the small features such as
nose and mouth and in image (b), the large-scale saliency identifies
a larger feature such as the eye.

More recently, saliency algorithms have been applied to views of
3D models. Yee et al. [2001] use Itti et al.’s algorithm to com-
pute a saliency map of a coarsely rendered 2D projection of a 3D
dynamic scene. They use this to help decide where to focus com-
putational resources in producing a more accurate rendering. Man-
tiuk et al. [2003] use a real-time, 2D saliency algorithm to guide
MPEG compression of an animation of a 3D scene. Frintrop et
al. [2004] use a saliency map to speed up the detection of objects in
3D data. They combine saliency maps computed from 2D images
representing scene depth and intensities. Howlett [2004] demon-
strate the potential value of saliency for the simplification of 3D
models. Their work captures saliency by using an eye-tracker to
record where a person has looked at a 2D image of a 3D model.

These prior works determine saliency for a 3D model by finding
saliency in its 2D projection. There is little work that determines
saliency directly from 3D structure. Guy and Medioni [1996] pro-
posed a method for computing a saliency map for edges in a 2D
image, (such edge-based saliency maps were previously explored
by Shashua and Ullman [1988]). In [Medioni and Guy 1997] they
extend this framework to apply to 3D data. However, their approach
is mainly designed to smoothly interpolate sparse, noisy 3D data to
find surfaces. They do not compute an analog to the saliency map
for a 3D object. Watanabe and Belyaev [2001] have proposed a
method to identify regions in meshes where principal curvatures
have locally maximal values along one of the principal directions
(typically along ridges and ravines). Hisada et al. [2002] have pro-
posed a method to detect salient ridges and ravines by computing
the 3D skeleton and finding non-manifold points on the skeletal
edges and associated surface points.

3 Mesh Saliency Computation

Itti et al. [1998]’s method is one of the most effective techniques
for computing saliency for 2D images. Our method for comput-
ing saliency for 3D meshes uses their center-surround operation.
Unlike images, where color is the most important attribute, we con-
sider geometry of meshes to be the most important contributor to
saliency. At present our method for mesh saliency uses only geom-
etry, but it should be easy to incorporate other surface appearance
attributes into it as well. There are several possible characteristics
of mesh geometry that could be used for saliency. Before we decide
on one let us compare the desiderata of saliency in a 2D image with
the saliency of a 3D object. Zero saliency in an image corresponds
to a region with uniform intensity. The motivation behind this is that
the key image property whose variations are critical is the intensity.
In an image, intensity is a function of shape and lighting. For 3D
objects however, we have the opportunity to determine the saliency
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based on shape, independent of lighting. For 3D objects, we feel
that a sphere is the canonical zero-saliency feature. This is in spite
of the fact that depending on the lighting, a sphere may not produce
a uniform intensity image. In the case of the sphere the property
that is invariant is the curvature. Therefore we are guided by the
intuition that it is changes in the curvature that lead to saliency or
non-saliency. This has led us to formulate mesh saliency in terms
of the mean curvature used with the center-surround mechanism.
Figure 4 gives an overview of our saliency computation.

The first step of our saliency computation involves computing sur-
face curvatures. There are a number of excellent approaches that
generalize differential-geometry-based definition of curvatures to
discrete meshes [Taubin 1995; Meyer et al. 2003]. One can use
any of these to compute the curvature of a mesh at a vertex v.
Let the curvature map C define a mapping from each vertex of a
mesh to its mean curvature, i.e. let C (v) denote the mean curvature
of vertex v. We use Taubin [1995]’s method for curvature com-
putation. Let the neighborhood N(v,σ) for a vertex v, be the set
of points within a distance σ . One can consider several distance
functions to define the neighborhood, such as the geodesic or the
Euclidean. We have tried both and found that the Euclidean dis-
tance gave us better results and that is what we use here. Thus,
N(v,σ) = {x|‖x− v‖ < σ , x is a mesh point}. Let G(C (v),σ) de-
note the Gaussian-weighted average of the mean curvature. We
compute this as:

G(C (v),σ) =
∑

x∈N(v,2σ)
C (x)exp[−‖x− v‖2/(2σ2)]

∑
x∈N(v,2σ)

exp[−‖x− v‖2/(2σ2)]

Note that with the above formulation, we are assuming a cut-off
for the Gaussian filter at a distance 2σ . We compute the saliency
S (v) of a vertex v as the absolute difference between the Gaussian-
weighted averages computed at fine and coarse scales. We currently
use the standard deviation for the coarse scale as twice that of the
fine scale:

Figure 4: Mesh Saliency Computation: We first compute mean cur-
vature at mesh vertices. For each vertex, saliency is computed as
the difference between mean curvatures filtered with a narrow and
a broad Gaussian. For each Gaussian, we compute the Gaussian-
weighted average of the curvatures of vertices within a radius 2σ ,
where σ is Gaussian’s standard deviation. We compute saliency at
different scales by varying σ . The final saliency is the aggregate of
the saliency at all scales with a non-linear normalization.
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Figure 5: Images (a)–(e) show the saliency at scales of 2ε , 3ε , 4ε ,
5ε , and 6ε . Image (f) shows the final mesh saliency after aggregat-
ing the saliency over multiple scales. Here, ε is 0.3% of the length
of the diagonal of the bounding box of the model.

S (v) = |G(C (v),σ)−G(C (v),2σ)|

To compute mesh saliency at multiple scales, we define the saliency
of a vertex v at a scale level i as Si(v):

Si(v) = |G(C (v),σi)−G(C (v),2σi)|

where, σi is the standard deviation of the Gaussian filter at scale
i. For all the results in this paper we have used five scales σi ∈
{2ε,3ε,4ε,5ε,6ε}, where ε is 0.3% of the length of the diagonal
of the bounding box of the model.
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Figure 6: We show mesh saliency for the Cyberware Dinosaur
model (a) in figure (c) and for the Cyberware Isis model (b) in fig-
ure (d). Warmer colors (reds and yellows) show high saliency and
cooler colors (greens and blues) show low saliency.
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Si(v) = |G(C (v),σi)−G(C (v),2σi)|
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{2ε,3ε,4ε,5ε,6ε}, where ε is 0.3% of the length of the diagonal
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Figure 6: We show mesh saliency for the Cyberware Dinosaur
model (a) in figure (c) and for the Cyberware Isis model (b) in fig-
ure (d). Warmer colors (reds and yellows) show high saliency and
cooler colors (greens and blues) show low saliency.
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of the fact that depending on the lighting, a sphere may not produce
a uniform intensity image. In the case of the sphere the property
that is invariant is the curvature. Therefore we are guided by the
intuition that it is changes in the curvature that lead to saliency or
non-saliency. This has led us to formulate mesh saliency in terms
of the mean curvature used with the center-surround mechanism.
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Figure 1: Edge contraction. The highlighted edge is contracted
into a single point. The shaded triangles become degenerate and are
removed during the contraction.

ing attention. Several different algorithms have been formulated for
simplifying surfaces. Those algorithms which are most relevant to
our work can be broadly categorized into 3 classes:

Vertex Decimation. Schroeder et al. [9] describe an algorithm
which we would term vertex decimation. Their method iteratively
selects a vertex for removal, removes all adjacent faces, and retri-
angulates the resulting hole. Soucy and Laurendeau [10] described
a more sophisticated, but essentially similar algorithm. While they
provide reasonable efficiency and quality, these methods are not re-
ally suited for our purpose. Both methods use vertex classification
and retriangulation schemes which are inherently limited to mani-
fold surfaces, and they carefully maintain the topology of the model.
While these are important features in some domains, they are restric-
tions for multiresolution rendering systems.

Vertex Clustering. The algorithm described by Rossignac and
Borrel [8] is one of the few capable of processing arbitrary polygo-
nal input. A bounding box is placed around the original model and
divided into a grid. Within each cell, the cell’s vertices are clustered
together into a single vertex, and the model faces are updated ac-
cordingly. This process can be very fast, and can make drastic topo-
logical alterations to the model. However, while the size of the grid
cells does provide a geometric error bound, the quality of the out-
put is often quite low. In addition, it is difficult to construct an ap-
proximation with a specific face count, since the number of faces
is only indirectly determined by the specified grid dimensions. The
exact approximation produced is also dependent on the exact posi-
tion and orientation of the original model with respect to the sur-
rounding grid. This uniformmethod can easily be generalized to use
an adaptive grid structure, such as an octree [6]. This can improve
the simplification results, but it still does not support the quality and
control that we desire.

Iterative Edge Contraction. Several algorithms have been
published that simplify models by iteratively contracting edges (see
Figure 1). The essential difference between these algorithms lies in
how they choose an edge to contract. Some notable examples of
such algorithms are those of Hoppe [4, 3], Ronfard and Rossignac
[7], and Guéziec [2]. These algorithms all seem to have been de-
signed for use on manifold surfaces, although edge contractions can
be utilized on non-manifold surfaces. By performing successive
edge contractions, they can close holes in the object but they can-
not join unconnected regions.

If it is critical that the approximate model lie within some dis-
tance of the original model and that its topology remain unchanged,
the simplification envelopes technique of Cohen et al. [1] can be
used in conjunction with one of the above simplification algorithms.
As long as any modification made to the model is restricted to lie
within the envelopes, a global error guarantee can be maintained.
However, while this provides strong error limits, the method is in-
herently limited to orientable manifold surfaces and carefully pre-
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Figure 2: Non-edge contraction. When non-edge pairs are con-
tracted, unconnected sections of the model are joined. The dashed
line indicates the two vertices being contracted together.

serves model topology. Again, these are often limitations for the
purposes of simplification for rendering.

None of these previously developed algorithms provide the com-
bination of efficiency, quality, and generality that we desire. Vertex
decimation algorithms are unsuitable for our needs; they are careful
to maintain model topology and usually assumemanifold geometry.
Vertex clustering algorithms are very general and can be very fast.
However, they provide poor control over their results and these re-
sults can be of rather low quality. Edge contraction algorithms can
not support aggregation.

We have developed an algorithm which supports both aggrega-
tion and high quality approximations. It possesses much of the gen-
erality of vertex clustering as well as the quality and control of itera-
tive contraction algorithms. It also allows faster simplification than
some higher quality methods [3].

3 Decimation via Pair Contraction

Our simplification algorithm is based on the iterative contraction of
vertex pairs; a generalization of the iterative edge contraction tech-
nique used in previous work. A pair contraction, which we will
write (v1,v2) → v̄, moves the vertices v1 and v2 to the new posi-
tion v̄, connects all their incident edges to v1, and deletes the vertex
v2. Subsequently, any edges or faces which have become degenerate
are removed. The effect of a contraction is small and highly local-
ized. If (v1,v2) is an edge, then 1 or more faces will be removed
(see Figure 1). Otherwise, two previously separate sections of the
model will be joined at v̄ (see Figure 2).

This notion of contraction is in fact quite general; we can con-
tract a set of vertices into a single vertex: (v1,v2, . . . , vk ) → v̄. This
form of generalized contraction can express both pair contractions
as well as more general operations such as vertex clustering. How-
ever, we use pair contraction as the atomic operation of our algo-
rithm because it is the most fine-grained contraction operation.

Startingwith the initialmodel Mn, a sequence of pair contractions
is applied until the simplification goals are satisfied and a final ap-
proximation Mg is produced. Because each contraction corresponds
to a local incremental modification of the current model, the algo-
rithm actually generates a sequence of models Mn,Mn−1, . . . ,Mg.
Thus, a single run can produce a large number of approximate mod-
els or a multiresolution representation such as a progressive mesh
[3].

3.1 Aggregation

The primary benefit which we gain by utilizing general vertex pair
contractions is the ability of the algorithm to join previously uncon-
nected regions of the model together. A potential side benefit is that
it makes the algorithm less sensitive to the mesh connectivity of the
original model. If in fact two faces meet at a vertex which is dupli-
cated, the contraction of that pair of vertices will repair this short-
coming of the initial mesh.
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Figure 7: Simplification results for the Stanford Armadillo: (a) shows simplified models using Qslim and (b) shows different levels of
simplification using saliency. The three right columns show the zoomed-in face of the Armadillo. The eyes and the nose are preserved better
with our method while the bumps on the legs are smoothed faster.

For combining saliency maps Si at different scales, we apply a
non-linear suppression operator S similar to the one proposed by
Itti et al. [1998]. This suppression operator promotes saliency maps
with a small number of high peaks (Figure 5(e)) while suppressing
saliency maps with a large number of similar peaks (Figure 5(a)).
Thus, non-linear suppression helps us in reducing the number of
salient points. If we do not use suppression, we get far too many
regions being flagged as salient. We believe, therefore, that this sup-
pression helps to define what makes something unique, and there-
fore potentially salient. For each saliency map Si, we first normal-
ize Si. We then compute the maximum saliency value Mi and the
average m̄i of the local maxima excluding the global maximum at
that scale. Finally, we multiply Si by the factor (Mi − m̄i)2. The
final mesh saliency S is computed by adding the saliency maps
at all scales after applying the non-linear normalization of suppres-
sion: S = ∑i S(Si)

4 Salient Simplification

There is a large and growing body of literature on simplification of
meshes using a diverse set of error metrics and simplification op-
erators [Luebke et al. 2003]. Several simplification approaches use
estimates of mesh curvature to guide the simplification process and
achieve high geometric fidelity for a given triangle budget [Turk
1992; Kim et al. 2002]. Other simplification approaches, such as
QSlim [Garland and Heckbert 1997], use error metrics that while
not directly computing curvature, are related to curvature [Heck-
bert and Garland 1999]. Curvature has also been directly used to
identify salient regions on meshes. Watanabe and Belyaev [2001]
classify extrema of the principal curvatures as salient features and
preserve them better during simplification. Their method however,
does not use a center-surround mechanism to identify regions on a
mesh that are different from their local context.

For evaluating the effectiveness of our mesh saliency method, we
have modified the quadrics-based simplification method (Qslim) of
Garland and Heckbert [1997] by weighting the quadrics with mesh
saliency. However, it should be equally easy to integrate our mesh
saliency with any other mesh simplification scheme. Garland and
Heckbert’s method simplifies a mesh by repeatedly contracting ver-
tex pairs ordered by increasing quadric errors. Let P be the set of
planes of triangles incident at a vertex v, where the plane p ∈ P
defined by the equation ax + by + cz + d = 0, a2 + b2 + c2 = 1, is
represented as (a b c d)T . Then the quadric for the plane p is de-
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Figure 8: We show the saliency-based weights and the quality of
the 99% simplification (3.5K triangles) for the Stanford Armadillo
model for three choices of the simplification weights: (a) the
original mesh saliency (W = S ) (b) the amplified mesh saliency
(W = AS ), and (c) the smoothed and amplified mesh saliency
(W = A(G(S ,3ε))).
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Thus, non-linear suppression helps us in reducing the number of
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pression helps to define what makes something unique, and there-
fore potentially salient. For each saliency map Si, we first normal-
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Figure 9: Simplification results for the Cyberware Male: (a) shows simplifications by Garland and Heckbert’s method, and (b) shows
simplifications by our method using saliency. The eyes, nose, ears, and mouth are preserved better with our method.

fined as Qp = ppT . They define the error of v with respect to p
as the squared distance of v to p which is computed by vT Qpv.
The quadric Q of v is the sum of all the quadrics of neighboring
planes: Q = ∑p∈P Qp. After computing quadrics of all vertices,
they compute the optimal contraction point v̄ for each pair (vi,v j)
which minimizes the quadric error v̄T (Qi + Q j)v̄ where Qi and Q j
are quadrics of vi and v j , respectively. The algorithm iteratively
contracts the pair with the minimum contraction cost v̄T (Qi +Q j)v̄.
After a pair is contracted, the quadric for the new point v̄ is com-
puted simply by adding the two quadrics Qi +Q j.

We guide the order of simplification contractions using a weight
map W derived from the mesh saliency map S . We have found
that using the simplification weights based on a non-linear amplifi-
cation of the saliency gives us good results. We believe that the rea-
son behind this is that by amplifying the high saliency vertices we
are ensuring that they are preserved longer than the non-salient ver-
tices with high contraction costs. Specifically, we define a saliency
amplification operator A using a threshold α and an amplifying pa-
rameter λ , such that we amplify the saliency values that are greater
than or equal to α by a factor λ . Thus, the simplification weight
map W using the saliency amplification operator A is specified as:

W (v) = A(S (v),α,λ ) =
{

λS (v) if S (v) >= α
S (v) if S (v) < α

For all the saliency-based simplification results in this paper, we
use λ = 100 and α = 30th percentile saliency. At the initialization
stage of computing the quadric Q for each vertex v, we multiply
Q by its simplification weight W (v) derived from the saliency of
v: Q ← W (v)Q. Analogous to the computation of a quadric after
a vertex-pair collapse, the simplification weight W (v) for the new
vertex v is the sum of the weights for the pair of vertices being
collapsed W (vi)+W (v j).

Obviously, the quality of simplification increases when we apply
the saliency amplifying operator. However, we have observed that
even when we directly use the saliency as the weighting factor with-
out the amplifying operator, i.e. with λ = 1, the interesting features
are preserved longer than with the original quadric-based method.

We have also observed that blurring the saliency map before com-
puting the amplified saliency gives us fewer salient regions and al-
lows the simplification process to focus more on these selected re-
gions. We use σ = 3ε for blurring, i.e.W = A(G(S ,3ε)), This is
shown in Figure 8. We compute the saliency map just once and do
not modify it during simplification so that we can always stay true
to the original model’s saliency.

5 Salient Viewpoint Selection

With advances in 3D model acquisition technologies, databases of
3D models are evolving to very large collections. Accordingly, the
importance of automatically crafting best views that maximally elu-
cidate the most important features of an object has also grown for
high-quality representative first views, or sequence of views. A
number of papers have addressed the problem of automatically se-
lecting a viewpoint for looking at an object. Kamada and Kawai
[1988] describe a method for selecting views in which surfaces are
imaged non-obliquely relative to their normals, using parallel pro-
jection. Stoev and Straßer [2002] consider a different approach that
is more suitable to viewing terrains, in which most surface nor-
mals in the scene are similar, and visible scene depth should be
maximized. In the context of computer vision, Weinshall and Wer-
man [1997] show an equivalence between the most stable and most
likely view of an object, and show that this is the view in which
an object is flattest. Finding the optimal set of views of an ob-
ject for purposes of image-based rendering has also been consid-
ered, using measures such as those providing best coverage of the
scene [Fleishman et al. 1999], and those that provide the most in-
formation [Vázquez et al. 2002].

Blanz et al. [1999] have conducted user studies to determine the
factors that influence the preferred views for 3D objects. They con-
clude that selection of a preferred view is a result of complex inter-
actions between task, object geometry, and object familiarity. Their
studies support visibility (and occlusion) of salient features of an
object as one of the factors influencing the selection of a preferred
view. Gooch et al. [2001] have built a system that uses art-inspired
principles and some of the factors suggested by Blanz et al. [1999]
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cation of the saliency gives us good results. We believe that the rea-
son behind this is that by amplifying the high saliency vertices we
are ensuring that they are preserved longer than the non-salient ver-
tices with high contraction costs. Specifically, we define a saliency
amplification operator A using a threshold α and an amplifying pa-
rameter λ , such that we amplify the saliency values that are greater
than or equal to α by a factor λ . Thus, the simplification weight
map W using the saliency amplification operator A is specified as:

W (v) = A(S (v),α,λ ) =
{

λS (v) if S (v) >= α
S (v) if S (v) < α

For all the saliency-based simplification results in this paper, we
use λ = 100 and α = 30th percentile saliency. At the initialization
stage of computing the quadric Q for each vertex v, we multiply
Q by its simplification weight W (v) derived from the saliency of
v: Q ← W (v)Q. Analogous to the computation of a quadric after
a vertex-pair collapse, the simplification weight W (v) for the new
vertex v is the sum of the weights for the pair of vertices being
collapsed W (vi)+W (v j).

Obviously, the quality of simplification increases when we apply
the saliency amplifying operator. However, we have observed that
even when we directly use the saliency as the weighting factor with-
out the amplifying operator, i.e. with λ = 1, the interesting features
are preserved longer than with the original quadric-based method.

We have also observed that blurring the saliency map before com-
puting the amplified saliency gives us fewer salient regions and al-
lows the simplification process to focus more on these selected re-
gions. We use σ = 3ε for blurring, i.e.W = A(G(S ,3ε)), This is
shown in Figure 8. We compute the saliency map just once and do
not modify it during simplification so that we can always stay true
to the original model’s saliency.

5 Salient Viewpoint Selection

With advances in 3D model acquisition technologies, databases of
3D models are evolving to very large collections. Accordingly, the
importance of automatically crafting best views that maximally elu-
cidate the most important features of an object has also grown for
high-quality representative first views, or sequence of views. A
number of papers have addressed the problem of automatically se-
lecting a viewpoint for looking at an object. Kamada and Kawai
[1988] describe a method for selecting views in which surfaces are
imaged non-obliquely relative to their normals, using parallel pro-
jection. Stoev and Straßer [2002] consider a different approach that
is more suitable to viewing terrains, in which most surface nor-
mals in the scene are similar, and visible scene depth should be
maximized. In the context of computer vision, Weinshall and Wer-
man [1997] show an equivalence between the most stable and most
likely view of an object, and show that this is the view in which
an object is flattest. Finding the optimal set of views of an ob-
ject for purposes of image-based rendering has also been consid-
ered, using measures such as those providing best coverage of the
scene [Fleishman et al. 1999], and those that provide the most in-
formation [Vázquez et al. 2002].

Blanz et al. [1999] have conducted user studies to determine the
factors that influence the preferred views for 3D objects. They con-
clude that selection of a preferred view is a result of complex inter-
actions between task, object geometry, and object familiarity. Their
studies support visibility (and occlusion) of salient features of an
object as one of the factors influencing the selection of a preferred
view. Gooch et al. [2001] have built a system that uses art-inspired
principles and some of the factors suggested by Blanz et al. [1999]
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son behind this is that by amplifying the high saliency vertices we
are ensuring that they are preserved longer than the non-salient ver-
tices with high contraction costs. Specifically, we define a saliency
amplification operator A using a threshold α and an amplifying pa-
rameter λ , such that we amplify the saliency values that are greater
than or equal to α by a factor λ . Thus, the simplification weight
map W using the saliency amplification operator A is specified as:

W (v) = A(S (v),α,λ ) =
{

λS (v) if S (v) >= α
S (v) if S (v) < α

For all the saliency-based simplification results in this paper, we
use λ = 100 and α = 30th percentile saliency. At the initialization
stage of computing the quadric Q for each vertex v, we multiply
Q by its simplification weight W (v) derived from the saliency of
v: Q ← W (v)Q. Analogous to the computation of a quadric after
a vertex-pair collapse, the simplification weight W (v) for the new
vertex v is the sum of the weights for the pair of vertices being
collapsed W (vi)+W (v j).

Obviously, the quality of simplification increases when we apply
the saliency amplifying operator. However, we have observed that
even when we directly use the saliency as the weighting factor with-
out the amplifying operator, i.e. with λ = 1, the interesting features
are preserved longer than with the original quadric-based method.

We have also observed that blurring the saliency map before com-
puting the amplified saliency gives us fewer salient regions and al-
lows the simplification process to focus more on these selected re-
gions. We use σ = 3ε for blurring, i.e.W = A(G(S ,3ε)), This is
shown in Figure 8. We compute the saliency map just once and do
not modify it during simplification so that we can always stay true
to the original model’s saliency.

5 Salient Viewpoint Selection

With advances in 3D model acquisition technologies, databases of
3D models are evolving to very large collections. Accordingly, the
importance of automatically crafting best views that maximally elu-
cidate the most important features of an object has also grown for
high-quality representative first views, or sequence of views. A
number of papers have addressed the problem of automatically se-
lecting a viewpoint for looking at an object. Kamada and Kawai
[1988] describe a method for selecting views in which surfaces are
imaged non-obliquely relative to their normals, using parallel pro-
jection. Stoev and Straßer [2002] consider a different approach that
is more suitable to viewing terrains, in which most surface nor-
mals in the scene are similar, and visible scene depth should be
maximized. In the context of computer vision, Weinshall and Wer-
man [1997] show an equivalence between the most stable and most
likely view of an object, and show that this is the view in which
an object is flattest. Finding the optimal set of views of an ob-
ject for purposes of image-based rendering has also been consid-
ered, using measures such as those providing best coverage of the
scene [Fleishman et al. 1999], and those that provide the most in-
formation [Vázquez et al. 2002].

Blanz et al. [1999] have conducted user studies to determine the
factors that influence the preferred views for 3D objects. They con-
clude that selection of a preferred view is a result of complex inter-
actions between task, object geometry, and object familiarity. Their
studies support visibility (and occlusion) of salient features of an
object as one of the factors influencing the selection of a preferred
view. Gooch et al. [2001] have built a system that uses art-inspired
principles and some of the factors suggested by Blanz et al. [1999]

Original (606K tris) 4K triangles 4K triangles 2K triangles 1K triangles
(Smooth Shading)

(a) Simplification by Qslim

Saliency 4K triangles 4K triangles 2K triangles 1K triangles
(Smooth Shading)

(b) Simplification guided by saliency

Figure 9: Simplification results for the Cyberware Male: (a) shows simplifications by Garland and Heckbert’s method, and (b) shows
simplifications by our method using saliency. The eyes, nose, ears, and mouth are preserved better with our method.

fined as Qp = ppT . They define the error of v with respect to p
as the squared distance of v to p which is computed by vT Qpv.
The quadric Q of v is the sum of all the quadrics of neighboring
planes: Q = ∑p∈P Qp. After computing quadrics of all vertices,
they compute the optimal contraction point v̄ for each pair (vi,v j)
which minimizes the quadric error v̄T (Qi + Q j)v̄ where Qi and Q j
are quadrics of vi and v j , respectively. The algorithm iteratively
contracts the pair with the minimum contraction cost v̄T (Qi +Q j)v̄.
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rameter λ , such that we amplify the saliency values that are greater
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W (v) = A(S (v),α,λ ) =
{

λS (v) if S (v) >= α
S (v) if S (v) < α

For all the saliency-based simplification results in this paper, we
use λ = 100 and α = 30th percentile saliency. At the initialization
stage of computing the quadric Q for each vertex v, we multiply
Q by its simplification weight W (v) derived from the saliency of
v: Q ← W (v)Q. Analogous to the computation of a quadric after
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even when we directly use the saliency as the weighting factor with-
out the amplifying operator, i.e. with λ = 1, the interesting features
are preserved longer than with the original quadric-based method.
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Viewpoint Selection

Figure 10: For viewpoint selection, we find the viewpoint that max-
imizes the visible saliency sum. Here, the wireframe mesh around
the David’s head model shows the magnitude of the visible saliency
sum when the model is seen from each direction. The color of the
mesh is also mapped from the visible saliency sum. Our method
selects the view-direction with the highest magnitude.

to automatically compute initial viewpoints for 3D objects. Sys-
tems such as these can greatly benefit from a computational model
of mesh saliency.

We have developed a method for automatically selecting viewpoint
so as to visualize the most salient object features. Our method se-
lects the viewpoint that maximizes the sum of the saliency for vis-
ible regions of the object. For a given viewpoint v, let F(v) be the
set of surface points visible from v, and let S be the mesh saliency.
We compute the saliency visible from v as: U(v) = ∑x∈F(v) S (x).
Then the viewpoint with maximum visible saliency vm is defined as
vm = argmax

v
U(v). One possible solution here is to exhaustively

compute the maximum visible saliency over all viewpoints. This
is shown in Figure 10. This, however, could get computationally
intensive as the amount and complexity of 3D content rises.

Instead, we use a gradient-descent-based optimization heuristic to
help us select good viewpoints. The optimization variables are the
longitude and latitude, (θ ,φ) and the objective function is the vis-
ible saliency U(θ ,φ). We start from a random view direction and
use the iterative gradient-descent method to find the local maxima.
We compute the local gradient by probing the saliency at neighbor-
ing view points. We use a randomized algorithm to find the global
maximum by repeating this procedure with multiple randomly se-
lected starting points. We can see the results of this approach for
Stanford’s David model in Figure 11. It is interesting to see that our
approach identified a side of the face whereas a purely curvature-
based approach has identified a view looking straight down at the
back of David’s head.

6 Results and Discussion

We have developed a model for mesh saliency, discussed its compu-
tation, and shown its applicability to mesh simplification and view-
point selection. Figure 6 shows the mesh saliency for the Cyber-
ware Dinosaur and the Cyberware Isis models. Repeating patterns
are usually not classified as salient by our approach. Notice that al-
though the curvature of the Dinosaur’s ribs in Figure 6 is high, their
saliency is low. For other examples, consider the repeated bumps
on the legs of the Armadillo model in Figure 7, David’s hair in Fig-
ure 11, or patterns in Isis’s wig in Figure 6. Our approach assigns a
low saliency to such local repeating patterns.
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Figure 11: Image (a) shows a viewpoint selected by maximizing
visible saliency, and image (d) shows a viewpoint selected by max-
imizing visible mean curvature. Images (b) and (e) show the mean
curvature for the two selected viewpoints, and images (c) and (f)
show the saliency. Since saliency negates the repeated hair texture
in image (e), the method based on saliency selects the more inter-
esting region of face instead of the top of the head.

The application of our saliency models to guide simplification of
meshes have also given us very effective results. Consider for in-
stance the Cyberware Male in Figure 9. Notice how our saliency-
based simplification retains more triangles around the ears, nose,
lips, and eyes than previous methods. Although in this case, salient
simplification preserves the desirable high curvature regions, it can
also selectively ignore the undesirable high curvature regions, such
as in the simplification of the Armadillo’s legs (Figure 7) or in ig-
noring David’s hair for viewpoint selection (Figure 11).

The time to compute saliency depends on the scale at which it is
computed. Larger scales require identification and processing of a
larger number of neighborhood vertices and therefore are more time
consuming. Spatial data-structures such as a grid or an octree can
greatly improve the running time for establishing the neighborhood
at a given scale. Table 1 shows the time for saliency computation
on a 3.0 GHz Pentium IV PC with 2 GB RAM using a regular grid.

Table 1: Run Times for Computing Mesh Saliency

Time for each scale (sec)
Model #verts 2ε 3ε 4ε 5ε 6ε

Dinosaur 56K 1.6 3.4 4.8 6.7 9.0
Armadillo 172K 7.6 15.4 20.5 29.8 41.1

Male 303K 20.7 35.2 50.6 71.2 95.2
Dragon 437K 34.8 72.8 93.8 131.9 178.9

David’s Head 2M 593.7 1097.2 1407.4 1968.6 2619.7

Our mesh saliency computation approach is based on a center-
surround operator, which is present in many models of human vi-
sion. We use this approach primarily because it is a straightforward
way of finding regions that are unique relative to their surround-
ings. For this reason, it is plausible that mesh saliency may capture
the regions of 3D models that humans will also find salient. Our
experiments provide preliminary indications that this may be true.
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Figure 10: For viewpoint selection, we find the viewpoint that max-
imizes the visible saliency sum. Here, the wireframe mesh around
the David’s head model shows the magnitude of the visible saliency
sum when the model is seen from each direction. The color of the
mesh is also mapped from the visible saliency sum. Our method
selects the view-direction with the highest magnitude.

to automatically compute initial viewpoints for 3D objects. Sys-
tems such as these can greatly benefit from a computational model
of mesh saliency.

We have developed a method for automatically selecting viewpoint
so as to visualize the most salient object features. Our method se-
lects the viewpoint that maximizes the sum of the saliency for vis-
ible regions of the object. For a given viewpoint v, let F(v) be the
set of surface points visible from v, and let S be the mesh saliency.
We compute the saliency visible from v as: U(v) = ∑x∈F(v) S (x).
Then the viewpoint with maximum visible saliency vm is defined as
vm = argmax
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U(v). One possible solution here is to exhaustively

compute the maximum visible saliency over all viewpoints. This
is shown in Figure 10. This, however, could get computationally
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Figure 12: Viewpoint selection for the Octopus and the Stanford Dragon models. Images (a)–(d) show viewpoints selected by maximizing
visible saliency, and images (e)–(h) show viewpoints selected by maximizing visible mean curvature. Images (b) and (d) show the saliency,
and images (f) and (h) show the mean curvature. Compared with a curvature-based viewpoint selection method, the saliency-based method
picks a more pleasing view for models with repeated textures such as (a) the octopus but not for (c) the Dragon. Our method for saliency-
guided view selection for the Dragon selects the view from below instead of from the side since the Dragon’s feet have a very high saliency.

7 Conclusions and Future Work

We have developed a model of mesh saliency using center-surround
filters with Gaussian-weighted curvatures. We have shown how in-
corporating mesh saliency can visually enhance the results of sev-
eral graphics tasks such as mesh simplification and viewpoint se-
lection. For a number of examples we have shown in this paper,
one can see that our model of saliency is able to capture what most
of us would classify as interesting regions in meshes. Not all such
regions necessarily have high curvature. While we do not claim that
our saliency measure is superior to mesh curvature in all respects,
we believe that mesh saliency is a good start in merging percep-
tual criteria inspired by low-level human visual system cues with
mathematical measures based on discrete differential geometry for
graphics meshes.

Mesh saliency promises to be a rich area for further research. We
are currently defining mesh saliency using mean curvature. It
should be possible to improve this by using better measures of
shape, such as principal curvatures. Our current definition of mesh
saliency considers only geometry. Generalizing mesh saliency to
encompass other appearance attributes such as color, texture, and
reflectance, should be an important direction for further research.
Current methods for lighting design [Lee et al. 2004] do not in-
corporate any notion of perceptual saliency in deciding how and
where to illuminate a scene. Saliency-based lighting design is likely
to emerge as an important area for further research. Our current
method of computing saliency takes a long time. It should be pos-
sible to significantly speed it up by using a multiresolution mesh
hierarchy to accelerate filtering at coarser scales. Mesh segmenta-
tion [Katz and Tal 2003], like mesh simplification, is another mesh
processing operation that could benefit from a saliency map that as-
signs different priorities to different regions of a mesh. It will also
be an interesting exercise to use eye-tracking to determine the re-
gions on 3D objects that elicit greater visual attention and contrast
this with their computed saliency using methods such as ours.
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and images (f) and (h) show the mean curvature. Compared with a curvature-based viewpoint selection method, the saliency-based method
picks a more pleasing view for models with repeated textures such as (a) the octopus but not for (c) the Dragon. Our method for saliency-
guided view selection for the Dragon selects the view from below instead of from the side since the Dragon’s feet have a very high saliency.
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object attributes determine canonical views? Perception 28, 5,
575–599.

CHEN, L., XIE, X., FAN, X., MA, W., ZHANG, H., AND ZHOU,
H. 2003. A visual attention model for adapting images on small
displays. ACM Multimedia Systems Journal 9, 4, 353–364.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2002) 21, 3, 769–776.

FLEISHMAN, S., COHEN-OR, D., AND LISCHINSKI, D. 1999.
Automatic camera placement for image-based modeling. In Pro-
ceedings of the 7th Pacific Conference on Computer Graphics
and Applications (PG 1999), 12–20.



Viewpoint Selection

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Viewpoint selection for the Octopus and the Stanford Dragon models. Images (a)–(d) show viewpoints selected by maximizing
visible saliency, and images (e)–(h) show viewpoints selected by maximizing visible mean curvature. Images (b) and (d) show the saliency,
and images (f) and (h) show the mean curvature. Compared with a curvature-based viewpoint selection method, the saliency-based method
picks a more pleasing view for models with repeated textures such as (a) the octopus but not for (c) the Dragon. Our method for saliency-
guided view selection for the Dragon selects the view from below instead of from the side since the Dragon’s feet have a very high saliency.

7 Conclusions and Future Work

We have developed a model of mesh saliency using center-surround
filters with Gaussian-weighted curvatures. We have shown how in-
corporating mesh saliency can visually enhance the results of sev-
eral graphics tasks such as mesh simplification and viewpoint se-
lection. For a number of examples we have shown in this paper,
one can see that our model of saliency is able to capture what most
of us would classify as interesting regions in meshes. Not all such
regions necessarily have high curvature. While we do not claim that
our saliency measure is superior to mesh curvature in all respects,
we believe that mesh saliency is a good start in merging percep-
tual criteria inspired by low-level human visual system cues with
mathematical measures based on discrete differential geometry for
graphics meshes.

Mesh saliency promises to be a rich area for further research. We
are currently defining mesh saliency using mean curvature. It
should be possible to improve this by using better measures of
shape, such as principal curvatures. Our current definition of mesh
saliency considers only geometry. Generalizing mesh saliency to
encompass other appearance attributes such as color, texture, and
reflectance, should be an important direction for further research.
Current methods for lighting design [Lee et al. 2004] do not in-
corporate any notion of perceptual saliency in deciding how and
where to illuminate a scene. Saliency-based lighting design is likely
to emerge as an important area for further research. Our current
method of computing saliency takes a long time. It should be pos-
sible to significantly speed it up by using a multiresolution mesh
hierarchy to accelerate filtering at coarser scales. Mesh segmenta-
tion [Katz and Tal 2003], like mesh simplification, is another mesh
processing operation that could benefit from a saliency map that as-
signs different priorities to different regions of a mesh. It will also
be an interesting exercise to use eye-tracking to determine the re-
gions on 3D objects that elicit greater visual attention and contrast
this with their computed saliency using methods such as ours.

8 Acknowledgements

We would like to thank the anonymous reviewers for their ex-
ceptionally thorough and careful reviews, voluminous advice, and
valuable suggestions. We greatly appreciate their time and effort
in helping make this paper significantly better. We will to thank
Youngmin Kim for his help at various stages of this project. We
would also like to acknowledge Stanford Graphics Lab and Cyber-
ware Inc. for providing the models for generating the images in this
paper. This work has been supported in part by the NSF grants: IIS
00-81847, ITR 03-25867, CCF 04-29753, and CNS 04-03313.

References

AL-REGIB, G., ALTUNBASAK, Y., AND ROSSIGNAC, J. 2005.
Error-resilient transmission of 3D models. ACM Transactions
on Graphics 24, 2, 182–208.

BLANZ, V., TARR, M. J., AND BÜLTHOFF, H. H. 1999. What
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Figure 12: Viewpoint selection for the Octopus and the Stanford Dragon models. Images (a)–(d) show viewpoints selected by maximizing
visible saliency, and images (e)–(h) show viewpoints selected by maximizing visible mean curvature. Images (b) and (d) show the saliency,
and images (f) and (h) show the mean curvature. Compared with a curvature-based viewpoint selection method, the saliency-based method
picks a more pleasing view for models with repeated textures such as (a) the octopus but not for (c) the Dragon. Our method for saliency-
guided view selection for the Dragon selects the view from below instead of from the side since the Dragon’s feet have a very high saliency.
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object attributes determine canonical views? Perception 28, 5,
575–599.

CHEN, L., XIE, X., FAN, X., MA, W., ZHANG, H., AND ZHOU,
H. 2003. A visual attention model for adapting images on small
displays. ACM Multimedia Systems Journal 9, 4, 353–364.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2002) 21, 3, 769–776.

FLEISHMAN, S., COHEN-OR, D., AND LISCHINSKI, D. 1999.
Automatic camera placement for image-based modeling. In Pro-
ceedings of the 7th Pacific Conference on Computer Graphics
and Applications (PG 1999), 12–20.



Curvature Extrema



Curvature Extrema



Medial Proximity



Measured Saliency

An Experimental Approach to Predicting Saliency for Simplified Polygonal

Models

Howlett, Hamill, O’Sullivan

Figure 1: The SMI EyeLink eye-tracking device.

Figure 2: Models simplified to 5% LOD using the original (top)
and modified (bottom) simplification approach.

Figure 3: Models simplified to 2% LOD using the original (top)and modi-
fied (bottom) simplification approach.

Figure 4: Results from the saliency experiment (white representing the
greatest number): the total length of fixations on the familiar natural objects.

Figure 5: Results from the saliency experiment (white representing the
greatest number): the duration of the first fixations on the man-made arti-
facts.

Figure 6: Results from the saliency experiment (white representing the
greatest number): the total number of fixations on the unfamiliar objects in
the second set.
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Visual Interest and NPR: an Evaluation and Manifesto

Anthony Santella Doug DeCarlo

Department of Computer Science

Center for Cognitive Science

Rutgers University

Abstract

Using eye tracking, we study the way viewers look at photos and
image based NPR illustrations. Viewers examine the same number
of locations in photos and in NPR images with uniformly high or
low detail. In contrast, viewers are attracted to areas where detail
is locally preserved in meaningfully abstracted images. This ac-
cords with the idea that artists carefully manipulate detail to control
interest and understanding. It also validates the method of mean-
ingful abstraction used in DeCarlo and Santella [2002]. Results
also suggest eye tracking can be a useful tool for evaluation of NPR
systems.

Keywords: abstraction, evaluation, eye tracking, visual perception

1 Introduction

Research in NPR has provided computer graphics with a wealth
of attractive and visually interesting styles. NPR techniques have
also been applied in visualization [Interrante 1996; Gooch et al.
1998; Lum and Ma 2002], and the design of effective diagrams
[Agrawala and Stolte 2001; Agrawala et al. 2003]. In this context,
the argument is often made that NPR can provide a more compact
and easily understood presentation of information. This is plausi-
ble. Artists often carefully craft their imagery for easy understand-
ing [Zeki 1999], and there are general rules of visual design [Tufte
1990] that can be realized by a NPR system. There has been, how-
ever, relatively little quantitative evaluation of these claims.

In a purely entertainment or artistic context, evaluation may not
be necessary. When an artist has near complete control over out-
put [Haeberli 1990; Curtis et al. 1997; Kalnins et al. 2002], poor
results are simply bad art. Characterizing bad art might be a gen-
uinely fascinating topic of research, but in practice you know it
when you see it. However, in visualizations, when a computer has
significant control, this is an engineering concern. Design decisions
about presenting information must be made on the basis of empiri-
cal evidence of users’ perceptions. General knowledge of cognition
can guide the design process [Agrawala and Stolte 2001], but there
is still a need to evaluate the final system.
In this work, we evaluate the effectiveness of our image based

NPR system [DeCarlo and Santella 2002]. It is not aimed at vi-
sualization, but is motivated by the use of meaningful abstraction
(directed removal of detail) in crafting artistic imagery, and so has

Figure 1: Image abstracted via eye tracking. Notice how detail has
been removed in the background while the license plate (which the
original viewer read) remains clear. Our findings show that later
viewers look at these high detail areas.

similar goals. Eye movements over imagery are directed in a mean-
ingful and economical manner, and are tightly linked to cognition
(Section 2.2). Because of this, they can provide evidence for evalu-
ation.

Our aims are to:

• Present a method of evaluation new to NPR (Section 3)—one
based on tracking viewers’ eye movements.

• Use this method to provide quantitative validation for our sys-
tem (Section 5) as well as interesting new insights (Section 6).

• Explain why this methodology is widely applicable in NPR,
even when the NPR system itself does not use eye tracking.

2 Background and Related Work

2.1 Evaluation of NPR

Prior methodologies used to evaluate NPR fall into one of two cate-
gories. The first method polls a representative number of users, col-
lecting their opinions to find out how they respond to the system.
Schumann et al. [1996] polled architects for their impressions of
sketchy and traditional CAD renderings, and based on the results,
argued for the suitability of sketchy renderings for conveying the
impression of tentative or preliminary plans. Similarly, Agrawala
and Stolte [2001] demonstrate the effectiveness of their map design
system using feedback from real users.

The second approach measures users’ performance at specific
tasks as they use a system (or its output). When the task depends

1
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Photo High Detail Low Detail

Detail Points: Salience (black), Eye Tracking (white) Salience Eye Tracking

Figure 2: Example Stimuli

information about how viewers process images.

3 Experiment

3.1 Stimuli

The images used in this experiment were 50 photographs, and four
NPR renderings of each photo for a total of 250 images and five
conditions. Most photos were taken from an on-line database1.
Photos spanned a broad range of scenes. Images that could not be
processed successfully were avoided, such as blurry or heavily tex-
tured scenes. Prominent human faces were also excluded, although
human figures were present in a number of the images. All NPR
images were generated using the method of DeCarlo and Santella
[2002]. This method can make local decisions about the amount
of detail to include using a model of contrast sensitivity. The four
renderings differed in how these decisions were made.

The five conditions are pictured in Figure 2, they are:

Photo: This is the unmodified photograph.

High Detail: A low global threshold on contrast ensures that
most detail is retained, removing primarily areas of low contrast
texture and shading.

Low Detail: A high contrast threshold is used, removing most
detail throughout the image. The resulting image is drastically sim-
plified but still for the most part recognizable.

Eye Tracking: Detail is modulated as in [DeCarlo and San-
tella 2002], using a prior record of a viewer’s eye movements over
the image. Detail is preserved in locations the original viewer ex-
amined (we call these locations detail points) and removed else-
where. The eye tracking data was recorded from a single subject
who viewed each image for five seconds (and was instructed to sim-
ply look at the image).

Salience Map: Detail is modulated in the same manner as
eye tracking, but the detail points are selected automatically by a

1http://philip.greenspun.com

salience map algorithm [Itti et al. 1998]2. This method uses filter
responses and other techniques to select locations of potential in-
terest based on local image structure. The algorithm has a model of
the passage of time. So, like fixations, each point has an associated
duration. Five seconds worth of detail points were created. The lo-
cations viewed by people and chosen by the salience algorithm can
be similar in some cases, but in general result in renderings with
noticeably different distributions of detail.

This set of conditions represents a systematic manipulation of an
image. The effects of NPR style, detail, and abstraction are sepa-
rated. Local simplification is present in two forms: one based on a
viewer, and the other on purely low level features. Because detail
is controlled by choosing the levels of a hierarchical segmentation,
simplified images consist of a subset of the features in higher detail
images. The eye tracking and salience conditions are rendered liter-
ally using a part of the tree used to render the high detail condition,
while the low detail case includes the least content.

3.2 Subjects

Data was collected from a total of 74 subjects including 50 under-
graduates participating for course credit and 24 subjects (graduate
and undergraduate) participating for pay.

3.3 Physical Setup

All images were displayed on a 19 inch LCD display at 1240 x
960 resolution. The screen was viewed at a distance of approxi-
mately 33.75 inches, subtending a visual angle of approximately
25 degrees horizontally. Eye movements were monitored using
an ISCAN ETL-500 table-top eye-tracker (with a RK-464 pan/tilt
camera). The movement of the pan/tilt unit introduces too much
noise in practice, and it was not active during the experiment. In-
stead, subjects placed their heads in an optometric chin rest to min-
imize head movements.

2available at http://iLab.usc.edu
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Color2Gray: Salience-Preserving Color Removal

Amy A. Gooch Sven C. Olsen Jack Tumblin Bruce Gooch

Northwestern University ∗

Figure 1: A color image (Left) often reveals important visual details missing from a luminance-only image (Middle). Our
Color2Gray algorithm (Right) maps visible color changes to grayscale changes. Image: Impressionist Sunrise by Claude
Monet, courtesy of Artcyclopedia.com.

Abstract

Visually important image features often disappear when
color images are converted to grayscale. The algorithm in-
troduced here reduces such losses by attempting to preserve
the salient features of the color image. The Color2Gray algo-
rithm is a 3-step process: 1) convert RGB inputs to a percep-
tually uniform CIE L∗a∗b∗ color space, 2) use chrominance
and luminance differences to create grayscale target differ-
ences between nearby image pixels, and 3) solve an optimiza-
tion problem designed to selectively modulate the grayscale
representation as a function of the chroma variation of the
source image. The Color2Gray results offer viewers salient
information missing from previous grayscale image creation
methods.

CR Categories: I.4.3 [Image Processing and Com-
puter Vision]: Enhancement—Grayscale manipulations
I.4.10 [Image Processing and Computer Vision]: Image
Representations—Multidimensional

Keywords: non-photorealistic, image processing, color
reduction, perceptually-based rendering

∗http://www.color2gray.info

Figure 2: Isoluminant changes are not preserved with tradi-
tional color to grayscale conversion. Converting an image of
a reddish square whose luminance matches that of the blue
background (Left) to grayscale (Middle) results in a feature-
less gray image. The Color2Gray algorithm incorporates
chrominance changes (Right).

1 Introduction

If digital images are regarded solely as an optical record,
then a grayscale image only needs to record light intensities
using a flat spectral response. Current color to grayscale
conversions already meet this goal. However, as viewers,
we often expect a more ambitious result: we want digital
images to preserve a meaningful visual experience, even in
grayscale. We are less concerned with the accuracy of light
intensities and more concerned with the preservation of vi-
sual cues that help us detect the most important, or salient,
scene features. Accordingly, a black-and-white line drawing
is sometimes far more expressive than a color photograph,
and a garish cartoon-shaded rendering can often make im-
portant features, such as the shape, position, and reflectance
of an object, more apparent.

Color documents printed in grayscale are often indecipher-
able. Figures and graphs in papers with saturated colors
look good printed in color, but when printed in grayscale,
a “red line” may appear to be the same shade of gray as a
“green line”. Grayscale mappings of color images that are
constructed solely by approximating spectral uniformity are
often woefully inadequate because isoluminant visual cues
signaled only by chromatic differences are lost [Livingstone
2002], such as the reflection of the sun in Figure 1.
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set of presimplified versions of an object and simply
decide which one to display at any point. This is a sim-
ple model to implement, but it means that a large object
occupying an extensive field of view can exist at only
one LOD. Using a view-dependent system, the resolu-
tion across an object can vary, and the use of peripher-
al optimizations can provide a greater benefit.

Approach
I’ve developed a view-dependent LOD system for

rendering dense terrain meshes that uses the percep-

tual model described in Equation 5. This system ren-
ders the terrain at each frame by beginning with a sin-
gle polygon that extends across the whole area. If the
perceptual model determines that this polygon is per-
ceptible to the user, I break the polygon into four quad-
rants and recursively check the visibility of each of
these smaller polygons. This results in a quadtree-
based simplification of the terrain that adds further
detail only where it could be perceptible to the user.

We can evaluate a polygon’s visibility by projecting
each of its four vertices into screen coordinates and then
transforming these into an extent in units of degrees
using the display’s user-specified field of view. If these
projected coordinates lie outside of the viewport, then
we can optionally ignore the polygon, supporting view-
port culling. The peripheral extent is then calculated con-
servatively by finding the shortest angular distance
between the focus point and each edge of the polygon
and then taking the smallest of these distances. The sys-
tem approximates velocity using the angular distance
that the polygon traveled since the previous frame and
the time since that calculation was last made, averaging
this over several frames to smooth out the calculation.
Using the peripheral extent value (deg), velocity (deg/s),
and average size or angular extent of one pixel (deg), we
calculate the largest size of stimulus that should be per-
ceptible to the user. If the computed extent of the poly-
gon is smaller than this size, we can assume the polygon
is imperceptible and needs no further refinement.
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