
CSC 418/2504 – Computer Graphics, Fall 2003

Tutorial 3. Viewing Transformations

1. Viewing and Modeling Transformation – modelview matrix

Derivation

• to express points in world coordinates (WCS) in terms of camera (VCS)

• defined by:

o an eye point Peye

o a reference point Pref

o an up vector Vup

• unit vectors of VCS (call them i, j, k if you prefer)

• Peye - Pref
• n = ---------------

• | Peye - Pref |
•
• Vup × n
• u = -----------
• | Vup × n |

•
• v = n × u

• intuition

o suppose Peye is fixed

o to pan the camera (like shaking your head left and right)

§ move Pref "horizontally"

§ corresponds to rotating the VCS along the y axis

o to tilt the camera (like nodding your head up and down)

§ move Pref "vertically"

§ corresponds to rotating the VCS along the x axis

o to rock the camera (like tilting your head left and right)

§ let Peye - Pref be the normal vector of a plane A

§ change Vup so that its projection onto A "rotates" left and right

§ corresponds to rotating the VCS along the z axis

o Vup represents a general "upwardness" for the camera

• view matrix

o first express camera in terms of world:
o [1 0 0 Peye,x] [ux vx nx 0]
o Mcam = [0 1 0 Peye,y] [uy vy ny 0]
o [0 0 1 Peye,z] [uz vz nz 0]
o [0 0 0 1] [0 0 0 1]

o then invert Mcam to express world in terms of camera:
o [ux uy uz 0] [1 0 0 -Peye,x]
o Mcam

-1 = [vx vy vz 0] [0 1 0 -Peye,y]
o [nx ny nz 0] [0 0 1 -Peye,z]
o [0 0 0 1] [0 0 0 1]

• so PVCS = Mcam
-1 PWCS

OpenGL

• performs these calculations internally with a call to gluLookAt()

• code:
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(Peye,x, Peye,y, Peye,z, Pref,x, Pref,y, Pref,z, Vup,x, Vup,y, Vup,z);

Example

• scene with camera at (4,4,4), pointed at (0,1,4), with up vector (0,1,0)

• (4,4,4) - (0,1,4) (4,3,0)
• n = --------------------- = ----------- = (4/5,3/5,0)

• | (4,4,4) - (0,1,4) | | (4,3,0) |
•
• (0,1,0) × (4/5,3/5,0) (0,0,-4/5)
• u = ------------------------- = -------------- = (0,0,-1)
• | (0,1,0) × (4/5,3/5,0) | | (0,0,-4/5) |
•
• v = (4/5,3/5,0) × (0,0,-1) = (-3/5,4/5,0)
•
• [0 0 -1 0] [1 0 0 -4] [0 0 -1 4]
• Mcam

-1 = [-3/5 4/5 0 0] [0 1 0 -4] = [-3/5 4/5 0 -4/5]
• [4/5 3/5 0 0] [0 0 1 -4] [4/5 3/5 0 -28/5]
• [0 0 0 1] [0 0 0 1] [0 0 0 1]

• check

• [4] [0] [4] [1]
• Mcam

-1 [4] = [0], Mcam
-1 [4] = [0]

• [4] [0] [3] [0]
• [1] [1] [1] [1]

2. Projection Transformation – projection matrix

Derivation

• maps points in VCS to NDCS

• see Hill, lecture notes for derivation
o [x] [1 0 0 0] [x]
o [y] = [0 1 0 0] [y]
o [z] [0 0 1 0] [z]
o [-z/d] [0 0 -1/d 0] [1]

OpenGL

• code for perspective projection:

• glMatrixMode(GL_PROJECTION);
• glLoadIdentity();
•
• gluPerspective(fovy, aspect, near, far);
• or
• glFrustum(left, right, bottom, top, near, far);

• gluPerspective()

o fovy

§ field of view in the y-direction, centered about y = 0

§ in degrees

o aspect

§ aspect ratio that determines the field of view in the x direction

§ ratio of x (width) to y (height)

o near

§ in camera coordinates

§ close to 0 (but not 0)

o far

§ in camera coordinates

• glFrustum()

o left, right, bottom, top, near, far

§ specifies the clipping planes of the view volume explicitly

§ in camera coordinates

