Tutorial 7— Computer Graphics CSC418/2504
| llumination, Shading, and Colour

Remember:
We're talking about a simple local model of illumination, where we can compute shading for
each polygon independently based on:

- material properties of the polygon

- orientation of the polygon (e.g. normals for faces and vertices)

- positions and parameters of the lights

More complicated global models of illumination also consider light inter-reflected between
polygons. And ray-tracing methods can be used to model mirrored surfaces, refraction, etc. And
there are other more advanced models.

1) What is the difference between ambient, diffuse, and specular reflection?
Ambient
= Approximates the effect of inter-reflections
= Sourceless— constant over entire surface
= Does not depend on surface normal
= Does not vary based on viewpoint
Diffuse
= Models rough surfaces (e.g. paper or drywall) —where light scatters
equally in all directions
= Hasapoint or directional source
= Depends on surface normal — brightest where the surface is oriented
toward the light, and falls off to zero at 90°
= Does not vary based on viewpoint

Models highlights from smooth, shiny surfaces (e.g. opaque plastic)
Has a point or directional source

Depends on surface normal

Depends on viewpoint

The Phong model puts these three terms together:
lights

LK+ 2 [gy (N L) + 1 K (RIV)']

2) Exercise: Light atriangle using the Phong Illumination model

P.=(1,1,1)" ka=0.7 white ambient intensity = 0.1
P,=(0,21)" kit =0.9 white point light
P;=(0,0,1)" Kspec = 0.6 - position = (1,1,5)"

n=10 - intensity = 0.5
viewer = (1,2,5) "

What'’sthe intensity at the centroid of thetriangle, P = (0.333,1,1)"?
The following assumes a white object (r,g,b) = (1,1,1)
Because the light is white, the intensity will be the same for each colour channel (r,g,b)

Ambient lka =0.1(0.7) = 0.07

Diffuse N = (Pi-P3) x (P>-Ps)
=(1,1,0)" x (0,2,0)"
=(0,0,1)"
L=(115"-(033311"
=(0.164,0,0.986) ' (normalized)
likairr(N-L) = 0.5(0.9)(0.986) = 0.444

ecular R=2N(N-L)-L
=2(0,0,1) "[0.986] — (0.164,0,0.986)"
= (-0.164,0,0.986)
V =(1,25)"-(0.3331,1)"
=(0.160,0.239,0.958) T (normalized)
RV =0.971
likpec(R-V)" = 0.5(0.6)(0.971)*°
= 0.5(0.6)(0.745)
=0.224

Total | =0.07 + 0.444 + 0.224
=0.738
(if you were to get avalue higher than 1.0, clamp it to 1.0)

What if the obj ect were coloured?

The light reflected to the viewer is just a multiplication of
= incident light
= albedo (colour of the surface)

for every colour channel, (r,g,b).

For this example the incident light is 0.738*(1,1,1) — since the light is white

If the object, for example, were dark red (r,g,b) = (0.5,0,0), then the light reflected from P
would be (0.5,0,0)-(0.738, 0.738, 0.738) = (0.369,0,0).

What if we wanted a different specular colour?
Okay, just apply adifferent colour to the specular term in the lighting model.

3) Shading

Flat shading
» Entire surface (polygon) has one colour

* Cheapest to compute, and least accurate (so you need a dense
triangulation for decent-looking results)
* OpenGL — glShadeModel(GL_FLAT)
Phong shading
» Compute illumination for every pixel during scan conversion
* Interpolate normals at each pixel too
* Expensive, but more accurate
* Not supported in OpenGL (directly)
Gouraud shading
* Just compute illumination at vertices
* Interpolate vertex colours across polygon pixels
» Cheaper, but less accurate (spreads highlights)
* OpenGL - glShadeModel(GL_SMOOQOTH)

Phong illumination
* Don't confuse shading and illumination!
e Shading describes how to apply an illumination model to a
polygonal surface patch
» All these shading methods could use Phong illumination (ambient,
diffuse, and specular) or any other local illumination model

BSP trees
[Hill: 707-711. Foley & van Dam: p. 675-680]

binary space partition —object space, produces back-to-front ordering
preprocess scene once to build BSP tree
traversal of BSP tree is view dependent

BSPt ree *BSPnaketree(pol ygon list) {
choose a polygon as the tree root
for all other polygons

if polygonis in front, add to front |ist
i f polygon is behind, add to behind Ii st
el se split polygon and add one part to each |ist

BSPt ree = BSPconbi net ree(BSPnaketree(front |ist),

root,
BSPraket ree(behind list))

Dr awTr ee(BSPtree) {

if (eyeis in front of root) {
Dr awTr ee(BSPt r ee- >behi nd)
Dr awPol y(BSPt r ee- >r oot)
Dr awTr ee(BSPt ree- >front)

} else {
Dr awTr ee(BSPt r ee- >front)
Dr awPol y(BSPt r ee- >r oot)
Dr awTr ee(BSPt r ee- >behi nd)

}
}

First, create aroot node and partition plane. Obviously the root does not have any children.

III| @

_Iah i
o
AISf |

_I
AI

5k _I
_I

aff

3k 4h
0
3f |
4f
3k 4h
i
af
4f

Sfh

We work through drawing the BSP from a point in the scene, following the algorithm.
Example: from a point in the extreme lower-right corner:

behind(0) O front(0)
front(3b) 3b behind(3b) O front(0)

5b 3b 4b 0 5ff 3f 5fb 4f

