CSC 418/2504 - Computer Graphics, Fall 2003

Tutorial 3. Viewing Transformations

1. Viewing and Modeling Transformation - modelview matrix

Derivation

- to express points in world coordinates (WCS) in terms of camera (VCS)
- defined by:
- an eye point $\mathrm{P}_{\text {eye }}$
- a reference point $\mathrm{P}_{\text {ref }}$
- an up vector $\mathbf{V}_{\text {up }}$
- unit vectors of VCS (call them $\mathbf{i}, \mathbf{j}, \mathbf{k}$ if you prefer)
- $\quad P_{\text {eye }}-P_{\text {ref }}$
- $\mathbf{n}=---------------$
- $\quad\left|P_{\text {eye }}-P_{\text {ref }}\right|$
-
- $\quad \mathbf{v}_{\text {up }} \times \mathrm{n}$
.
u

-
- $\quad \mathbf{v}=\mathbf{n} \times \mathbf{u}$
- intuition
-
- to pan the camera (like shaking your head left and right)
- move $\mathrm{P}_{\text {ref }}$ "horizontally"
- corresponds to rotating the VCS along the y axis
- to tilt the camera (like nodding your head up and down)
- move $\mathrm{P}_{\text {ref }}$ "vertically"
- corresponds to rotating the VCS along the x axis
- to rock the camera (like tilting your head left and right)
- let $\mathrm{P}_{\text {eye }}-\mathrm{P}_{\text {ref }}$ be the normal vector of a plane A
- change $\mathbf{V}_{\text {up }}$ so that its projection onto A "rotates" left and right
- corresponds to rotating the VCS along the z axis
- $\mathbf{V}_{\text {up }}$ represents a general "upwardness" for the camera
- view matrix
- first express camera in terms of world:

- $\quad M_{c a m}=\left[\begin{array}{llll}0 & 1 & 0 & P_{\text {eye }, ~}\end{array}\right]\left[\begin{array}{llllll}u_{y} & v_{y} & n_{y} & 0\end{array}\right]$

- then invert $\mathbf{M}_{\mathrm{cam}}$ to express world in terms of camera:

○ $\quad M_{c a m}^{-1}=\left[\begin{array}{llll}\mathrm{v}_{\mathrm{x}} & \mathrm{v}_{\mathrm{y}} \mathrm{V}_{\mathrm{z}} & 0\end{array}\right]\left[\begin{array}{llllll}0 & 1 & 0 & -\mathrm{P}_{\text {eye }} \mathrm{y}\end{array}\right]$

- so $\mathrm{P}_{\mathrm{VCS}}=\mathrm{M}_{\mathrm{cam}}{ }^{-1} \mathrm{P}_{\mathrm{WCS}}$

OpenGL

- performs these calculations internally with a call to gluLookAt()
- code:
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();

Example

scene with camera at $(4,4,4)$, pointed at $(0,1,4)$, with up vector $(0,1,0)$

$$
\begin{aligned}
& (4,4,4)-(0,1,4) \quad(4,3,0) \\
& \mathbf{n}=\underset{|(4,4,4)-(0,1,4)|}{ }|(4,3,0)| \\
& (0,1,0) \times(4 / 5,3 / 5,0) \quad(0,0,-4 / 5)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{v}=(4 / 5,3 / 5,0) \times(0,0,-1)=(-3 / 5,4 / 5,0)
\end{aligned}
$$

- check
$\stackrel{-}{\bullet}$

2. Projection Transformation - projection matrix

Derivation

- maps points in VCS to NDCS
- see Hill, lecture notes for derivation

\bigcirc	[x		[1	0	0	0]	[x	
\bigcirc	[y]	$=$	[0	1	0	0]	[y	
\bigcirc	[z]		[0	0	1	0]	[z	,
\bigcirc	[-z/d]		[0	0	-1/d	0	1			

OpenGL

VCS

NDCS

- code for perspective projection:
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluPerspective(fovy, aspect, near, far);
or
- glFrustum(left, right, bottom, top, near, far);
- gluPerspective()
- fovy
- field of view in the y-direction, centered about $y=0$
- in degrees
- aspect
- aspect ratio that determines the field of view in the x direction
- ratio of x (width) to y (height)
- near
- in camera coordinates
- close to 0 (but not 0)
- far
- in camera coordinates
- glFrustum()
- left, right, bottom, top, near, far
- specifies the clipping planes of the view volume explicitly
- in camera coordinates

