Pseudodepth in the Z-buffer

CSC 418 Tutorial

Friday February 13, 2004

Recall the Z-buffer algorithm:

```
for each polygon
    for each pixel indexed by \(\mathrm{i}, \mathrm{j}\)
        \(\mathrm{P} \leftarrow\) point on polygon at this pixel
        if \((\operatorname{depth}(\mathrm{P})<\operatorname{depth}[\mathrm{i}][\mathrm{j}])\)
            \(\operatorname{depth}[\mathrm{i}][\mathrm{j}] \leftarrow \operatorname{depth}(\mathrm{P})\)
            color[i][j[ \(\leftarrow \operatorname{color}(\mathrm{P})\)
        end if
    end if
end for
```

Assume right-handed eye space.
The point P projected onto the image plane (i.e. near plane) is

$$
\mathrm{Q}=\left\{-\left(\mathrm{fP}_{\mathrm{x}}\right) / \mathrm{P}_{\mathrm{z}},-\left(\mathrm{fP}_{\mathrm{y}}\right) / \mathrm{P}_{\mathrm{z}}\right\}
$$

The depth is

$$
\operatorname{depth}(\mathrm{P})=\operatorname{sqrt}\left(\mathrm{P}_{\mathrm{x}}^{2}, \mathrm{P}_{\mathrm{y}}^{2}, \mathrm{P}_{\mathrm{z}}^{2}\right)
$$

This is an expensive calculation for every fragment (what is a fragment?), so we replace it with an easier calculation, using "psedudodepth" (δ).

What about just using P_{z}, the distance from the plane perpendicular to the view vector through the eye?

If we keep a consistent denominator among Qx, Qy, and $\mathrm{Q} \delta$ (pseudodepth), we can take advantage of homogeneous coordinates to encode perspective projection as a $4 x 4$ matrix.

The goals for pseudodepth:
The denominator should be - P_{z}
The numerator should be easy to compute, i.e. a linear function of P_{z}
The pseudodepth should be -1 for points on the near plane. Why?
The pseudodepth should be 1 for points on the far plane. Why?
So pseudodepth $\left(-P_{z}\right)=\left(a P_{z}+b\right) /\left(-P_{z}\right)$ for some a, b
Given goals, 3, 4, solve for a, b :

$$
\begin{aligned}
& a=-(F+f) /(F-f) \\
& b=-2 F f /(F-f)
\end{aligned}
$$

Note the following:
Pseudodepth is a nonlinear function of P_{z}.
Points closer to the near plane have the highest pseudodepth resolution.

Points closer to the far plane have the lowest pseudodepth resolution.
Resulting perspective transformation matrix:

$$
Q=\left|\begin{array}{rrrr}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right| * P=\left|\begin{array}{l}
f P x \\
f P y \\
a P z \\
-P z
\end{array}\right|
$$

This still needs to take into account remapping Px and Py to the normalized view volume, but this is sufficient for the remaining discussion.
What is Q after perspective divide? Denote it $\mathrm{Q}=[\mathrm{Qx}, \mathrm{Qy}, \mathrm{Q} \delta, 1]$
Using pseudodepth during scan conversion:
When scan converting a polygon, the linear nature of the pseudodepth numerator can be used to avoid calculating the perspective transformation of each fragment.

As a single example, consider the scan conversion code for a horizontal line (P0, P1) in eye space and its perspective transformation (Q0, Q1):

The eye space line is parameterized by s, and the perspective transformation is parameterized by t .

Here is scan conversion code that includes an incremental update of the pseudodepth δ :

```
\(\delta \leftarrow \mathrm{Q} 0 \delta\)
delta \(\delta \leftarrow(\mathrm{Q} 1 \mathrm{z}-\mathrm{Q} 0 \mathrm{z}) /(\mathrm{Q} 1 \mathrm{x}-\mathrm{Q} 0 \mathrm{x})\)
for \(\mathrm{x} \leftarrow \mathrm{Q} 0 \mathrm{x}\) to Q 1 x
    \(\delta+=\operatorname{delta} \delta\)
    if ( \(\delta<\operatorname{depth}(\mathrm{x}, \mathrm{y})\) )
                update depth and color buffers
    end if
```

end for

This speed-up extends straightforwardly for nonhorizontal lines, and also to polygons as with normal scan conversion.

Why does this work?
Assume $\mathrm{a}=0, \mathrm{~b}=1, \mathrm{f}=1$
Consider t in $[0,1]$, deltaT $=1 /(\mathrm{Q} 1 \mathrm{x}-\mathrm{Q} 0 \mathrm{x})$
and s in $[0,1]$, along eye space line
and corresponding incremental steps along δ, as above.
We need to show $\mathrm{Q} \delta(\mathrm{t})$ is a linear function of t . What is $\mathrm{Q} \delta(\mathrm{t})$?

$$
\mathrm{Q} \delta(\mathrm{t})=-1 / \mathrm{Pz}(\mathrm{~s})=1 /\left(\mathrm{P} 0 \mathrm{z}^{*}(1-\mathrm{s})+\mathrm{P} 1 \mathrm{z}^{*} \mathrm{~s}\right)=1 /(\mathrm{P} 0 \mathrm{z}+\mathrm{s} *(\mathrm{P} 1 \mathrm{z}-\mathrm{P} 0 \mathrm{z}))
$$

What is s ? For every point $\mathrm{P}(\mathrm{s})$, there is a corresponding projection $\mathrm{Q}(\mathrm{t})$. In other words, for each s there is a corresponding t. However, the correspondence is complicated-this derivation finds that correspondence.

Consider the mapping of $\mathrm{Q}(\mathrm{t})$ to $\mathrm{P}(\mathrm{s})$:
$\mathrm{Qx}(\mathrm{t})=-\mathrm{Px}(\mathrm{s}) / \mathrm{Pz}(\mathrm{s})$; solve for s :

$$
\begin{aligned}
& \mathrm{Qx}(\mathrm{t}) * \mathrm{P} 0 \mathrm{z}-\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 0 \mathrm{z}^{*} \mathrm{~s}+\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 1 \mathrm{z}^{*} \mathrm{~s} \\
& \quad=-\mathrm{P} 0 \mathrm{x}+\mathrm{P} 0 \mathrm{x} * \mathrm{~s}-\mathrm{P} 1 \mathrm{x}^{*} \mathrm{~s} \\
& \mathrm{Qx}(\mathrm{t})^{*} \mathrm{P} 0 \mathrm{z}+\mathrm{P} 0 \mathrm{x}=\mathrm{s}^{*}[\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 0 \mathrm{z}-\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 1 \mathrm{z}+\mathrm{P} 0 \mathrm{x}-\mathrm{P} 1 \mathrm{x}] \\
& \mathrm{s}=(\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 0 \mathrm{z}+\mathrm{P} 0 \mathrm{x}) /\left(\mathrm{Qx}(\mathrm{t})^{*}(\mathrm{P} 0 \mathrm{z}-\mathrm{P} 1 \mathrm{z})+\mathrm{P} 0 \mathrm{x}-\mathrm{P} 1 \mathrm{x}\right)
\end{aligned}
$$

Going back to the previous expression for $\mathrm{Q} \delta(\mathrm{t})$:

$$
\begin{aligned}
& \mathrm{Q} \delta(\mathrm{t})=1 /\{\mathrm{P} 0 \mathrm{z}+[\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 0 \mathrm{z}+\mathrm{P} 0 \mathrm{x}) /(\mathrm{Qx}(\mathrm{t}) *(\mathrm{P} 0 \mathrm{z}-\mathrm{P} 1 \mathrm{z})+\mathrm{P} 0 \mathrm{x}-\mathrm{P} 1 \mathrm{x})] \\
& \quad *(\mathrm{P} 1 \mathrm{z}-\mathrm{P} 0 \mathrm{z})\} \\
& =[\mathrm{Qx}(\mathrm{t}) *(\mathrm{P} 0 \mathrm{z}-\mathrm{P} 1 \mathrm{z})+\mathrm{P} 0 \mathrm{x}-\mathrm{P} 1 \mathrm{x}] / \\
& \quad\left[\mathrm{P} 0 \mathrm{z}^{*}(\mathrm{Qx}(\mathrm{t})(\mathrm{P} 0 \mathrm{z}-\mathrm{P} 1 \mathrm{z})+\mathrm{P} 0 \mathrm{x}-\mathrm{P} 1 \mathrm{x})+(\mathrm{Qx}(\mathrm{t}) * \mathrm{P} 0 \mathrm{z}+\mathrm{P} 0 \mathrm{x}) *(\mathrm{P} 1 \mathrm{z}-\mathrm{P} 0 \mathrm{z})\right] \\
& =\mathrm{Qx}(\mathrm{t}) *(\mathrm{P} 0 \mathrm{z}-\mathrm{P} 1 \mathrm{z}) /(\mathrm{P} 0 \mathrm{x} *(\mathrm{P} 1 \mathrm{z}-\mathrm{P} 0 \mathrm{z}))+(\mathrm{P} 0 \mathrm{x}-\mathrm{P} 1 \mathrm{x}) /(\mathrm{P} 0 \mathrm{x} *(\mathrm{P} 1 \mathrm{z}-\mathrm{P} 0 \mathrm{z}))
\end{aligned}
$$

$\mathrm{Qx}(\mathrm{t})$ is the only term that changes with respect to t , and it is also linear with respect to t , so $\mathrm{Q} \delta(\mathrm{t})$ is linear, hence the pseudodepth is linear in image space.

Why not increment Pz , the eye space depth?
Pz is not a linear function of image space. From above, the image space point $\{\mathrm{Qx}, \mathrm{Qy}\}$ is $\{-\mathrm{fPx} / \mathrm{Pz},-\mathrm{fPy} / \mathrm{Pz}\}$, a nonlinear relation ship between both Qx and Qy (the scanconverting domain) and Pz .

Why isn't Z linear in screen-space? Considered a foreshortened view of a building (or a checkerboard), which has windows along the side. The windows close by occupy many pixels, the ones far away are tiny. Stepping along pixels will correspond to small steps in Z for the nearby windows, and large steps in Z for the faraway windows.

For a triangle a great deal of computation can be saved:
Incrementally update pDepth along two sides as scan-conversion progresses along scan lines. Scan convert each scan line between these two sides:

