
CSC 418/2504 Winter 2003 Tutorial Notes - Mar 14 file:///C:/patrick/www/dgp/csc418/notes/ray_tracing_tutorial/raytracing_...

1 of 5 11/14/2003 7:41 PM

Ray Tracing

Idea

Direct approach: Trace rays from the light source to the eye. Lots of rays are wasted because they never
reach the eye.

The Ray Tracing approach: Trace rays starting from the eye, through the image plane and into the scene.
Primary rays are those which directly intersect an object (the part closest to the eye) from the eye point.
Secondary rays are shot from this intersection point. There are three types:

Shadow rays
Reflected rays
Refracted rays.

Shadow rays are directed at the light sources and determine if the region is in shadow. Reflected and
refracted rays model the mirror-like and transparency characteristics of the object. A local lighting model is
applied at the intersection point (with an ambient term) and combined with the reflected ray and refracted ray
contributions. Ray Tracing models specular reflection and refractive transparency well, but models global
lighting contributions poorly. This is because it uses a directionless ambient light term for approximating
diffuse scattering. Radiosity methods are used to overcome this deficiency.

basic algorithm

raytrace(ray)
{
 find closest intersection
 cast shadow ray, calculate colour_local
 if (object is shiny) colour_reflect = raytrace(reflected_ray)
 if (object is transparent) colour_refract = raytrace(refracted_ray)
 colour = k1*colour_local + k2*colour_reflect + k3*colour_refract
 return(colour)
}

points on rays P(t) = p + tv, t >= 0
p - starting point (e.g. eye point)
v - directional unit vector

example

CSC 418/2504 Winter 2003 Tutorial Notes - Mar 14 file:///C:/patrick/www/dgp/csc418/notes/ray_tracing_tutorial/raytracing_...

2 of 5 11/14/2003 7:41 PM

cast ray from eye point, going through image plane
closest intersection with SA
shadow ray unobstructed, intersection point lit directly by light, so colour_local is nonzero
SA is shiny, so cast reflected ray

closest intersection with SC
shadow ray obstructed (by SC), intersection point not lit, so colour_local is zero
SC is shiny, so cast reflected ray

closest intersection with SD
shadow ray unobstructed, intersection point lit, so colour_local is nonzero
SD is diffuse, no reflected ray, so colour_reflect is zero
SD is opaque, no refracted ray, so colour_refract is zero
return total colour

SC is opaque, no refracted ray, so colour_refract is zero
return total colour

SA is transparent, so cast refracted ray
closest intersection with SB
shadow ray unobstructed, intersection point lit, so colour_local is nonzero
SB is diffuse, no reflected ray, so colour_reflect is zero
SB is opaque, no refracted ray, so colour_refract is zero
return total colour

return total colour
need to find intersections between rays and surfaces
so need mathematical definitions of primitives

e.g. sphere, cone, polygon, etc.

Example

consider a simple scene with a unit sphere at origin
x2 + y2 + z2 = 1

let P = (x, y, z) be a point on sphere, then the equation reduces to
P · P = 1

solve equation to find intersection between a ray and unit sphere
P · P = 1
(p + tv) · (p + tv) = 1
p2 + 2tpv + t2v2 = 1
v2t2 + 2pvt + (p2 - 1) = 0

CSC 418/2504 Winter 2003 Tutorial Notes - Mar 14 file:///C:/patrick/www/dgp/csc418/notes/ray_tracing_tutorial/raytracing_...

3 of 5 11/14/2003 7:41 PM

t = [-2pv ± sqrt((2pv)2 - 4v2(p2 - 1))] / 2v2

numerical example
eye point = p = (0, sqrt(2)/2, 3)
direction = v = (0, 0, -1)
find closest intersection point

pv = (0, sqrt(2)/2, 3) · (0, 0, -1) = -3
p2 = (0, sqrt(2)/2, 3) · (0, sqrt(2)/2, 3) = 9.5
v2 = (0, 0, -1) · (0, 0, -1) = 1
so t = [-2(-3) ± sqrt((2(-3))2 - 4(1)((9.5) - 1))] / 2(1)2 = [6 ± sqrt(2)] / 2 = 3 ± sqrt(2)/2
smallest positive t value is our intersection point
so t = 3 - sqrt(2)/2
so p = (0, sqrt(2)/2, 3) + (3 - sqrt(2)/2)(0, 0, -1) = (0, sqrt(2)/2, sqrt(2)/2)

for colour calculation, we also need the surface normal at the intersection point
since this is a unit sphere, N = (0, sqrt(2)/2, sqrt(2)/2)

we need a method for arbitrary spheres (i.e. not unit and not at origin)

In general

we want to find the intersection between an arbitrary primitive and a ray
there is a series of transformations M (the combined transformation matrix) that transform a unit
primitive (of the correct type) into our arbitrary primitive

i.e. M transforms the unit primitive frame into the arbitrary primitive frame
so M-1 transforms our ray into the unit primitive frame, where we can apply the unit primitive
equations to solve for an intersection
idea

given ray = p + tv
calculate ray' = M-1 · ray = M-1 · p + t M-1 · v = p' + tv'
calculate intersection using ray' with unit primitive, solve for t
substitute t into original ray = p + tv to get intersection point

for surface normal
at first glance it seems we can apply the transformation M to the surface normal of the unit
primitive to get the normal for our arbitrary primitive
this will work for translations, rotations and uniforming scaling
but consider non-uniform scaling (we'll work with unnormalized surface normals to simplify the
math)

an edge from (0, 1) to (1, 0) has a surface normal (1, 1)
if we apply scale(2, 1) (a stretch in the x direction by a factor of 2) to the normal, we get
(2, 1)

CSC 418/2504 Winter 2003 Tutorial Notes - Mar 14 file:///C:/patrick/www/dgp/csc418/notes/ray_tracing_tutorial/raytracing_...

4 of 5 11/14/2003 7:41 PM

but the true surface normal is (1, 2)
to transform a surface normal N' from a unit primitive into a surface normal N for our arbitrary
primitive

N = M-1T · N' (may need to re-normalize)
for the example above

[1] [2 0 0] [1/2 0 0]
N' = [1] , M = [0 1 0] , M-1T = [0 1 0]

[0] [0 0 1] [0 0 1]
[1/2 0 0] [1] [1/2]

so N = [0 1 0] [1] = [1] = 1/2 × true surface normal
[0 0 1] [0] [0]

i.e. N and the true surface normal have the same direction, are the same normalized vector
why the transpose of the inverse of M works

clearer explanation (thanks Andriy!)
for a point P on the the unit primitive, the normal N' is defined to be the vector
perpendicular to all tangent vectors at P
let T' be a tangent vector at P (on the unit primitive)
then N' · T' = 0
so N'TT' = 0 (using matrix multiplication notation)
N'T(M-1M)T' = 0
(N'TM-1)(MT') = 0
(M-1TN')T(MT') = 0, since (AB)T = BTAT

(M-1TN') · (MT') = 0
T = MT' is the transformed tangent vector (on our arbitrary primitive)
since (M-1TN') · T = 0, M-1TN' is perpendicular to T
thus N = M-1TN' is the surface normal for our arbitrary primitive, and M-1T is the
correct transformation

old explanation
since we're applying M-1T to a vector, translations within M have no effect

vectors represent directions, not points in space
M-1T preserves any rotations in M

let M1 = rotate(z, a), M2 = rotate(z, -a)
then M1 = M2

-1, or M2 = M1
-1 (M2 reverses the effect of M1, and vice versa)

also
[cos(a) -sin(a) 0 0]

M1 = [sin(a) cos(a) 0 0]
[0 0 1 0]
[0 0 0 1]
[cos(-a) -sin(-a) 0 0] [cos(a) sin(a) 0 0]

M2 = [sin(-a) cos(-a) 0 0] = [-sin(a) cos(a) 0 0] = M1
T

[0 0 1 0] [0 0 1 0]
[0 0 0 1] [0 0 0 1]

CSC 418/2504 Winter 2003 Tutorial Notes - Mar 14 file:///C:/patrick/www/dgp/csc418/notes/ray_tracing_tutorial/raytracing_...

5 of 5 11/14/2003 7:41 PM

so M2 = M1
T, or M1 = M2

T

thus M1 = M2
T = (M1

-1)T = M1
-1T

notice in the example above
the orientation of the scaled surface is rotated slightly counterclockwise,
and so the orientation of the true normal is rotated slightly
counterclockwise
whereas the orientation of the scaled normal is rotated slightly
clockwise

the transpose of the inverse alters any scaling in M so that the resultant vector is
rotated in the correct direction

