
C urves are perhaps the most versatile of
modeling primitives in computer graph-

ics. They define a rough structure for many surface-
generation algorithms and are often fit to meaningful
surface features for further shape modeling. Deformable
objects such as hair and fur are simulated on finite ele-
ment curve discretizations. Motion paths for planning
and animation applications are tied to underlying
curves. The internal structure of tubular objects, such
as the laces in Figure 1a, are typically built and manip-
ulated using an underlying curve. Artistic strokes for

rendering are often defined in terms
of an underlying implicit form that
follows a curve; Figures 1b and 1c
show two real-world examples.
Despite this versatility, existing
curve models are difficult to work
with in applications that require pre-
cise control, and where interpene-
tration with complex objects is
objectionable (see Figure 1b). Here,
we describe cords, geometric curve
primitives designed to appropriate-
ly contact geometry while providing
a user with precise control.

Design criteria for cords
For creative design and animation applications, we

have identified three primary criteria for algorithmic
models of curves in contact. First, the curves should
appropriately contact geometry, as object interpenetra-
tion can be quite objectionable from both user-control
and aesthetic standpoints. Second, users should have
precise control over the curve’s shape, as this is often a
creative necessity. Third, as animation is an important
application for curves in contact with geometry, the
curve shape should be continuous with respect to con-
trol properties.

Current algorithms for curve modeling do not meet
all these requirements. Parametric curves specified with
control points, by far the most common curve model,
offer precise shape and continuity control. However,
users must explicitly model any interpenetration con-
straints. This is a particularly arduous task in complex

scenes, as users must create a large number of control
points. If objects or the curve are in motion, contact rela-
tionships can change, and the number of control points
must be sufficient to model all contacts. Simulation
models provide collision response to avoid geometric
interpenetration. However, they are notoriously diffi-
cult to control, with small changes to the control para-
meters often resulting in large, unpredictable changes to
the resulting motion. Variational models can incorpo-
rate various types of constraints, but they do not guar-
antee continuity of shape with respect to the constraints.
Such models are more appropriate for applications
where exact geometric requirements take precedence
over precise control (see Figure 1d).

In our approach, a user creates an arbitrary paramet-
ric curve—the guide curve—to specify a rough approx-
imation of a cord’s shape, relative to scene geometry.
The cord is then generated using this curve to guide it
through the scene. The appearance properties and ray
intersection tests are incorporated into an efficient local
growth algorithm, ensuring appropriate object contact
while providing a desired shape. Rather than generate
the entire cord with a global algorithm, which can lead
to many ray intersection tests, we locally add sections
to the cord. Figure 2 illustrates an example guide curve
positioned among geometric primitives and the result-
ing cord.

The appearance properties of cords lets users modify
either shape or length. The stiffness and slack proper-
ties affect the cord shape. Stiffness models the cord’s
resistance to bending, similarly to wire. Slack causes a
cord to bend into local surface concavities where the
cord would otherwise wrap over the concavities. The
length and elasticity properties modify only the cord’s
length. Length represents the length of a nonstretch-
able cord, a required feature for many practical appli-
cations. Elasticity allows the cord to partially stretch or
shrink along its length to meet the guide curve’s end-
points. Figure 3 illustrates how these properties alter
the cord’s shape. Some of these properties, while anal-
ogous to physical material properties, do not have the
same definitions that apply under physical simulation.
We have formulated our definitions instead to provide
precise control of visual appearance.

Feature Article

The authors present a

geometric curve primitive,

known as a cord, which

allows for interactive

modeling of curves that

contact complex geometry.

Patrick Coleman and Karan Singh
University of Toronto

Cords: Geometric
Curve Primitives for
Modeling Contact

72 May/June 2006 Published by the IEEE Computer Society 0272-1716/06/$20.00 © 2006 IEEE

By presenting design criteria and algorithms for
contact-constrained curve modeling for creative appli-
cations, we

! present a geometric approach to modeling curves in
contact with complex scenes that offers users precise
control;

! describe algorithms for generating such curves in
terms of user properties that allow them to specify a
rough path through a scene and visual appearance
characteristics;

! present an analytic form for stiff cords that allows for
decoupling of rendering resolution from generation
resolution; and

! describe an approach to guarantee higher-order tran-
sitions between regions of bending and linear regions
of stiff cords in static scenes, which can be important
for design applications.

Cord generation
Given a guide curve and scene geometry, we can gen-

erate cords using one of three algorithms, each a gen-
eralization capable of capturing a wider variety of
shapes. Nonstiff cords are made up of a sequence of lin-
ear segments and have the appearance of string. Stiff
cords introduce regions of bending, which model the
bending resistance of some materials such as wire. Slack
cords generalize stiff cords, causing the regions of bend-
ing to locally fall into surface concavities. We can gener-
alize any one of these forms to have length constraints

and elasticity qualities. As slack cords generalize stiff
cords and stiff cords generalize nonstiff cords, an imple-
mentation of slack cords with elasticity is capable of rep-
resenting all forms.

The guide curve, appearance properties, and the
geometry the cord should contact all determine a cord’s
shape. Cords are inherently directional, as they are gen-
erated with local growth algorithms that progressively
look forward along the guide curve. As such, we require
the guide curve to have a parametric form f(t). In prac-
tice, we use nonuniform cubic B-splines, as they provide
local control and allow for endpoint interpolation, thus
being popular for shape modeling. However, any para-
metric guide curve could be used. We precompute a
parametric discretization of the guide curve fi = f(i∆t)
such that i = {0, …, N} and ∆t = (tmax − tmin)/(N − 1). In

IEEE Computer Graphics and Applications 73

1 Examples of curve modeling applications appropriate for cords. (a) A 3D curve underlying a shoelace model. (b) Wire sculpture by
Jill Abrams. (© 2002 Dover Abrams.) (c) M.C. Escher’s Bond of Union. (© 2006 The M.C. Escher Company B.V., the Netherlands. All rights
reserved. Used by permission; http://www.mcescher.com.) (d) K12 graph embedded in a genus 6 surface. (© 2004 Carlo Sequin.)

2 Example guide curve (blue) and cord (red) in a 3D scene.

(a) (b) (c) (d)

(a) (b)

3 (a) Fixed-length, nonstiff cords will wrap around geometry with the appearance of string. (b) Adding stiffness causes the cord to
resist bending, modeling the appearance of wire. (c) Elasticity can be increased to allow for stretching toward the guide curve’s end-
point. (d) Moving this guide curve endpoint then causes the cord to stretch further toward it.

(a) (b) (c) (d)

the following discussions, we assume the parameteri-
zation t has been remapped to [0, 1].

Nonstiff cords
Nonstiff cords, which have the shape of string, are

made up of a series of linear segments that wrap around
objects while following the guide curve. We thus con-
struct nonstiff cords by searching forward toward guide
curve samples fi and locating rays to the guide curve that
graze geometry. We append a linear segment whenev-
er such a grazing point is found.

We first initialize the cord to the starting point of the
guide curve, f0. We then repeatedly consider subsequent
guide curve samples fi and cast rays from the cord’s cur-
rent endpoint to these sample points, until we find an
intersection (see Figure 4). We then look for a grazing
point along a ray toward the guide curve at point f(t),
such that a ray toward f(t−), has no intersection and a
ray toward f(t+) does have an intersection. We know that
the ray to the prior sample fi-1 has no intersection and

that the ray to the sample fi does. We isolate the graz-
ing intersection point by using interval halving on the
corresponding guide curve parameter values.

When we isolate a grazing point to within some user-
adjustable numerical tolerance (typically 0.01 cm for
scenes of dimension 10 cm × 10 cm × 10 cm), we append
a segment from the cord’s endpoint to this grazing point.
The grazing point, offset by some small ray bias to avoid
self-intersection, then becomes the new cord endpoint.
Note, the offset must not be near scene geometry to
avoid self-intersection. Given the rays to the bounding
samples ri-1 and ri and the ray rt along which we found
the grazing point, we offset along (ri × ri-1) × rt, which
will have a direction away from the surface at the grazed
point.

We then know that a ray moving toward the guide
curve point that we isolated at a halfway interval will
not intersect (due to the ray bias) and will continue
searching with the subsequent guide curve sample. If at
any point we find multiple grazing points along one ray,

Feature Article

74 May/June 2006

Related Work
Curve and surface design is one of the oldest and most

mature areas of computer graphics. Most relevant work in
geometric design and deformation deals with the modeling
of scene geometry to conform to the shape of specified
parametric curves. Variational models allow users to specify
constraints such as positions and tangents and solve a
constrained optimization problem to generate a curve or
surface.1 Surfaces can also be modeled using constraints
expressed as energy functions, and gradient descent in
parameter space can be used to find shapes that best meet
the constraints.2 Curves can be generated on surfaces to
meet certain geometric criteria,3 and curve networks can be
retargeted to surface manifolds.4 Parametric curves can also
be generated to meet length constraints.5

Simulation models, introduced by Terzopoulos and
colleagues,6 are set up as networks of point masses
connected by springs for finite element or finite difference
simulation. Direct embedding of physical properties
increases realism for modeling applications.7 Most hair
simulation models are also built upon finite element
techniques.8 Particular to real-world curves, Pai
incorporated a thin-solid model to increase accuracy for the
surgical simulation of threads.9 Empirical simulation has also
been investigated to reduce computational overhead.10

Constraints on physical behavior can be applied to
simulation models through optimization.11 Geometric
constraints among rigid bodies can be enforced through
the use of inverse dynamics.12 Appropriate object-to-object
contact under physical forces can be ensured by tracking
contact points and finding a stable configuration with
respect to the forces.13

Barzel provides a unique approach to curve modeling
for animation production. His model achieves the
appearance of dynamic motion while providing precise
user control.14 He models dynamic motion as
parameterized changes in shape that can be keyframe
animated, avoiding the complexities of simulation while

providing believable motion. In contrast, we provide
precise control of shape in contact rather than shape
in dynamic-like motion.

References
1. W. Welch and A. Witkin, “Variational Surface Modeling,” Proc.

Siggraph, ACM Press, 1992, pp. 157-166.
2. A. Witkin, K. Fleischer, and A. Barr, “Energy Constraints on Para-

meterized Models,” Proc. Siggraph, ACM Press, 1987, pp. 225-232.
3. V. Surazhsky et al., “Fast Exact and Approximate Geodesics on

Meshes,” ACM Trans. Graphics, vol. 24, no. 3, 2005, pp. 553-560.
4. K. Singh, H.K. Pedersen, and D Krishnamurthy, “Feature Based

Retargeting of Parameterized Geometry,” Proc. Geometric Mod-
eling and Processing 2004, IEEE CS Press, 2004, p. 163.

5. E. Fiume, “Isometric Piecewise Polynomial Curves,” Computer
Graphics Forum, vol. 14, no. 1, 1995, pp. 47-58.

6. D. Terzopoulos et al., “Elastically Deformable Models,” Proc. Sig-
graph 87, ACM Press, 1987, pp. 205-214.

7. D. Terzopoulos and H. Qin, “Dynamic NURBS with Geometric
Constraints for Interactive Sculpting,” ACM Trans. Graphics, vol.
13, no. 2, 1994, pp. 103-136.

8. N. Magnenat-Thalmann, S. Hadap, and P. Kalra, “State of the Art
in Hair Simulation,” Proc. Int’l Workshop Human Modeling and Ani-
mation, Korea Computer Graphics Soc., 2000, pp. 3-9.

9. D.K. Pai, “Strands: Interactive Simulation of Thin Solids Using
Cosserat Models,” Proc. Eurographics, Eurographics Assoc., 2002.

10. J. Brown, J.-C. Latombe, and K. Montgomery, “Real-Time Knot
Tying Simulation,” The Visual Computer, vol. 20, nos. 2-3, 2004,
pp. 165-179.

11. J.C. Platt and A.H. Barr, “Constraints Methods for Flexible Mod-
els,” Proc. Siggraph, ACM Press, 1988, pp. 279-288.

12. R. Barzel and A.H. Barr, “A Modeling System Based on Dynamic
Constraint,” Proc. Siggraph, ACM Press, 1988, pp. 179-188.

13. J. M. Snyder, “An Interactive Tool for Placing Curved Surfaces With-
out Interpenetration,” Proc. Siggraph, ACM Press, 1995, pp. 209-218.

14. R. Barzel, “Faking Dynamics of Ropes and Springs,” IEEE Comput-
er Graphics and Applications, vol. 17, no. 3, 1997, pp. 31-39.

we consider only the furthest point, as this lets us
append a longer segment to avoid redundant interme-
diate points. We also ignore grazing points beyond the
guide curve, as cords that grow to such points are not
consistent with the wrapping metaphor. When the last
sample fN is reached and does not lead to an intersec-
tion, we append a linear segment to this endpoint.

Users should avoid positioning the guide curve so that
it passes through geometry, as this creates an ambigui-
ty about how a cord should wrap around that geometry.
Should users choose to do this, we alert them to the
error and grow the cord through the shape by append-
ing a segment to each intersection of the guide curve
with the geometry.

Stiff cords
Stiff cords provide an extension to nonstiff cords so

that we can model resistance to bending. Stiff cords
alternate between the linear regions of nonstiff cords
and regions of bending, in which the cord gradually
curves toward a new grazing point. Users work with a
stiffness parameter, such that when stiffness equals zero,
bending regions have zero length and the cord appears
nonstiff. When stiffness equals one, the cord becomes
an approximation to the guide curve that approaches it
in shape as the sample count approaches infinity. If the
guide curve is polynomial, we can express each bend-
ing region as an analytic function of the guide curve con-
trol points. This lets us render them using common
curve rendering algorithms, independently of the guide
curve discretization.

To generate stiff cords, rather than ignoring failed
intersection tests, we append small linear segments for
every candidate ray toward the initial guide curve sam-
ple set. Let s = stiffness/N be a proportional step size,
where N is the number of guide curve samples. This step
size is not arbitrary; it specifically leads to the analytic
form that we will derive later in this article. Whenever
a ray is cast toward one of the initial guide curve sam-
ples, we still locate a grazing intersection and append a
linear segment if it intersects. If it does not, we compute
a point p′ = s(fi − p), where p is the cord’s current end-
point. Then we append a new segment from p to p′, set-
ting p′ as the new cord endpoint. We illustrate this
process in Figure 5. Usually, many small linear segments

will be appended in sequence before appending a (typ-
ically longer) linear segment to a grazing point. Each
such sequence is one bending region.

Slack cords
Slack cords are extended stiff cords capable of falling

into surface concavities (see Figure 6a). Users can adjust
this property to cause cords to fall onto a surface when
necessary, such as when controlling the shape of curves

IEEE Computer Graphics and Applications 75

4 The simplest type of cords, nonstiff cords, have the
appearance of string. Linear segments (green) are
appended toward points that graze geometry; these
grazing points are located by repeatedly casting rays
(black) to the guide curve (blue).

5 Stiff cords, which are a generalization of nonstiff
cords, can model materials that resist bending, such as
wire. To construct stiff cords, we always append a short
linear segment along rays used for intersection testing.

p

s

p

p’

r

p

θ

6 (a) Slack cords generalize stiff cords by allowing them to fall into local surface concavities. (b) Each short linear
segment (toward ps) is rotated beyond a ray that reaches the next grazing intersection (pr), resulting in the seg-
ment being appended to p′.

(a) (b)

on surfaces. We define a slack property, such that when
slack is zero, the cord otherwise behaves like a stiff cord.
If slack is one, the cord will have a sagging appearance.
If slack is sufficiently greater than one, it will generate
a cord that lies close to the surface in regions of local
concavity. If stiffness is zero, slack has no effect on the
cord’s shape.

We modify the stiff cord algorithm so that the small
linear segments of bending regions grow in an altogeth-
er different direction. As with stiff cords, we calculate a
proportional step point ps, in the direction of the guide
curve sample (blue in Figure 6b). Additionally, the algo-
rithm finds the next grazing ray (red). We then calcu-
late a step along that ray that is equal in length to the
step toward the guide curve sample (the red point, pr).
We calculate the new cord point p′ as a rotational inter-
polation or extrapolation from ps to pr. The slack para-
meter parameterizes this interpolation, so that if the
angle from ps − p to pr − p is θ, the angle from ps − p to
p′ − p is slack ∗ θ. If p′ should cause the cord to pass
through the surface, it is truncated at the intersection
point.

If slack is sufficiently large, the cord will lie in the con-
vex regions of a surface that it would otherwise wrap
over. Slack is also not appropriate for large, near-closed
concave regions and will not appropriately move to lie
in the surface that is internal to them, as this can be
ambiguous. Instead, the slack cords handle subtle con-
cavities as would appear in a bumpy surface, where user
intent is clear. Regions of bending in slack cords do not
admit an analytic form, as each proportional step incor-
porates ray intersection tests that are often discontinu-
ous with respect to a parameterization.

Length constraints and elasticity
The nonstiff, stiff, and slack cords interpolate both

guide curve endpoints. Often, we want to enforce length
constraints along a curve to model materials with vari-
ous stretching properties. It’s also useful to allow a cord
to stretch or shrink as the guide curve stretches or
shrinks, without necessarily interpolating its endpoints.
We allow users to modify properties of length and elas-
ticity to accomplish this. Rather than physically model

elasticity and its effect on the cord’s shape, which would
be difficult to control, we use elasticity to stretch or
shrink the cord only along its length. This decoupling
allows users to more easily animate cords in a keyframe
environment, one of our target applications. We also
model elasticity so that when its value is zero, the cord
has a fixed length equal to the length property. When
elasticity is one, these properties have no effect on the
appearance, and the cord interpolates both endpoints
of the guide curve. We constrain elasticity to have a
value in [0, 1].

We first generate a cord using any of the previously
described algorithms; let its length be lc. We then compute
a target length lt = elasticity ∗ lc + (1 − elasticity) ∗ length,
an interpolation between the length of a cord interpolat-
ing both endpoints and the length appearance property.
If lt < lc, we simply truncate the cord to the target length.
If lt > lc, we extend the cord along its end tangent, adding
a linear segment of length lt − lc. This constrains the gen-
erated cord relative to one endpoint of the guide curve.
To constrain to a general position along the guide curve,
we could apply the truncation or extension to both ends of
the cord. Figure 7 illustrates the use of cords with zero
elasticity whose length has been animated.

Analytic extensions
The algorithms we just described generate cords effi-

ciently, are easy to code, and capture the desired design
properties. For stiff cords, however, we can improve
upon these algorithms while generating the same
shapes. First, we generate the bending regions of stiff
cords as sequences of small linear segments. We will
derive an analytic form for these bending regions, which
allows their continuity properties to be expressed in
terms of the guide curve’s continuity properties. Users
can then achieve desired continuity properties by using
an appropriate form for the guide curve. This analytic
form also allows rendering of stiff cords at a resolution
independent of the guide curve discretization. In addi-
tion, for polynomial guide curves specified with control
points or other geometric constraints, we can analyti-
cally compute the bending regions using only the guide
curve control points.

Feature Article

76 May/June 2006

7 Cords were used in the production of the animated film Ryan. Each colored bundle of hair is procedurally gener-
ated from an underlying cord, which was keyframe animated to establish contact relationships with the geometry
of the character’s body. (Images rendered by the authors.)

Stiff cords possess tangent continuity at join points
between bending regions and linear segments. Some
design applications require higher-order continuity at
join points. Here we describe an approach to replacing
the linear regions of nonanimated stiff cords with quin-
tic spans, so that the entire cord is G2 continuous.

These extensions don’t apply to slack cords, as slack
cords can have arbitrary discontinuities due to the incor-
poration of the grazing ray direction into every cord
segment.

Stiff cords: regions of bending
Regions of bending for nonslack cords converge to an

analytic form as the number of guide curve samples
approaches infinity. Given an analytic form, if the guide
curve is a polynomial specified with control points, we
can express the regions of bending in terms of the guide
curve control points. Without loss of generality, let the
start of a bending region be some point p0. We can think
of this point as generated by some ray cast to a guide
curve point f(t0). Similarly, the last point in the bend-
ing region is generated by a ray to f(t1). Without loss of
generality, let t0 = 0 and t1 = 1.

Recall, from the definition of stiffness in the “Stiff
cords” section, that s = stiffness ∆t. We can write a sin-
gle step of the generation algorithm in the form

pi = pi-1 + a∆t (f (i∆t) − pi-1)

using a as shorthand notation for stiffness. Dividing by
∆t and taking the limit as ∆t → 0, we arrive at the fol-
lowing differential equation involving the bending
region g(t):

(1)

This is a first-order differential equation, and given the
initial condition g(0) = p0, it has the solution

(2)

Equation 1 also illustrates why we chose the particu-
lar stiffness value, as it’s equivalent to an approximate
solution using Euler’s method. Figure 8 illustrates this
empirically. As the number of guide curve samples
increases, the discretization approaches the underlying
analytic form of the bending region.

For each bending region, we still need the two points
on the guide curve that map to the first and last point of
the bending region, as well as the first point p0. To do
this, we use the generative algorithm from the “Stiff
cords” section to identify these points for each bending
region. We can directly use Equation 2 by remapping
each bending region parameter range to [0, 1].

If the guide curve is a polynomial, we can express each
bending region of a stiff cord in terms of its control
points (or other constraints). Consider the common
matrix decomposition of a polynomial spline with para-
meterization x, where x is the power basis, B is the basis
matrix of the particular curve form, and Q is a matrix of
constraints (for example, control point coefficients):

f(x) = xBQ

Let k(x) denote the integral in Equation 2, without
bounds:

If we plug the matrix form of f(x) into k(x), we can eval-
uate the indefinite integral, resulting in the following
form:

For an order n polynomial guide curve, A is an n × n
upper triangular matrix with the following entries:

where i, j ∈ [1, n]. Inserting this form of k(x) into Equa-
tion 2, we can evaluate the definite integral and achieve
the following form for the bending region, with t being
a power basis in terms of t:

g(t) = e−at (p0 − [1 0 0 … 0]ABQ) + tABQ

Higher-order continuity for static stiff cords
A stiff cord’s bending regions are guaranteed to have

the same continuity properties of the guide curve, as we

A i j

a
j
i

i j

ij

j

= >

−

<=

−

0

1
1

!
!

k xx
a

eax() = 1
ABQ

k fx x e dxax() = ()∫

g p ft e ae x e dxat at
t

ax() = + ()− − ∫0 0

d
dt

a t t
g

f g= ()− ()()

IEEE Computer Graphics and Applications 77

8 As the number of guide curve samples increases, the
generated cord with positive stiffness approaches the
corresponding limit curve, made up of a region of
bending and a linear segment: (a) 10 steps and
(b) 1,000 steps. The convex hull of the guide curve is
dark gray, and the cord is red. Each blue dot represents
a point on the generated cord.

(a)

(b)

can express these regions as an integral operator over
the corresponding region of a guide curve (see Equa-
tion 2). At join points between bending regions and lin-
ear segments, G1 continuity is guaranteed, as the
adjacent small linear segment making up the end of the
bending region becomes parallel with the linear seg-
ment as the number of samples approaches infinity. For
cords defined by piecewise polynomial guide curves, the
cord’s analytic form allows us to ensure higher-order
continuity between connected regions, to G2 or higher.
Figure 9 illustrates the approach.

On the left of Figure 9, a bending region of the cord is
joined to a linear segment grown to the sphere on the
right. By stepping back from the end points of the con-
necting line segment in either direction by a small value,
we can analytically evaluate cord position, tangent, and
curvature. We can similarly evaluate these attributes for
curve points on the wrapped geometry. Then we can fit
a quintic spline to match the tangent and curvature val-
ues at both end points. This construction makes a limit-
ed local change along the connecting linear segments,
but it does not change the cord’s overall shape. For the
iterative cord generation algorithm, the step size can
limit the practical ability to take this approach. This
approach can also be discontinuous for animated cords,
however, as pairs of bending regions and linear segments
can appear or disappear as contact relationships change.

Applications and results
We implemented cords as a plug-in to Autodesk’s

Maya modeling and animation system. We typically use
nonuniform cubic B-splines as guide curves for their
ease of use in shape modeling and keyframe animation.
To calculate ray intersections, we use the appropriate
API for each geometry type, along with the built-in
acceleration structures. Users can animate the guide
curve, appearance properties, and geometry, and
Maya’s computational architecture lets us update the
cord both interactively and as other keyframe anima-
tion plays back. If many complex geometric primitives
are used, users can temporarily reduce the guide curve
sample rate to avoid objectionable computational lag.

Our notation in the “Cord generation” section
assumes all shape properties have constant values. In
practice, we allow some to vary along the length of the
curve, and users can use a painting interface to specify
how shape properties change along the length of the
guide curve. The cord’s parameterization is directly
mapped from the guide curve, as formally expressed in
Equation 2.

Wide cords and thick cords
Wide cords are a variation of cords used to model

primitives that can be represented as long 2D manifolds,
such as flat ribbons or straps. Thick cords can represent
objects such as thick tubes or ropes. In these cases, we
can extend the cord model to have more width or thick-
ness, which might vary along the curve’s length, as well
as a local orientation that varies along the cord. Orien-
tation is expressed as a vector perpendicular to the curve
tangent, which defines the surface normal of a flat cord
or the radial orientation of a thick cord. For flat surfaces,
we define this normal vector so that the cord surface lies
flat on the geometric surface. The Frenet frame defini-
tion of a curve normal has singularities and is not well
suited for this task. We use the geometric surface nor-
mal to define the orientation for contact points and
interpolate this orientation vector for other segments of
the cord, linearly between neighboring values. Users
can specify orientation vectors at the endpoints. Figure
10a demonstrates this technique.

In addition, constraining wide cords against locally
convex geometry or thick cords against any geometry
requires that the intersection test be replaced with a
proximity test in the cord-generation algorithm. The
geometry that these cords create is fed back into
the algorithm as growth continues to avoid self-
intersection. Figure 10b shows an example of a thick
cord with self-overlap.

Artistic modeling
We can define artistic primitives such as paint strokes

or procedural geometric curves with an underlying
curve primitive.1 Existing software packages allow such
artistic primitives to be defined on 2D canvases or
embedded within parametric 3D surfaces. These tech-
niques can be extremely limiting, as general 3D curves
are difficult to manipulate by hand. Cords can be used
to easily specify the locations of such curves in space or
about arbitrary geometry.

Feature Article

78 May/June 2006

9 Static cords used for design can be altered to ensure
G2 continuity. Each linear segment is replaced with a
quintic curve (dark blue). To do this, we move the
control points where the regions join (light blue) and
set the new control points to ensure the regions join
with the desired curvature continuity.

10 (a) A wide cord used to model ribbon. (b) Thick cords wrapped around
geometry.

(a) (b)

Motivated by Figure 1d, Figure 11 illustrates the use of
cords to interactively embed a nonplanar six-vertex clique
(the K6 graph) on a torus. Emphasis on the curve layout
in this example is based on visual aesthetics under direct
artist control, rather than using a procedural approach
that attempts to follow geodesic paths on the geometry.
The curves on the inside of the torus wrap around regions
of concavity, where an element of slackness in the cord
can help ensure that the generated curve lies on the given
geometry. This example illustrates how artists and design-
ers can benefit from having precise control over curves in
geometric contact to create expressive shapes.

Cords were also extensively used in the production of
the 2004 Oscar-winning animated film Ryan (directed
by Chris Landreth). Without the ability to interactively
specify a curve that maintains continuity in time with a
simple interface, various sequences would have never
been possible given the time constraints of production.

Future work
Cords used in conjunction with physical simulation

models can leverage the advantages that each provides;
this is the subject of ongoing work. Another area of inves-
tigation is nondirectional cords in which the direction of
guide curve parameterization has no effect on the cord
shape. Straightforward interpolation of cords grown in
each direction—a commonly suggested approach—does
not maintain contact relationships correctly. The use of
cords for curve design in surfaces, shape modeling of flat
and tubular structures, and as an animation tool for a
number of shots in the animated film Ryan, has demon-
strated that cords are a compelling curve primitive for use
in complex production environments. !

Acknowledgments
We thank Chris Landreth and the Ryan production

team for pointing out the exceptional difficulty of mod-
eling curves in complex, changing-contact relationships
and for creating excellent examples demonstrating the
capabilities of cords. The National Film Board of Cana-
da, Copper Heart Entertainment, and Seneca College
supported the production of Ryan. The Mathematics of

Information Technology and Complex Systems Network
provided research funding, Tim Hanson helped produce
the lamp images, Keith Conrad helped derive the analyt-
ic form of stiff cords, and Joe Laszlo provided editorial
feedback. Alias and the Ryan production team provided
a number of models, and we rendered images with soft-
ware donated by Alias and Pixar Animation Studios.

Reference
1. A. Hertzmann, “Curve Analogies,” Proc. 13th Eurograph-

ics Workshop Rendering, Eurographics Assoc., 2002, pp.
233-246.

Patrick Coleman is a PhD student
at the University of Toronto. His
research interests include algorithms
for editing character motion, charac-
ter construction, and animation inter-
faces. Coleman has a BS in computer
science and engineering from The
Ohio State University and an MS in

computer science from the University of Toronto. Contact
him at patrick@dgp.toronto.edu.

Karan Singh is an associate profes-
sor of computer science at the Univer-
sity of Toronto. His research interests
include artist-driven interactive
graphics, spanning character anima-
tion, anatomic modeling, and geomet-
ric shape design. Singh has a BTech
from the Indian Institute of Technolo-

gy, Madras, and an MS and PhD in computer science from
The Ohio State University. Contact him at karan@
dgp.toronto.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://www.
computer.org/publications/dlib.

IEEE Computer Graphics and Applications 79

11 (a) Tiffany lamp K6 graph. (b) Guide curves have been positioned by an artist to generate (c) aesthetically
pleasing cords on the surface of a torus, in the form of a K6 graph embedding. We use the cords to partition the
torus and (c) model geometry connecting the torus partitions.

(a) (b) (c)

