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Recall the Z-buffer algorithm: 
  
 for each polygon 
  for each pixel indexed by i, j 
   P  point on polygon at this pixel 
   if (depth(P) < depth[i][j]) 
    depth[i][j]  depth(P) 
    color[i][j[  color(P) 
   end if 
  end if 
 end for 
 
Assume right-handed eye space. 
The point P projected onto the image plane (i.e. near plane) is 
 Q  = {-(fPx)/Pz, -(fPy)/Pz} 
 
The depth is  

depth(P) = sqrt(Px
2, Py

2, Pz 2) 
 
This is an expensive calculation for every fragment (what is a fragment?), so we replace 
it with an easier calculation, using “psedudodepth” (δ). 
 
What about just using Pz, the distance from the plane perpendicular to the view vector 
through the eye? 
 If we keep a consistent denominator among Qx, Qy, and Qδ (pseudodepth), we 
can take advantage of homogeneous coordinates to encode perspective projection as a 
4x4 matrix. 
 
The goals for pseudodepth: 
 The denominator should be - Pz 

 The numerator should be easy to compute, i.e. a linear function of Pz 
The pseudodepth should be -1 for points on the near plane.  Why? 
The pseudodepth should be 1 for points on the far plane.  Why? 

 
So pseudodepth(-Pz) = (a Pz + b)/(- Pz) for some a, b 
Given goals, 3, 4, solve for a, b: 
 a = -(F + f) / (F – f) 
 b = -2Ff / (F – f) 
Note the following: 
 Pseudodepth is a nonlinear function of Pz. 
 Points closer to the near plane have the highest pseudodepth resolution. 



 Points closer to the far plane have the lowest pseudodepth resolution. 
 
Resulting perspective transformation matrix: 
 Q =   | f 0  0 0 |  * P = | fPx     |  
       | 0 f  0 0 |        | fPy     |    
   | 0 0  a b |        | aPz + b |    
   | 0 0 -1 0 |        | -Pz     | 
 
This still needs to take into account remapping Px and Py to the normalized view volume, 
but this is sufficient for the remaining discussion. 
What is Q after perspective divide?  Denote it Q = [Qx, Qy, Qδ, 1]   
 
Using pseudodepth during scan conversion: 
 
When scan converting a polygon, the linear nature of the pseudodepth numerator can be 
used to avoid calculating the perspective transformation of each fragment. 
 
As a single example, consider the scan conversion code for a horizontal line (P0, P1) in 
eye space and its perspective transformation (Q0, Q1): 
 
 

 
The eye space line is parameterized by s, and the perspective transformation is 
parameterized by t.   
 
Here is scan conversion code that includes an incremental update of the pseudodepth δ: 
 
 δ  Q0δ 
 deltaδ  (Q1z – Q0z) / (Q1x – Q0x) 
 for x  Q0x to Q1x 
  δ += deltaδ 
  if (δ < depth(x, y))   
   update depth and color buffers 
  end if 
 end for 
 
This speed-up extends straightforwardly for nonhorizontal lines, and also to polygons as 
with normal scan conversion.   



 
Why does this work? 
 
Assume a = 0, b= 1, f = 1 
Consider t in [0, 1],  deltaT = 1/(Q1x – Q0x) 
and s in [0, 1], along eye space line 
and corresponding incremental steps along δ, as above. 
 
We need to show Qδ(t) is a linear function of t.  What is Qδ(t)? 
 Qδ(t) = -1/Pz(s) = 1 / (P0z*(1-s) + P1z*s) = 1 / (P0z + s * (P1z – P0z)) 
 
What is s?  For every point P(s), there is a corresponding projection Q(t).  In other 
words, for each s there is a corresponding t.  However, the correspondence 
is complicated—this derivation finds that correspondence. 
 
 Consider the mapping of Q(t) to P(s): 
 Qx(t) = - Px(s) / Pz(s); solve for s: 
  
 Qx(t)*P0z – Qx(t)*P0z*s + Qx(t)*P1z*s  
  = -P0x + P0x*s – P1x*s 
  
 Qx(t)*P0z + P0x = s* [Qx(t) * P0z – Qx(t) * P1z + P0x – P1x] 
 
 s = (Qx(t)*P0z + P0x) / (Qx(t)*(P0z – P1z) + P0x – P1x) 
 
Going back to the previous expression for Qδ(t): 
  
 Qδ(t) = 1 / {P0z + [Qx(t)*P0z + P0x) / (Qx(t)*(P0z – P1z) + P0x – P1x)]  
   * (P1z – P0z)} 
   
 = [Qx(t)*(P0z – P1z) + P0x – P1x] /  
  [P0z*(Qx(t)(P0z – P1z) + P0x – P1x) + (Qx(t)*P0z + P0x)*(P1z – P0z)]  
 
 = Qx(t) * (P0z – P1z)/(P0x*(P1z – P0z)) + (P0x-P1x) / (P0x*(P1z-P0z)) 
 
Qx(t) is the only term that changes with respect to t, and it is also linear with respect to t, 
so Qδ(t) is linear, hence the pseudodepth is linear in image space. 
 
Why not increment Pz, the eye space depth? 
 
Pz is not a linear function of image space.  From above, the image space point {Qx, Qy} 
is {-fPx/Pz, -fPy/Pz}, a nonlinear relation ship between both Qx and Qy  (the scan-
converting domain) and Pz. 
 
 
 



Why isn't Z linear in screen-space?  Considered a foreshortened view of a 
building (or a checkerboard), which has windows along the side.  The windows 
close by occupy many pixels, the ones far away are tiny.  Stepping along 
pixels will correspond to small steps in Z for the nearby windows, and large 
steps in Z for the faraway windows. 
 
For a triangle a great deal of computation can be saved: 
 Incrementally update pDepth along two sides as scan-conversion progresses along 
scan lines.  Scan convert each scan line between these two sides: 
 
 
 


