CSC418 Tutorial 6 — OpenGL Lighting and Shading
Prepared by Kevin Forbes

Types of lighting implemented in OpenGL:

Ambient:

No source point; affects all polys independent of position, orientation and viewing
angle; used as a ‘fudge’ to approximate 2" order and higher reflections

Diffuse:
Light scattered in all directions after it hits a poly; dependant upon incident angle

Specular:
‘Shininess’ ; dependant upon incident and viewing angles

Emissive:
Makes a poly appear as though it is glowing; does not actually give off light

Implementation Specifics

* Two kinds of parameters, lighting and material

» Material properties: state variables, can be changed as you draw different polys
in a scene

» Light properties: parameters indexed to light numbers; Opengl can use up to 8
lights; light positions are affected by the modelview matrix stack

The Full OpenGL lighting Equation (stolen shamelessly off the internet):

verfex color =
EM 1551 0¥y nteming T
am E:I:'en%gkm adey FaAm Bignl, ppiar +
3
1 *
2
Fod+hyd +kpd”

ne
ambient, voinr *
max |II. LAl :I *eliffieseg gpy M IS oy +

shininess 4

1
imll

ma.xli.s 'n,l:l:l

peculargy *speculat, paig ;)

It might be a good idea to go through each term, specifying which terms reflect the
different parts of the model. The original tutorial notes don’t cover emmisive light or
attenuation, but you might want to mention them briefly.

Shading models:

Shading refers to how the lighting equations are applied to a rasterized poly.
OpenGL supports two shading models:

GL_FLAT: Lighting is evaluated once per poly, and the resulting colour value is
used for the whole thing.

GL_SMOOTH: Lighting is evaluated at each vertex, and pixel colours are linearly
interpolated across polys. This is more expensive, but it looks much better.

OpenGL uses the Phong lighting model at vertices, but has no built-in support for
Phong shading. Modern programmable lighting hardware can implement full phong
shading (and much more!), but you have to do this yourself.

Normals:

The lighting equations depend upon normals, so we have to provide them. The
current normal is specified with a call to a gINormal* function, and will be applied to
every subsequent vertex. Normals should be of unit length, or the lighting equations will
not work correctly. This can be a problem, because normals are affected by any scaling
done in the matrix stack. You must either re-normalize the normals as a pre-processing
step, or enable GL_NORMALIZE (which is computationally expensive).

Programming Example:
This code would typically be placed with your opengl initialization code

//set the global lighting / shading params
glShadeModel(GL_SMOOQOTH); // or GL_FLAT
glEnable(GL_NORMALIZE); //or not
glEnable(GL_LIGHTING);

//set the global ambient light
GLfloat ambient ={.2,.2,.2,1};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, globalAmb);

This code sets up a light and enables it

GLfloat diffuse[] = {1,0,0,1};
GLfloat ambient[] = {.5,0,0,1};
GLfloat specular[] ={1,1,1,1};

glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHTO, GL_AMBIENT, ambient);
glLightfv(GL_LIGHTO, GL_SPECULAR, specular);

glEnable(GL_LIGHTO); //enable the light
/Iset light position (see discussion later for details)

/Il set last term to O for a spotlight (see chp 5 in ogl prog guide)
Glfloat lightpos[] = {1,1,1,1};
glLightfv(GL_LIGHTO,GLPOSITION, lightpos);

This code sets a simple material property

GLfloat ambient[] = {.5,0,0,1};
GLfloat specular[] ={1,1,1,1};

/Ican set params for front and back separately (GL_BACK, GL_FRONT_AND_BACK)
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, ambient);
glMaterialfv(GL_FRONT, GL_SPECULAR, ambient);

Shaded polygons can now be drawn using the usual method, so long as normals are
specified correctly.

Programming Hints: (if you have time)
Using glColor* to change material properties:

This simplifies changing material properties, and can be helpful when drawing using
vertex arrays.

glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);

Implementing Shading groups

When using smooth shading, the usual way to calculate a vertex normal is to average
the normals of all of the faces that it is a part of. This normal is then used for all
polygons that use the vertex. This looks good for smooth geometries, but terrible for
things like cubes. To make a hard edge in smooth shading mode, specify the normals
for each vertex along the edge separately for each polygon, and set them equal to the
face normals.

Controlling Light Positions (stolen from OpenGL FAQ at opengl.org)

How can | make my light position stay fixed relative to my eye position? How do |
make a headlight?

You need to specify your light in eye coordinate space. To do so, set the
ModelView matrix to the identity, then specify your light position. To make
a headlight (a light that appears to be positioned at or near the eye and
shining along the line of sight), set the ModelView to the identity, set the
light position at (or near) the origin, and set the direction to the negative Z
axis.

How can | make my light stay fixed relative to my scene?

As your view changes, your ModelView matrix also changes. This means
you'll need to respecify the light position, usually at the start of every
frame. A typical application will display a frame with the following
pseudocode:

Set the view transform.

Set the light position

Send down the scene or model geometry.
Swap buffers.

How can | make a light that moves around in a scene?

Again, you'll need to respecify this light position every time the view
changes. Additionally, this light has a dynamic modeling transform that
also needs to be in the ModelView matrix before you specify the light
position. In pseudocode, you need to do something like:

Set the view transform

Push the matrix stack

Set the model transform to update the light's position
Set the light position

Pop the matrix stack

Send down the scene or model geometry

Swap buffers.

