
Pseudodepth in the Z-buffer
CSC 418 Tutorial
Friday February 13, 2004

Recall the Z-buffer algorithm:

 for each polygon
 for each pixel indexed by i, j
 P point on polygon at this pixel
 if (depth(P) < depth[i][j])
 depth[i][j] depth(P)
 color[i][j[color(P)
 end if
 end if
 end for

Assume right-handed eye space.
The point P projected onto the image plane (i.e. near plane) is
 Q = {-(fPx)/Pz, -(fPy)/Pz}

The depth is

depth(P) = sqrt(Px
2, Py

2, Pz 2)

This is an expensive calculation for every fragment (what is a fragment?), so we replace
it with an easier calculation, using “psedudodepth” (δ).

What about just using Pz, the distance from the plane perpendicular to the view vector
through the eye?
 If we keep a consistent denominator among Qx, Qy, and Qδ (pseudodepth), we
can take advantage of homogeneous coordinates to encode perspective projection as a
4x4 matrix.

The goals for pseudodepth:
 The denominator should be - Pz

 The numerator should be easy to compute, i.e. a linear function of Pz
The pseudodepth should be -1 for points on the near plane. Why?
The pseudodepth should be 1 for points on the far plane. Why?

So pseudodepth(-Pz) = (a Pz + b)/(- Pz) for some a, b
Given goals, 3, 4, solve for a, b:
 a = -(F + f) / (F – f)
 b = -2Ff / (F – f)
Note the following:
 Pseudodepth is a nonlinear function of Pz.
 Points closer to the near plane have the highest pseudodepth resolution.

 Points closer to the far plane have the lowest pseudodepth resolution.

Resulting perspective transformation matrix:
 Q = | f 0 0 0 | * P = | fPx |
 | 0 f 0 0 | | fPy |
 | 0 0 a b | | aPz + b |
 | 0 0 -1 0 | | -Pz |

This still needs to take into account remapping Px and Py to the normalized view volume,
but this is sufficient for the remaining discussion.
What is Q after perspective divide? Denote it Q = [Qx, Qy, Qδ, 1]

Using pseudodepth during scan conversion:

When scan converting a polygon, the linear nature of the pseudodepth numerator can be
used to avoid calculating the perspective transformation of each fragment.

As a single example, consider the scan conversion code for a horizontal line (P0, P1) in
eye space and its perspective transformation (Q0, Q1):

The eye space line is parameterized by s, and the perspective transformation is
parameterized by t.

Here is scan conversion code that includes an incremental update of the pseudodepth δ:

 δ Q0δ
 deltaδ (Q1z – Q0z) / (Q1x – Q0x)
 for x Q0x to Q1x
 δ += deltaδ
 if (δ < depth(x, y))
 update depth and color buffers
 end if
 end for

This speed-up extends straightforwardly for nonhorizontal lines, and also to polygons as
with normal scan conversion.

Why does this work?

Assume a = 0, b= 1, f = 1
Consider t in [0, 1], deltaT = 1/(Q1x – Q0x)
and s in [0, 1], along eye space line
and corresponding incremental steps along δ, as above.

We need to show Qδ(t) is a linear function of t. What is Qδ(t)?
 Qδ(t) = -1/Pz(s) = 1 / (P0z*(1-s) + P1z*s) = 1 / (P0z + s * (P1z – P0z))

What is s? For every point P(s), there is a corresponding projection Q(t). In other
words, for each s there is a corresponding t. However, the correspondence
is complicated—this derivation finds that correspondence.

 Consider the mapping of Q(t) to P(s):
 Qx(t) = - Px(s) / Pz(s); solve for s:

 Qx(t)*P0z – Qx(t)*P0z*s + Qx(t)*P1z*s
 = -P0x + P0x*s – P1x*s

 Qx(t)*P0z + P0x = s* [Qx(t) * P0z – Qx(t) * P1z + P0x – P1x]

 s = (Qx(t)*P0z + P0x) / (Qx(t)*(P0z – P1z) + P0x – P1x)

Going back to the previous expression for Qδ(t):

 Qδ(t) = 1 / {P0z + [Qx(t)*P0z + P0x) / (Qx(t)*(P0z – P1z) + P0x – P1x)]
 * (P1z – P0z)}

 = [Qx(t)*(P0z – P1z) + P0x – P1x] /
 [P0z*(Qx(t)(P0z – P1z) + P0x – P1x) + (Qx(t)*P0z + P0x)*(P1z – P0z)]

 = Qx(t) * (P0z – P1z)/(P0x*(P1z – P0z)) + (P0x-P1x) / (P0x*(P1z-P0z))

Qx(t) is the only term that changes with respect to t, and it is also linear with respect to t,
so Qδ(t) is linear, hence the pseudodepth is linear in image space.

Why not increment Pz, the eye space depth?

Pz is not a linear function of image space. From above, the image space point {Qx, Qy}
is {-fPx/Pz, -fPy/Pz}, a nonlinear relation ship between both Qx and Qy (the scan-
converting domain) and Pz.

Why isn't Z linear in screen-space? Considered a foreshortened view of a
building (or a checkerboard), which has windows along the side. The windows
close by occupy many pixels, the ones far away are tiny. Stepping along
pixels will correspond to small steps in Z for the nearby windows, and large
steps in Z for the faraway windows.

For a triangle a great deal of computation can be saved:
 Incrementally update pDepth along two sides as scan-conversion progresses along
scan lines. Scan convert each scan line between these two sides:

