Tutorial \#9 - Parametric curves
Prepared by Gustavo Carneiro
Possible representation of curves: explicit, implicit and parametric
Explicit representation

- curve in 2D $y=f(x)$
- curve in 3D $y=f(x), z=g(x)$
- easy to compute a point (given parameters)
- multiple values of y and z for a single x is impossible (e.g., circle where $y= \pm \sqrt{r^{2}-x^{2}}$ has 2 or 0 values)
- how to represent an infinite slope?

Implicit representation

- curve in 2D: $F(x, y)=0$
- line: $a x+b y+c=0$
- circle: $x^{2}+y^{2}-r^{2}=0$
- surface in 3D: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$
- plane: $a x+b y+c z+d=0$
- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ describes a 3D object $\left\{\begin{array}{c}F(x, y, z)<0 \text {, inside } \\ F(x, y, z)=0, \text { on surface } \\ F(x, y, z)>0 \text {, inside }\end{array}\right.$
- However, computing a point is difficult (it is easy to determine where any point lies in terms of that curve).

Parametric representation

- curves: single parameter (e.g $u \in[0,1]$)
- $\quad x=X(u), y=Y(u), z=Z(u)$
- tangent is simply derivatives of the above functions
- Advantages:
- capable of precisely representing any curve a user may need
- easy and efficient to represent in a computer
- little memory storage required

Parametric cubic curves

- Why cubic?
- Curves of lower order commonly have too little flexibility
- Curves of higher order are unnecessarily complex and can introduce certain artifacts
- Cubic curves offer a good trade-off between complexity and flexibility

$$
\left\{\begin{array}{l}
X(u)=a_{3} u^{3}+a_{2} u^{2}+a_{1} u+a_{0} \\
Y(u)=b_{3} u^{3}+b_{2} u^{2}+b_{1} u+b_{0} \\
Z(u)=c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}
\end{array}\right.
$$

- compact representation

$$
X(u)=\left[u^{3}, u^{2}, u, 1\right]\left[\begin{array}{l}
a_{3} \\
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right] \quad \begin{array}{r}
X(u)=U A \\
\text { i.e., } Y(u)=U B \\
Z(u)=U C
\end{array}
$$

- derivatives are easy: $\frac{d X(u)}{d u}=\left[\begin{array}{llll}3 u^{2} & 2 u & 1 & 0\end{array}\right] A$
- think of u as a time parameter

Find the curve parameters given that the user specifies the following 4 parameters:

- 2 end points
- midpoint
- tangent at midpoint

- $G_{x}=B A \Rightarrow A=B^{-1} G_{x}$
- since $X(u)=U A$, we have $X(u)=U B^{-1} G_{x} \Rightarrow X(u)=U M G_{x}$, where M is called the basis matrix, which in this case is

$$
M=\left[\begin{array}{cccc}
-4 & 0 & -4 & 4 \\
8 & -4 & 6 & -4 \\
-5 & 4 & -2 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- we can then rewrite our equation

$$
X(u)=U M G_{x}=\left[f_{1}(u), \quad f_{2}(u), \quad f_{3}(u), \quad f_{4}(u)\right] G_{x},
$$

where

$$
\begin{aligned}
& f_{1}(u)=-4 u^{3}+8 u^{2}-5 u+1 \\
& f_{2}(u)=-4 u^{2}+4 u \\
& f_{3}(u)=-4 u^{3}+6 u^{2}-2 u \\
& f_{4}(u)=4 u^{3}-4 u^{2}+1
\end{aligned}
$$

(similarly for Y and Z).

Parametric Continuity (for different curves p and q)

- $\quad \mathrm{C}_{0}$: matching endpoints $\mathrm{p}(1)=\mathrm{q}(0)$
- $\quad C_{1}$: matching derivatives (with same magnitude) $p^{\prime}(1)=q^{\prime}(0)$
- $\mathrm{C}_{2}: 1^{\text {st }}$ and $2^{\text {nd }}$ derivatives are equal
- $\mathrm{C}_{\mathrm{n}}: \mathrm{n}^{\text {th }}$ derivatives are equal

Geometric continuity

- $\mathrm{G}_{0}=\mathrm{C}_{0}$
- G_{1} : matching derivatives (not necessarily magnitude)
- $\mathrm{G}_{2}: 1^{\text {st }}$ and $2^{\text {nd }}$ derivatives proportional
- $\mathrm{G}_{\mathrm{n}}: \mathrm{n}^{\text {th }}$ derivatives are proportional

Example: Determine if the following curves are $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{G}_{1}$ continuous

$$
\begin{aligned}
& A(u)=\left(u, u^{2}\right) \\
& B(u)=\left(2 u+1, u^{3}+4 u+1\right)
\end{aligned}
$$

$\mathrm{A}(1)=(1,1)$ and $\mathrm{B}(0)=(1,1)$, thus they're C_{0} continuous
$A^{\prime}(1)=(1,2)$ and $B^{\prime}(0)=(2,4)$, magnitudes are different but derivatives are proportional, thus they're G_{1} continuous, but not C_{1}.

Note the difference in speed between curves 1 and 2.

