Tutorial #9 – Parametric curves Prepared by Gustavo Carneiro

Possible representation of curves: explicit, implicit and parametric

Explicit representation

- curve in 2D y=f(x)
- curve in 3D y=f(x), z=g(x)
- easy to compute a point (given parameters)
- multiple values of y and z for a single x is impossible (e.g., circle where $y = \pm \sqrt{r^2 x^2}$ has 2 or 0 values)
- how to represent an infinite slope?

Implicit representation

- curve in 2D: F(x,y)=0
 - line: ax+by+c=0
 - circle: $x^2 + y^2 r^2 = 0$
- surface in 3D: F(x,y,z)=0
 - plane: ax+by+cz+d=0

- F(x,y,z)=0 describes a 3D object $\begin{cases} F(x, y, z) < 0, \text{ inside} \\ F(x, y, z) = 0, \text{ on surface} \\ F(x, y, z) > 0, \text{ inside} \end{cases}$

- However, computing a point is difficult (it is easy to determine where any point lies in terms of that curve).

Parametric representation

- curves: single parameter (e.g $u \in [0,1]$)
 - x=X(u), y=Y(u), z=Z(u)
- tangent is simply derivatives of the above functions
- Advantages:
 - capable of precisely representing any curve a user may need
 - easy and efficient to represent in a computer
 - little memory storage required

Parametric cubic curves

- Why cubic?
- Curves of lower order commonly have too little flexibility
- Curves of higher order are unnecessarily complex and can introduce certain artifacts
- Cubic curves offer a good trade-off between complexity and flexibility

$$\begin{cases} X(u) = a_3u^3 + a_2u^2 + a_1u + a_0 \\ Y(u) = b_3u^3 + b_2u^2 + b_1u + b_0 \\ Z(u) = c_3u^3 + c_2u^2 + c_1u + c_0 \end{cases}$$

- compact representation

$$X(u) = [u^{3}, u^{2}, u, 1] \begin{bmatrix} a_{3} \\ a_{2} \\ a_{1} \\ a_{0} \end{bmatrix} \qquad \text{i.e., } Y(u) = UB$$
$$Z(u) = UC$$

- derivatives are easy:
$$\frac{dX(u)}{du} = \begin{bmatrix} 3u^2 & 2u & 1 & 0 \end{bmatrix} A$$

- think of u as a time parameter

Find the curve parameters given that the user specifies the following 4 parameters:

- 2 end points
- midpoint
- tangent at midpoint

$$\begin{bmatrix} P(0) & P(0.5) \\ P(1) & P'(0.5) \\ P(1) & X'(0.5) \\ X'(0.5) \\ X(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0.5^3 & 0.5^2 & 0.5 & 1 \\ 3(0.5)^2 & 2(0.5) & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} A$$

- $G_x = BA \Longrightarrow A = B^{-1}G_x$

since X(u) = UA, we have $X(u) = UB^{-1}G_x \implies X(u) = UMG_x$, where M is called the basis matrix, which in this case is

$$M = \begin{bmatrix} -4 & 0 & -4 & 4 \\ 8 & -4 & 6 & -4 \\ -5 & 4 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

we can then rewrite our equation _

$$X(u) = UMG_x = [f_1(u), f_2(u), f_3(u), f_4(u)]G_x,$$

where
$$f_1(u) = -4u^3 + 8u^2 - 5u + 1$$
$$f_2(u) = -4u^2 + 4u$$
$$f_3(u) = -4u^3 + 6u^2 - 2u$$
$$f_4(u) = 4u^3 - 4u^2 + 1$$

(similarly for Y and Z).

Parametric Continuity (for different curves p and q)

- _
- C₀: matching endpoints p(1)=q(0)C₁: matching derivatives (with same magnitude) p'(1)=q'(0)C₂: 1st and 2nd derivatives are equal C_n: nth derivatives are equal -
- -
- _

Geometric continuity

- $G_0=C_0$ -
- G₁: matching derivatives (not necessarily magnitude)
 G₂: 1st and 2nd derivatives proportional
 G_n: nth derivatives are proportional

Example: Determine if the following curves are C₀, C₁, G₁ continuous

$$A(u) = (u, u^{2})$$

$$B(u) = (2u + 1, u^{3} + 4u + 1)$$
 for $u \in [0,1]$

A(1)=(1,1) and B(0)=(1,1), thus they're C_0 continuous

A'(1)=(1,2) and B'(0)=(2,4), magnitudes are different but derivatives are proportional, thus they're G_1 continuous, but not C_1 .

Note the difference in speed between curves 1 and 2.