
Introduction to the software libraries

This course makes use of several popular libraries to help build sophisticated portable graphics
applications with minimal effort.
The following diagram gives an overview of the packages and how they interact. For the purposes of this
course, one can think of the GLU and glut libraries as being part of the OpenGL library or the OpenGL
API (application programmer's interface), eventhough this is not really the case.

OpenGL -provides a software interface to graphics hardware and
implements most of the graphics functionality.

GLU provides support for some additional operations and primitive
types, and is implemented using OpenGL function calls

glut

designed specifically to be used with OpenGL and it takes care of
things like opening windows, redraw events, and keyboard and
mouse input. It effectively hides all the windowing system
dependencies for OpenGL.

OpenGL: Open Graphics Library

� standardized 3D graphics library (API)
� available on many platforms, often with hardware support
� derivative of the Silicon Graphics' GL library
� all function calls have the gl prefix, e.g.: glScale3fv()
� OpenGL resources on the Internet**

GLU: OpenGL Utility Library

� support for NURBS surfaces, quadric surfaces, surface trimming, ...
� all function calls have the glu prefix, e.g.: gluOrtho2D()
� comes with all OpenGL implementations, including Windows and Mesa, no separate installation

required
� typically involves no hardware acceleration
� glu32.dll on Win95/Win98/WinNT, look in same directory as Opengl32.dll

glut: OpenGL Utility Toolkit

� hides windowing system dependencies

� open, refresh, resize window
� swap front/back drawing buffers for animation
� trap keyboard, mouse events

� implements pull-down menus
� all function calls have the glut prefix, e.g.: glutMainLoop()
� versions for X-windows, MacOS, Win95/98, WinNT
� glut resources on the Internet**

2d transforms: OpenGL implementation

� OpenGL is immediate mode: graphics operations are applied 'instantly'
� in terms of transformations, the user gives a rotate, translate, or scale command, and the matrix

multiplication represented by that transform is immediately applied to a global transformation
matrix.

� In other words, a 4 by 4 matrix of floating point values is maintained. It changes each time a
single transformation is done. However, all the individual transformations used to derive these
numeric values are not retained.

2d transforms: OpenGL

� OpenGL transformation commands set up a 4 by 4 transformation matrix.
� Can use glGet(GL_MODELVIEW_MATRIX) to retrieve this matrix, and glLoadMatrix to

replace it with your own matrix.
� glRotate{fd} (TYPE angle, TYPE x, TYPE y, TYPE z)

� TYPE is f or d
� rotates the current transformation matrix counterclockwise 'angle' degrees about a ray from

the origin through the point (x, y, z)
� eg. glRotatef(45.0, 0.0, 0.0, 1.0) rotates 45 degrees about the z-axis.

� glTranslate {fd} (TYPE x, y, z)
� translates by the amounts x, y, z
� note: glTranslatef(): empty argument is the identity matrix

� glScale {fd} (TYPE x, y, z)
� applies x, y, z scaling factors.
� eg. glScalef(2.0, -0.5, 1.0)

