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Abstract
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Doctor of Philosophy
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2011

In recent years there has been significant progress in siageéhe scope, accuracy and
flexibility of 3D photography methods. However there ark sijnificant open problems where
complex optical properties of mirroring or transparenteaig cause many assumptions of tra-
ditional algorithms to break down.

In this work we present three approaches that attempt tordttasome of these challenges
using a few camera views and simple illumination.

First, we consider the problem of reconstructing the 3D tpmsiand surface normal of
points on a time-varying refractive surface. We show thai tiewpoints are sufficient to
solve this problem in the general case, even if the refraatiex is unknown. We introduce a
novel “stereo matching” criterion callgdfractive disparity appropriate for refractive scenes,
and develop an optimization-based algorithm for indiviueeconstructing the position and
normal of each point projecting to a pixel in the input views.

Second, we present a new method for reconstructing thei@xtrrface of a complex

transparent scene with inhomogeneous interior. We captages from each viewpoint while



moving a proximal light source to a 2D or 3D set of positionsgrgg a 2D (or 3D) dataset per
pixel, called thescatter-traceThe key is that while light transport within a transparergrses
interior can be exceedingly complex, a pixel's scatterddaas a highly-constrained geometry
that reveals the direct surface reflection, and leads to plsitcatter-trace stereo” algorithm
for computing the exterior surface geometry.

Finally, we develop a reconstruction system for scenes reillectance properties ranging
from diffuse to specular. We capture images of the scene igsilluminated by a planar,
spatially non-uniform light source. Then we show that if #oairce is translated to a parallel
position away from the scene, a particular scene point iateg a magnified region of light
from the plane. We observe this magnification at each pixdlsirow how it relates to the
source-relative depth of the surface. Next we show how Klidn relating the camera and

source planes allows for robustness to specular objectseangiery of 3D surface points.
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Chapter 1

Introduction

“Vision is the art of seeing what is invisible to others.

-Jonathan Swift

One of the core elements of the human visual system is “degtbeption,” which en-
ables us to analyze our world and perform many tasks whicHdwvotlnerwise be extremely
challenging or impossible. Depth perception is also an iti@pd component in artificial vision
systems, however certain optical properties of everydages often make this task much more
difficult. While the human visual system is generally quaity robust to optics involving
mirrors, transparency and scattering media, these prepaften confound artificial systems.
While artificial systems have much greater quantitative ipr@ae, we would like to be able to
add the same kind of robustness as in biological systems.

The 3D scanning of objects for synthesis in virtual envirents is an important moti-
vation for this work that requires both robustness and dtzne accuracy. The quality of
rendering or simulation of virtual environments has adeahto such a degree that one of the

primary limiting factors in virtual images is the detail ine geometry. Many hours are re-
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d) e)

Figure 1.1: Everyday example scenes that have challengitigab properties. Mirror reflec-

tion: all. Transparency: b), d) and e)
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quired to manually generate the required detail to matclsreaso it makes more sense to
scan the geometry from the real world. Real world objectsnofteesent complex optics and
transparency making it important for scanning techniqadxetable to deal with such phenom-
ena. This same scanning procedure is also vital for presgthie world’s cultural heritage, as
fragile archaeological artifacts can be preserved in ttaamer and virtual museums can allow
people across the globe a unique perspective on such #stifAnother potential application

of such vision systems is in quality assurance and inspe&tiothe manufacture of glass or
plastic products that exhibit transparency. For instagtass flow regulators for intravenous
machines currently must be painstakingly and manually @xadto ensure that no defects are

present.

One of the major challenges in trying to scan such objectsathey do not have intrin-
sic appearance, but rather they redirect the incident frgim the background either through
reflection of refraction. This makes them very difficult t@sawvith a traditional laser scanner
without resorting to special optics [7], immersing them,[523] or directly coating the ob-
jects [37]. While simply coating such objects with a paint omger that has much simpler
reflectance properties might appear to be a good work-ardbisdpresents several problems
in itself. First, this requires potentially undesirablentact with the target objects, and objects
that are precious artifacts or glass may be extremely #agid the coating process may eas-
ily damage them. Second, if the objects do have some colaorekiured parts these will be
obscured by a general coating. Finally, the coating itsdlfsubtly change the shape of the
object and will tend to fill in cracks or nooks, artificially siwthing the shape. Without great

care coating can easily be uneven and add spurious bumpgeos.la

Despite its chemical simplicity, water exhibits many of thest challenging optical prop-

erties and both oceanography [23, 58, 64, 136] and fluid nmecti§d 1] are important domains
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that would benefit from accurate and rapid perception of imatel waves. It is also impor-
tant for robots to be able to navigate scenes that may exduloi properties. For instance,
the recent development of rescue robots for people trappbdardous environments could
certainly benefit from navigating around broken glass omggthirough flooded environments.
The problem of capturing the shape of scenes has been a pifiotars of computer vision
research. Initial work predominately made significant sifpimg assumptions about the re-
flectance properties of the scene, generally assuming desthffuse reflectance model [105,
109]. More recently, attempts have been made to generalizednes with more arbitrary
reflectance models [45, 61, 122, 125, 140, 142]. While thegaraets are important, there has
been little work on dealing with even more general scendsniag contain both opaque and

non-opaque structures as well as a variety of reflectanqeepies and indirect light transport.

1.1 Contributions

The goal of this work is to show that 3D photography methoasbsaused to recover the shape
of general scenes containing transparent and shiny olijgatsaking use of controlled diffuse
illumination patterns and simple multi-view camera system

Here is a summary of specific contributions made in this thdsincludes expanded ver-

sions of some work that has previously been published [84, 85

e A system for finding stereo correspondences at each frameteiporally dynamic
refractive liquid. These correspondences can then be osetdover the 3D points and
normals on the surface as well as its refractive index. Wetloan display novel views

using the recovered geometry.

e A system for reconstructing 3D points and normals of glags specular surfaces by
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modeling direct reflection in order to be invariant to indireght that may be internally

transmitted or caused by inter-reflections.

e Afast method for recovering the depth of scenes with gemefigictance properties from

a monocular view with simple active illumination.

1.2 Overview

In the next chapter we cover the necessary background mld@rihis work. We discuss the
types of geometric representations that are often reaaristt as well as a discussion rafy
opticsand the physical and optical properties of scenes. The riegiter covers our work
on the 3D reconstruction of dynamic transparent surfacesxt We present our approach to
recovering the exterior surface of reflective and inhomeges transparent surfaces. Then we
cover our work that uses a related illumination method t@vec depth from general scenes

from a single camera. Finally we present our conclusions.



Chapter 2

Background

“Never bring the problem solving stage into the decision mglgtage. Otherwise, you

surrender yourself to the problem rather than the solution.

-Robert H. Schuller

There has been significant progress in 3D photography argeithased measurement tech-
niques in recent years. The shape of more and more complegscan be measured to higher
precision. In this chapter we present and categorize mathesé advances as well as examine
what open areas and unanswered questions remain. In thksweoare primarily concerned
with the 3D reconstruction of surfaces. Given this, we wiitfiexamine the various ways that

surfaces can be geometrically represented as well as tigsiqal interaction with light.
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2.1 Geometric Representations

2.1.1 Depths

The first and most basic representation of shape is in thedbdapth maps. For a given image
of the scene, we defirqaxel raysas vectors originating at the camera center of projecti@h an
passing through the center of each pixel into the scene. Wearasa simple pinhole camera
projection model. A depth map consists of an assignmenteoyguixel of depth, that is the
distance from the center of projection to the first interisecdf the pixel ray with a surface in
the scene (see Figure 2.1).

Depth maps are often the output of stereo systems wherespomnding features are found
in the images taken from two or more viewpoints of the scef®&][1These correspondences
define rays from each center of projection into the scenedbmterge at a particular depth.
The depth map is created from the depths assigned to pixelpafticular ‘reference’ image

selected from the available images.

2.1.2 Normals

Normals are defined as vectors perpendicular to the tan¢gme pt a surface point. A normal
map consists of an assignment to each pixel of the normaéatitiface point projecting to the
center of each pixel (see Figure 2.1).

Normal maps can be obtained by reconstruction methodsakainto account the shading
of an object such as photometric stereo [131] or shape fradisp [51].

A normal map models the surface as locally planar facets Yeweis often more accurate
to measure the local surface projecting to a pixel as a daleof planar micro-facets, each

with their own normal [88]. These normals can be collectéd anhistogram of directions and
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can be used to better represent rough materials.

2.1.3 Point Clouds and Surfels

While the previous two representations were image spepibiot cloudsandsurfelsrepresent
the surface of an object as a disconnected “cloud” of 3D ggiatssibly with associated sur-
face normals (in the case of surfels). Point clouds may beirdd from sparse multi-view
reconstruction approaches that are not constrained totiaylar reference image [35]. They
are also the typical output of laser scanners. Reconstgittienshape of surfaces from a point
cloud is a challenging and open problem [60]. The additioramal information stored in
surfels allows for improved reconstruction algorithmsezsally when the frequency of noise
in the normals data is different from the point data. Foranse, 3D points often contain high
frequency noise, while normals often exhibit lower freguenoise. By combining the two we

can achieve significantly improved results [63, 91].

2.1.4 Meshes

The previous representations defined the local positioroaedtation of the surface at distinct
points, whereameshesre a piecewise linear representation of the surface. Meshresist of

verticeswhich are 3D points that approximately lie on the surfacee Vértices are connected
by lines callededgesand edges that are coplanar form polygofagies Meshes are useful
for visualization, surface smoothing [49] and normal eation when explicit normals are

unknown [114].
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Figure 2.1: Examples of different geometric represemastior a cone.
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2.2 Physical Properties and Models

2.2.1 Radiometry

Radiometry deals with the measurement of electromagnediatran including visible light.

We first define the terms and physical quantities involved:

Radiant energy The energyQ, emitted from or absorbed by a surface during time intetval

and measured in Joules)(

Power The radiant powef is the rate of energy emission or absorption and is measuared i

Watts (1) or Joules per second §1):

dQ,

@:
dt

: (2.1)

Incident irradiance The power received per unit surface afganeasured in Watts per meter

squared {Vm—2).

Solid angle The ratio of a portiort' of the surface area of a sphere to the squared radius of the

sphere, measured in steradiang) (

Radiance The rate of emission or absorption at a surface per unit fiorésned area in par-
ticular direction. Radiancd. is measured in Watts per steradian per meter squared
(Wm™2sr—1). For example, to measure radiance at an infinitesimal &ttpton a sur-
face, with incident light coming from an emitting surfaceqa we would first project
this patch onto the point’'s hemisphere to find the solid anfjien we need a cosine term
to govern the angular foreshortening. So the radidige w), at pointp and coming in

directionw, is then given by:
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Figure 2.2: Geometrical properties of radiance.

d*®

I -t
(p,w) cos OdwdA’

(2.2)

wheredw is the solid angle of the projected patéhs the angle between the surface nor-
mal and the incident direction, anld is the area of the patch aroupd See Figure 2.2
for the geometry. Irradiance can also be expressed in terars iategration of radiance

over the hemisphere of directions:

E(p) = /m L(p,w) cos Odw. (2.3)
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2.2.2 Bidirectional Reflectance Distribution Functions

Reflection of light on most opaque surfaces can be describédeblgidirectional reflectance
distribution function (BRDF) [92]. This function relates ident irradiance to exitant radiance

for any pair of directions as follows:

dL(p, (IJO)
L(p,&;) cos O;dw;

fr(pa&\}ia(bo) = (24)
The BRDF is the quotient of the exitant radiancg@, &,) from directionw, over the inci-

dent irradiance from directiof; at the patch aboyt measured inr—!. The BRDF in general

is a function of four angular dimensions, two each for thedant and exitant directions. Note

that the two directions are constrained to be within the Bphere around the surface normal.

We can reduce the angular dimensionality to three in the chs®tropy, where there is
rotational symmetry in the BRDF around the surface normal. BRafRhkis type are called

isotropicas opposed tanisotropic

Another property of BRDFs is Helmholtz reciprocity [128], iates that the roles of inci-
dent and exitant directions can be reversed because of tbadéaw of thermodynamics. In

particular, the following equation holds for any BRDF:

fr(p, @i, &o) = fr(P, @0, Di). (2.5)

BRDFs are also subject to the law of energy conservation: tihected energy must not

exceed that which is received.
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Figure 2.3: Refraction at an interface.

2.2.3 Snell's Law

So far we have only considered opaque surfaces, howeveptieant materials allow the trans-
mission of light through a surface. In this case, the dicgctif travel depends on the ratio of the
refractive indices on either side of the surface [10]. Tkifsaction occurs in the plane defined
by the direction of incidence and the surface normal and igéeaof refraction is described by

Snell’s law:

risinf; = rysinf,, (2.6)

wherer; andr, are the refractive indices of the two mediais the angle between the incident
direction and the surface normal, afids the angle between the transmitted direction and the

surface normal (Figure 2.3).
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Refractive indices depend on wavelength. As a result, refracauses spectral separation
or dispersion of chromatic light. This is often demonsuldby the transmitted ‘rainbow’ of

colors as a beam of white light is refracted through a prism.

2.2.4 Reflection Models

Reflection at a surface depends greatly on the material anddaie surface structure. We can

categorize most types of reflection into three broad types ksgure 2.4):

Diffuse reflection This model describes a scattering process that causeddidat reflected
evenly in all directions. This type of reflection is also kmoas Lambertian reflectance
[71]. Materials that are rough at the micro scale tend to i type of model however
significant roughness can be more accurately modeled by tee-Rayar reflectance

model [95].

Specular reflection When incident light strikes a polished surface and it reflect®ss the
surface normal such that the outgoing angle is equal to ttident angle, we call this
specular reflection. Mirrors and most transparent objedighé strong specular reflec-

tion.

Glossy reflection Many materials exhibit a specular lobe of reflection aroumel $pecular
direction, rather than an impulse. This is caused by fineesiafface irregularities on an

otherwise smooth surface and we call such materials ‘glossy

There are many more specific types of reflection such as edfizotion and subsurface scat-

tering [72,81]. Many computer vision algorithms are spedidi a particular type of surface
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Diffuse Specular Glossy

Incident ray Incident ray Incident ray
n n n

Figure 2.4: lllustrations of the different reflectance misde

reflectance model, however some materials have BRDFs thattdzasily fit into these cate-
gories and can cause 3D reconstruction algorithms prolkééme they violate the algorithm’s

underlying assumptions about the scene’s BRDFs.

2.3 Appearance Modeling

In this section we examine techniques that extract radioon@t material properties from im-

ages without reconstructing the shape of the target scene.

2.3.1 Environment Matting and Extensions

Environment matting techniques were designed to capteragpearance of specular and trans-
parent objects by blending a foreground opacity matte viiéhidtackground in those areas that
are transparent or reflective. These methods model the texfler transmitted appearance
without computing the foreground object’s shape. In gdneraequence of patterns is dis-
played around the object so that the background regionsribptto each pixel by either re-

fraction of reflection can be determined [143]. This proaeas extended to allow for dynamic
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transparent objects [21] as well as to remove the necesstheaalibrated camera and pat-
terns [130]. Another extension allows for the simultanecaysture of environment mattes, the

approximate shape and reflectance properties of trangpabtts [82].

2.3.2 Separating Reflection Components

Diffuse reflection can be separated from specular refleatiother certain conditions such
as color differences between specular highlights and tffesdi scene [80, 118], polariza-
tion [126] and stereo constraints [75]. By identifying th#use component we can use simpler
algorithms to process a scene as if only diffuse materiate weesent.

The direct reflection component has also been iterativgdgrsged from light that has un-
dergone multiple reflections with the scene. This can be @oitant preprocessing step for 3D
reconstruction since most algorithms assume only dirdlegtateon [90]. More recently direct
reflection has been separated from more general indirddt thgit also includes sub-surface
scattering and other volumetric effects [89].

The reflection component has also been separated from tirsrtithed component for im-
ages of planar transparent objects [73, 106]. This decomiposs strongly under-constrained
so significant assumptions such as images with differerdrizaition [106], natural image

statistics [73] or user interaction are required.

2.4 Shape Reconstruction of Diffuse Scenes

While the methods described in the previous sections cafhtaigpecific radiometric properties
of the scene or decompose images into reflectance compeottegtsdo not directly measure

the scene shape. In this section we review algorithms favesing scene shape, beginning
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with algorithms that work under simple reflectance modets@mtinuing with those that deal

with more complex ones.

In order to recover scene shape, we need a model of how lifiatt®off of the surface of
objects. Under the diffuse reflection model the outgoingamack of a particular surface patch
does not vary with viewpoint. What is also often implicitlysasned is that objects in the scene
are opaque and indirect lighting such as inter-reflectiorsuibsurface scattering are treated as

insignificant in order to simplify the reconstruction alglms.

Methods such as stereo reconstruction often rely on thisehtodind correspondences in
two or more images of a scene point. Given such a correspoadéamngulation allows for
depth reconstruction. A review of the developments in twewstereo is available in [105].
Multi-view methods generalize this approach to includeadedm more views and have been

extensively researched [109].

While these methods do an admirable job of reconstructingesheveryday scenes fre-
guently violate the diffuse reflectance model. In the foilogvsections we will look at work

that applies to broader classes of materials.

2.5 Shape Reconstruction of Non-Diffuse Scenes

Simple diffuse reflection models are insufficient for 3D nesiouction of general scenes with
complex reflectance properties. Rather than performing er ldgcomposition or treating
glossy or specular highlights as outliers [11, 134], it isgble to take advantage of optical

and geometric constraints to perform 3D reconstructionsumh scenes.
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2.5.1 Multi-view Approaches

The reciprocity of BRDFs (Section 2.2.2) has been utilizedrtabte stereo on scenes with
general BRDFs [79,125, 141, 142]. These approaches use Heétnstbereopsis, where the
positions of a point light source and camera are interchdbg@®btain stereo pairs such that
the appearance of corresponding image points are invdaddné BRDF of scene points. This
of course does not deal with indirect light, and speculanisoivould still be challenging to
recover since they would not reflect light significantly imagpecular directions.

Another approach takes advantage of the fact that for lighident at a patch from a fixed
direction and for a fixed outgoing direction, the reflectediaace scales proportionally to the
power of the light source. So under these conditions, if thece power is multiplied by a
factor k, the outgoing radiance also scales by the same factor. Ing2gtereo constraint is
presented where a scene under non-isotropic illuminati@bserved by two cameras and the
illumination power is varied by a factdr. This can be accomplished with a non-isotropic,
directional source that is rotated between images andehids|to a stereo constraint that is
used to reconstruct scene depth. The advantage of thisagpiothat it is independent of the
BRDF, however the method fails for highly glossy and mirr&elspecular materials where the

constraint can only be applied to points that specularlgcefight toward the camera.

2.5.2 Photometric Stereo and Monocular Approaches

Example-based photometric stereo methods rely on an atientconsistency invariant to re-
construct objects with arbitrary BRDFs. Orientation comsisy states that, under illumination
from a distant point source and orthographic viewing, twdese points with the same surface

normal and the same BRDF result in identical image irradianée46, 122]. To reconstruct
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an object of unknown shape we add to the scene a referenca wlifle known shape and the
same BRDF as the target object, and capture images from mdrtysbgirce positions. We
accomplish this by finding correspondences between the geavbject and the target object
where the irradiance is the same in all input images. Thushéyrientation-consistency in-
variant, the normal on the unknown object can be copied fr@mbrmal of the example object
producing a normal map for the unknown object. This work wasreded to deal with self-
shadowing in [122] and to allow multiple BRDFs on the targetecbj46]. The approach is
limited by the strong orthographic viewing assumption;iagspecular objects are challenging

to reconstruct for the reasons mentioned in Section 2.5.1.

In [48], BRDF slices are acquired from a fixed viewpoint by vagyihe illumination source
position. Then surface normals and tangent vectors arelfpbatometrically, by taking advan-
tage of symmetry in the BRDF slices. While this method is not detefy BRDF-invariant, a
wide variety of materials can be dealt with. In [5] photorestereo is extended to estimate
the surface normals of spatially varying isotropic matsridhe technique utilizes the inherent
symmetry of isotropic BRDFs, and does not apply to more genpaéentially anisotropic
BRDFs that may be spatially varying. Photometric stereo hses béen extended to deal
with glossy surfaces by taking advantage of light ray dicgctues from the target object’s

shadow [22].

Based on the observation that color space transformationbeased to effectively sep-
arate diffuse and specular reflection [80], various col@acspinvariants have been used to
reconstruct some non-diffuse scenes [140]. The perforemmahthese approaches depends on

the angular difference in the color space between the difusl specular colors.
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2.6 Shape Reconstruction of Specular Scenes

While many of the techniques described in the previous seatie not suitable for reconstruct-
ing perfectly specular objects, there is a significant bddyark that has been dedicated to the
reconstruction of such scenes. Perceptual analysis ofiggecenes shows that the movement
of specular highlights improves human observers’ shapidigation [32, 57]. This suggests

that there are shape cues available to artificial systenaoeiyne standard shading cues [51].

2.6.1 Highlight Tracing

A highlight is a distorted reflection of a point light source @ specular surface. Stereoscopic
observations of specular highlights have been used to sni¢ace curvature information [12].
Highlights have also been used to iteratively grow the slidgpecular surfaces from known
“seed points” on the surface using several images fromréiffieviewpoints [108]. Sanderson
showed how specular highlights could be used to recovesspapths on the surface using
stereo views, showing that with a single view there is annehteambiguity between surface
orientation and depth. More recently, highlights of a kndigiht source on a specular sur-
face were tracked and used to iteratively update a hypatb@snodel of the specular object’s
surface [113]. One of the main drawbacks of these methodmaighey deal with point light
sources. This makes it is difficult to get broad coverage e&tlrface since highlights are gen-
erally very localized. In [137], a toroidal light source wased to create extended highlights
on specular objects and then used to recover depth as thet elge rotated relative to the
source and camera. While this improves coverage, many inzagesill required as the object
is rotated.

Recently, dense specular flow caused by relative motion legh@esmooth specular object
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and its surrounding, unknown environment has been shownable shape estimation of the
surface by solving a PDE [1]. This has since been simplifie¢dybining several distinct

flows that allow for a linear solution [127].

The analysis of specular highlights has also been appligtbssy surfaces in [18, 33]. A
dense sampling of highlights was used in [18] and in [33] @pning filter was used to isolate
the specular component and recover surface orientationelaked approach for recovering
fine scale depths of specular or partially specular obj¢t®9], uses a parabolic mirror to
focus coaxially aligned illumination rays and viewing ragsa point on the target surface.
The incident illumination is varied over the surface of thierar, covering a range of incidence
angles and the response measured. A dense normal map isoheerrttie surface by computing
the bisectors of the incident and outgoing rays for pointshensurface as the position of the

mirror is shifted to scan the surface.

2.6.2 Laser Scanning of Specular Scenes

Laser range-finders have also been adapted to reconsteushéipe of specular objects [7].
This is done by restricting the angle of the incident lightat@ingle direction by attaching
several parallel plates at an angle in front of the CCD elemdifits vertical plates, along with
a horizontal slit collimate the incident light to a narromge of angles, allowing approximate
surface triangulation. The problem with this approach & the object must be rescanned

many times from different angles to capture all of the swefacrmals present on the object.
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2.6.3 Dense Calibrated Pattern Approaches

More recent work has approached the problem by using deafbrated patterns placed so
that their reflection can be observed from the camera. Krgpwhe 3D location of points
on the reflected pattern is still insufficient to overcome depth/normal ambiguity from a
single view (Section 2.6.1), since there are a family of de@tind normals that could explain
the given reflection. This problem is solved by either mowimg pattern to a second position,
constraining the reflected rays, or by using a second viewtibahypothesized depths [15, 16,
62,69, 119]. These techniques are advantageous becaysec¢beer dense depth and normal
maps and make no assumptions about surface continuity.

By calibrating a dense geometric pattern of lines, it is gmedb recover the shape as well
as curvature properties of a specular object that refleetpdktern by observing the distortion
this reflection causes [103].

In [77] an object was illuminated by a sequence of dense gnagiatterns and observed
with and without a polarization filter. The addition of thelgazation filter allows for both

specular and diffuse image normal maps to be created.

2.7 Shape Reconstruction of Transparent Media

While transparent objects are specular in nature and it mpgaahat many of the specular re-
construction algorithms in Section 2.6 can be directly eggjio them, the algorithms were not
intended to be robust to the additional optical phenomesacieated with transparent objects.
Early work on the reconstruction of refractive surfacesamem photogrammetry [31, 47,
78,93]. These techniques assume a low-parameter modeltfansparent surface (e.g., a

plane) and solve a generalized structure from motion probiewhich camera parameters,



CHAPTER 2. BACKGROUND 23

surface parameters, and 3D coordinates of feature poildg/like surface are estimated si-

multaneously.

2.7.1 Tomographic Reconstruction

Transparent objects have been reconstructed using toptoghkmsed approaches that measure
the attenuation of light passing through the object [14]1RB3[123], transparent objects were
immersed in a cylindrical column of liquid that was matchedhe object’s refractive index.
Assuming that the object has homogeneous density and isechlitnages of the object with
back-lighting allow for a tomographic reconstruction. Wtiba object is not colored, a dye
can be used in the immersing liquid instead. Again, the dlnjecst be homogeneous and any
opaque parts would prevent reconstruction. Requiringdigmmersion limits this technique’s

applicability.

2.7.2 Fluorescent Immersion

In related work [52], transparent objects were immersedliguad matching the object’s re-
fractive index. The liquid was infused with a dye that flu@eswhen illuminated by a laser.
Then the object was scanned by sheets of laser light and @iéwm a perpendicular direc-
tion. Since only the liquid contains the dye and lights upe, tfansparent objects leave voids
in the images and a volume representing the object can bastuaoted. Even if the liquid
is not matched in refractive index, the object’s surfaceesao the laser scanner can still be

recovered.
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2.7.3 Polarization-based Reconstruction

When light reflects off of a surface, a fraction of the light bees polarized in the direction
of the surface normal. The phase of the reflected polariggd éncodes the orientation of the
reflection plane which is defined as the plane spanned by tifeceunormal and the incident
ray [100].

Several methods exist for determining the surface normae time reflection plane is deter-
mined. One technique is to use a second view to constraindheah to an epipolar line
and then use a global minimization approach to solve for tirfase normals as well as
depths [100].

Another approach assumes surface smoothness and thatrthason the object’s silhou-
ette are perpendicular to the viewing angle. Once the séttemormals are determined, degree

of polarization images are used to propagate the recotistnuo the rest of the object [83].

2.7.4 Shape from Distortion

The apparent distortion of the background by a refractiyecilhas led to a number of methods
for recovering the shape of the transparent object. Onersethod for inferring the shape and
pose of transparent objects uses a sequence of images difj#éoe foom a moving camera [9].
Features are tracked throughout the sequence as they togeatidy the transparent object
and an objective function that characterizes the shape asd @f the transparent object is
minimized. In order for this procedure to be tractable, tget objects are constrained to
single parameter, homogeneous shapes such as supereguadri

An alternative approach models the distortion caused byraateng surface as a multi-

perspective projection of the background. In the case ofaesatnmersed in a planar refractive
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Figure 2.5:Light path triangulation for a transparent object

medium, the projection associated with this as well as dlon procedure is outlined in

[121].

A framework for reconstructing homogeneous transpargettdwas also proposed in [70]
where light rays are traced through the target object amiisatted with a pair of known pat-
terns (Figure 2.5). The rays are assumed to have exactlyntersections with the transparent
object, entering and exiting it. Three viewpoints are theaded to reconstruct the 3D positions
and normals of the intersections with the refractive objé¢hile, this work contributes to the
reconstruction of more general transparent objects, iilldimited to homogeneous objects

with only two surface interfaces per ray.
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2.7.5 Reconstruction of Dynamic Transparent Media

Shape from distortion techniques have also been applidietproblem of 3D reconstruction
of dynamic refractive surfaces, most often for water, whesactive index is often assumed to
be known [3,59, 87,93, 132]. In these approaches, the 3Desbidhe water surface is recov-
ered by analyzing the distortion of a planar pattern thahimérsed in the water. Since a single
image is insufficient to fully reconstruct the 3D shape, aetgrof assumptions have been used
to constrain the problem. These include statistical astiomgpabout the pattern’s appearance
over time [87], known average water height [59, 93], and spexptics [64,136]. These as-
sumptions break down when the refractive index is unknowwtoen the liquid undergoes
significant deformations that cause changes in shape aglthei

Another approach uses the idea of multi-perspective caneraodel the distortion caused
by a refractive surface. This is done by tessellating thgetasurface into a triangulated mesh
and treating each triangle as a linear warping function. Waging can simulate either re-
fraction or reflection and can be modeled as multi-perspegrojection [27,28]. Once the
parameters of the warping functions are estimated thisleatheasures for the Gaussian and
mean curvatures of the surface. While these measuremeetsngportant information about
the surface, they are insufficient to reconstruct an unanahbig 3D surface.

Yet another technique for reconstructing dynamic trarspesurfaces is known as “shape-
from-refractive-irradiance” [23, 58, 64, 136]. This apach utilizes a gradient pattern beneath
the surface. Light is emitted from this pattern and passesitfh a collimating lens so that
certain intensities or colors correspond to parallel liglyts and are then refracted by the sur-
face to the distant camera. This has the result of assagiatitor or intensity with particular
surface slopes.

While the tomographic approaches in Section 2.7.1 were @nst to static objects, to-
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mographic approaches have also been adapted to work widmdgriransparent liquids [38,
54]. If the liquid is infused with fluorescent dye and viewadough a filter, it can be consid-
ered self emitting. Then image irradiance can be relatdugdistance the observed rays travel
within the liquid. This distance is also dependent on théiat angle, since refraction occurs
at the liquid surface. Images from multiple viewpoints asedito minimize the error between
the expected emission from a hypothesized surface andftin abservations. In [6], dynamic
sequences of transparent gas flows with spatially varyifigaive index were captured using

Schlieren tomography with input from an array of cameras.

2.8 Summary

While the work presented in this chapter represents signifigaogress toward reconstructing
scenes with truly general reflectance properties and temaspy, there are still significant gaps
remaining. Most of the methods described cannot span theafude of materials from diffuse
to fully specular and isotropic to anisotropic. In additionter-reflections between objects
violate the assumptions of most of the algorithms descrédtexye. In some cases this could be
overcome by performing a layer decomposition of the diract iadirect light as described in
Section 2.3.2, before running the reconstruction algor#tion the direct component. However,
this would still be subject to the same shortcomings of tiged@ecomposition algorithm such
as in the case of specularities or caustics.

The current state of the art for 3D reconstruction of transplascenes has either a limited
scope of what can be measured (normal maps, curvature p@raroe parametric properties),
or special equipment required for scans such as liquid irsimer In addition there are con-

straints on the properties of target objects, such as honeoyes materials, planar faces, and
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number of ray intersections. This raises several questido® we reduce the constraints im-
posed by current methods, especially those restrictimgpa@ency to homogeneous materials
and simple geometric shapes? Can we apply stereo or multiteiehniques to this problem
and that of dynamic transparent scenes?

Further measurement of optical properties of transparbjgicts such as dispersion and
refractive index estimation has yet to be fully explorednafly there has been little work on
creating unified reconstruction algorithms for both diéfuend specular materials as well as

transparent objects.



Chapter 3

Dynamic Refraction Stereo

“Only a fool tests the depth of the water with both feet”

-African Proverb

3.1 Introduction

Modeling the time-varying surface of a liquid has attractied attention of many research
fields, from computer graphics [21, 30, 76, 86] and fluid meats[41] to oceanography [23,
58, 64, 136]. While great strides have been achieved in theldlement of computer simulators
that are physically accurate and visually correct [30, €¢&pturing the time-varying behavior
of a real liquid remains a challenging problem.

From the point of view of computer vision, analyzing the babaof liquids from videos

poses several difficulties compared to traditional 3D py@phy applications:

e No prior scene modelSpatio-temporal evolution is constrained only by the laifud

mechanics, making it difficult to assume a low-degree-e&fltom parametric model for

29
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refraction planes
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Figure 3.1: Geometry of refraction stereo. The goal is temstruct for each pixaj, the 3D

position and surface normal of poipton the refractive surface.

such a scene [9, 135].

e Non-linear light path:Liquid surfaces bend the incident light and, hence, a paidvo

the surface will project along a non-linear path to a viewmpabove it.

e Shape-dependent appearance modulatidbsorption, scattering and Fresnel transmis-
sion cause the appearance of points below the surface todepethe light's path and,

hence, on the surface shape [34].

e Turbulent behavior:Liquid flow is an inherently volumetric phenomenon whose eom
plete characterization requires capturing both its tiragmng surface and a vector field

describing internal motion [138].
¢ Instantaneous 3D capturé&ince liquids are dynamic and can flow rapidly, shape recov-

ery must rely on instantaneously-captured information.

As a first step, in this paper we consider the problem of recocting the time-varying

3D surface of an unknown liquid by exploiting its refractimeperties. To do this, we place a
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known, textured pattern below the liquid’s surface and wapimage sequences of the pattern
from two known viewpoints above the liquid (Figure 3.1). Gacus is on imposing as few
restrictions as possible on the scene—we assume that thid hg@s a constant but unknown
index of refraction and that its instantaneous 3D shapéigrary, as long as light coming from

the pattern is refracted at most once before reaching the in@wpoints.

The reconstruction of refractive surfaces from photogsdps a long history in photogram-
metry [31, 47,78, 93]. These techniques assume a low-paeamedel for the surface (e.g., a
plane) and solve a generalized structure from motion prolohevhich camera parameters, sur-
face parameters, and 3D coordinates of feature points bkwurface are estimated simulta-
neously. In related work, Treibitz et al. [121], show how si@#h system observing a scene im-
mersed under a planar refractive surface becomes muiippetive. They present a calibration
technique to estimate the geometry involved and then re@Weosition of objects immersed
in the refractive medium. In computer vision, the recordtam of time-varying refractive sur-
faces was first studied by Murase [87], whose seminal workded on water (whose refractive
index is known) and followed a “shape-from-distortion” apgch [3,59, 87,93, 132]. In this
approach, 3D shape is recovered by analyzing one distartada of a known pattern that is
placed underwater. Unfortunately it is impossible, in gahdo reconstruct the 3D shape of a
general refractive surface from one image, even if its otifra index is known. The inherently
ill-posed nature of the problem has prompted a variety afirmgsions, including statistical as-
sumptions about the pattern’s appearance over time [8@JyRraverage water height [59, 93],
known points on the surface or surface integrability [120)d special optics [64, 136]. These
assumptions break down when the refractive index is unknmvwmhen the liquid undergoes
significant deformations that cause changes in shape agtith@.g., pouring water in an

empty tank). A different way to approach refractive digtortis to break up the observed sur-
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face into a triangulated mesh, where each triangle acts @sex@ linear camera that warps the
background [27, 28]. Solving for the parameters of these GgiGs the Gaussian and mean
curvature but the 3D shape remains ambiguous. Another conteabnique for reconstructing
water surfaces is known as “shape-from-refractive-iaade” [23, 58, 64, 136]. This approach
utilizes a gradient pattern beneath the water surface. tliggamitted from this pattern and
passes through a collimating lens so that certain int@ssdr colors correspond to parallel
light ray columns and are then refracted by the water suttiatlee distant camera. This has
the result of associating color or intensity with particudarface slopes. This method is most
appropriate for measuring small capillary or wind drivervegand is unsuitable for more gen-
eral use that we are aiming for. Specifically, the lens presvegconstruction of shallow water
as well restricting natural flow in the liquid. Also, the colap nature of an external lens is
bound to introduce additional errors due to distortion ab agelight attenuation in the liquid.
More recent work has focused on tomography based appraaEireg Trifonov et al. [123]
immerse target transparent objects in transparent liqitid aymatching refractive index and
measure the attenuation of a back light through the objeats Yarious views. Then, in [52],
objects are scanned by again immersing them in liquid ifusigh a Fluorescent dye that
responds to laser light. When a laser sheet is passed oveljgw only the dye responds and

contours of the object can be recovered.

A closely related problem is the reconstruction of highlgsgar surfaces such as mir-
rors [12, 40,55, 96, 104,108, 112, 120]. Mirrors interadhviight in much the same way that
refractive surfaces do—light incident at a point is refldcéecording to the point’s surface
normal, thereby tracing a non-linear path. Blake [12] pr&possing a moving observer to
recover the differential properties of a smooth mirror acef from the observed motion of

specularities. Sandersat al [102] were the first to analyze the ambiguities in singleavie
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mirror reconstruction and to propose a stereo camera caafign for resolving them. Our
work, which is based on a novel analysis of two-view ambigaifor refractive scenes, ex-
ploits some of the same basic insights. Recently, there hewe beveral approaches that use
multiple views to recover the 3D shape of mirror surfaces [8562]. While Wang and Dana
use a single view, a parabolic mirror allows surface poiotsd viewed from multiple angles
enabling recovery of high resolution relief and texture paaular surfaces [129]. These ideas
have also been extended to deal with near-specular andyglagaces [18, 33]. In addition,
the specular flow of the environment viewed on a mirror swiaas been shown to give shape

cues even for unknown environments [1, 127].

Reconstructing transparent liquid surfaces is even moreciggng than mirrors for three
reasons. First, the interaction between light and a miro@schot depend on the mirror’'s ma-
terial properties but it does depend on a liquid’s refracindex. When this index is unknown,
it must be estimated along with 3D shape. Second, the neasiity of light paths cannot be
taken for granted in the case of fluctuating liquid surfasd®se distance from a pattern below
the surface may approach zero, diminishing the effect edctibn. To guarantee stable shape
solutions, a reconstruction algorithm must be immune td slegeneracies. Third, establish-
ing accurate pixel-wise correspondences between pa@@chgheir distorted images is much
easier in the case of a mirror. In liquids, the distortions lanth geometric and radiometric

(due to absorption, Fresnel effect, etc.) and can vary fagnitly from one instant to the next.

The starting point for our work is a novel geometrical reshibwing that two viewpoints
are sufficient to compute both the shape and the refractoexiof an unknown, generic re-
fractive surface. The only requirements are (1) knowledge fanction that maps each point
on the image plane to a known 3D point that refracts to it, @)dight is refracted only once.

Compared to mirrors, this is a stronger two-view result beeatishows that the refractive
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index ambiguity, not present in mirror scenes, can be resohithout additional views.

On the practical side, our interest is in algorithms that capture the detailed dynamic
behavior of free-flowing liquids. To this end, our work hasif@ontributions. First, we for-
mulate a novel optimization criterion, calledfractive disparity appropriate for refractive
scenes, that is designed to remain stable when refractioimidhes. Second, we develop an
optimization-based algorithm for individually reconstting the position and normal of each
point projecting to the input views. The algorithm is closertraditional triangulation [44]
and bundle adjustment [43, 124] than to voxel-based sterglp fnd imposes no constraints
on the liquid’s shape or its evolution. Third, we show thdtaetion stereo can produce a de-
tailed, full-resolution depth map and a separate, fuleh&son normal map for the unknown
surface. To our knowledge, only one other shape recovergadetHelmholtz stereopsis [141],
has demonstrated the ability to compute dense normal mapg alith some depth informa-
tion (although its depth maps were low resolution and deeimacturate). Fourth, we present
experimental results for a variety of complex, deformirguid surfaces. These results sug-
gest that refraction stereo can yield detailed reconstmstthat capture the complexity and

dynamic behavior of liquids.

3.2 Refraction Stereo Geometry

Consider an unknown, smooth, transparent surface thatuwedidy two calibrated cameras
under perspective projection (Figure 3.1). We assume lieegurface bounds a homogeneous
transparent medium (e.g., water or alcohol) with an unknogfractive index. Our goal is
to compute the refractive index of the medium and the 3D doatds and surface normal at

each point on the unknown surface. To do this, we place a kmefenence pattern below the
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surface and compute a pixel-to-pattern correspondenati@umC(q, t), that gives us the 3D
coordinates of the point on the pattern that refracts tol pixat timet. In the following, we
assume that this function is known and concentrate on th&rtemeous reconstruction problem
at timet. We consider the problem of estimating the correspondemuetibn in Section 3.5.
To simplify notation, we omit the time parameter in the fallog discussion.

Let q be a pixel in the input views, |&F(q) be the point refracting tq, and suppose that
this refraction occurs at distandefrom the image plane, at a poip{d) on the ray through
pixel q (Figure 3.1). The relation between pixgland pointsC(q) and p(d) is governed
by Snell’'s law which describes how light is redirected at lboendary between two different

media [34]. Snell's law can be expressed as two independ@amhgtric constraints:

e adeflection constrainestablishing a sinusoidal relation between incoming arigaing
light directions:

sinf, = rsin 0; (3.1)

whered); is the angle between the surface normal and the ray thr@i(gh andp(d);
0, is the angle between the surface normal and the ray througgh ¢i andr is the

refractive index;

e and aplanarity constraintforcing the surface normal @t d) to lie on the plane defined

by pointC(q) and the ray through; we call this plane theefraction planeof pixel q.

These two constraints give us a relation between the pixalpayn 3D point that refracts
to it, and the unknown surface. Unfortunately, they are mdficsent to determine how far
from the image plane the refraction occurs, even when we dwkhe refractive index. This
is because for every hypothetical distance there is a 1Dfggbssible normals that satisfy

the planarity and deflection constraints. Each of these alsrires on the pixel’s refraction
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Figure 3.2: Single-viewpoint ambiguitieseft: A view of pixel g's refraction plane is shown.
Middle: Given a refractive index;, we can find, for each distande to the surface, a normal
that refracts poin€(q) to its corresponding pixej. Right: Similarly, given a distancé,, we

can find, for each refractive index, a normal that refracts poidi(q) to pixelq.

plane and satisfies Eq. (3.1) for some value of the refractkex (Figure 3.2). Hence, the unit
surface normal that satisfies Snell’s law for pigetan be expressed as a two-parameter family,
n(d,r), parameterized by the distanéeand the unknown refractive index, A closed-form
expression for this normal as

i(d) — [i(d) - o] o
li(d) — [i(d) - o] o]

whereA denotes vector product; is the direction of the ray through pixgt andi(d) is the

n(d,r) =1 i(d) Aol ( )+ (r[id) 0] —1)0  @2)

direction of the ray incident to the surface popitl):

o= 9 (3.3)
lc —d
() — c—do—C(q)
@ =e=do—Cla)] 54

When the refractive index has a known valug there is only one consistent normal,

n(d, ry), for each distancé. Sandersoet al[102] were the first to point out that this distance-
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normal ambiguity for a pixed can be resolved with the help of a second viewpbimtuitively,

a second viewpoint allows us to “verify” whether or not a pautar distance hypothesisis
correct (Figure 3.1): given such a hypothesis and given thgionq’ of point p(d) in the
second camera, we simply need to verify that p@ifit/’) on the reference pattern refracts to
pixel q'.

While this hypothesis-verification procedure leads digetctian algorithm when the surface
has a known refractive index, it leaves open the questiomwftb reconstruct surfaces whose
3D shapeandrefractive index are unknown. In this case, the surface abhes in the full,
two-parameter familyN" = {n(d,r) | d,r € R*}. One approach would be to use a third
viewpoint to verify that a hypothetical refractive indexand distancé are consistent with the
pixel-pattern correspondences in the three views.

Rather than use a third viewpoint, we prove that two viewsiafact, sufficient to estimate
the 3D shape and refractive index of an unknown, generiaserfintuitively, generic surfaces
embody the notion afion-degeneraey-they are smooth surfaces whose differential properties
remain unchanged if we deform their surface by an infinitesiamount [66]. As such, they
are especially suitable for modeling the complex, uncairs&d shape of a liquid. Theorem 1

tells us if the liquid’s surface is generic, the family, of ambiguous solutions is discrete:

Theorem 1 N is a zero-dimensional manifold for almost all pixels in th@jpction of a

generic surface.

Theorem 1 holds for continuo@$(q) and suggests that it might be possible to compute the

refractive index of a surface by choosing a single pixahd finding the distance and refractive

1Sandersoret al [102] made this observation in the context of reconstrgctipaque specular, rather than
refractive, surfaces. Their analysis applies equally ¥eethe case of refractive surfaces with a known refractive
index.
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index that are consistent wit(q) and the pixel-to-pattern correspondences in the second
viewpoing. In practice, image noise and the possibility of multiplsadéte solutions dictate
an alternative strategy, where measurements from mujtigkds contribute to the estimation

of the refractive index. We consider the algorithmic imations of this result below.

3.3 Dynamic Refraction Stereo Algorithm

In order to reconstruct a liquid’s surface at a time instanie need to answer three basic
questions: 1) how to compute the pixel-to-pattern corradpace functiorC(q, ¢), 2) how to
compute the refractive index and 3) how to assign a distande@anormal to each pixel?

To computeC(q,t) we rely on a procedure that computes the correspondenceisnior

= 0 and then propagates them through time using optical flounasion.

Since the refractive index is the same for all pixels, we sgelalue that most closely
satisfies the refractive stereo geometry across all pixelsafl frames. We perform a discrete
1D search in an interval of plausible refractive indices,dodeach hypothetical value, attempt
to reconstruct the scene for all pixels and frames. We theons#the value that produces the
smallest reconstruction error. This leads to the followgregeral algorithm, whose steps are

discussed in the following sections.

Step 1 Initialize pixel-to-pattern correspondencé€q, 0).

Step 2 For each frame > 0, estimate 2D optical flow to compu@(q, t) from C(q,t — 1).

2See Appendix A for the proof
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Step 3 For every refractive index € {ry,...,r,}, every frame and every pixel,

e assuming refractive indexfor the liquid, estimate the 3D positignand normai

of the surface point projecting to pixqlat timet

e estimate the reconstruction error (Section 3.4.2),
e(r, t, q) = RE(p,n). (3.5)

Step 4 Set r* = argmin, ), . e(r, ¢, q) and return the distances and normals reconstructed

with this index value.

Step 5 For each time, fuse the pixel-wise 3D position and normal estimates taiokd 3D

surface.

3.4 Pixel-wise Shape Estimation

The key step in refraction stereo is an optimization procedoat assigns a 3D poiptand a
surface normah to each pixel. The procedure assumes that the refractiexihds a known
valuer and computes thp, n that are most consistent with Snell’s law and the pixel-attgrn
correspondence function for the input views.

For a given pixelky, the optimization works in two stages. In the first stage, wedtict a
1D optimization along the ray through pixgl The goal is to find the distanckthat globally
minimizes a novel criterion, called threfractive disparity (RD)This criterion is specifically
designed to avoid instabilities due to degenerate rebma@aths (e.g., when the liquid’s surface
is close to the reference pattern).

The optimald-value gives us initial estimateg,(d) andn(d, r), for the 3D coordinates

and surface normal of a point that projects to pigelThese estimates are further refined in a
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second, bundle adjustment stage in which all five paraméteosfor the normal, three for the

position) are optimized simultaneously.

3.4.1 Measuring Refractive Disparity

Each value of/ defines an implicit correspondence between four known pdigure 3.1):
pixel q, pointC(q) on the reference pattern that refractsjtahe projectiong’ of p(d) in the
second viewpoint, and poidt(q’). This correspondence must be consistent with Snell’s law.

In their work on reconstructing mirror-like surfaces, Baifand Sturm [15] noted that such
a correspondence gives us two “candidate” normalgfd) which must be identical when this
hypothesis is correct. These normals are obtained by aygphyg. (3.2) twice, once for each
viewpoint. Specifically, the first normat, = n(d, r), ensures that poir@(q) on the reference
pattern refracts to pixej via pointp(d). The second normah,, enforces a similar condition
for the second viewpoint, i.e., it ensures that pdiiity’) refracts to pixely’ via pointp(d). We
obtainn, by applying Eg. (3.2) to pixety’, using its distance from poini(d). Since points
on a smooth surface have a unique normal, a necessary confditip(d) being on the “true”
surface is thah; = n,.

Unfortunately, even though it is possible, in principle,dicectly measure the alignment
of vectorsn; andns,, such a measurement becomes unstable when the distanasehédtve
surface and the reference pattern approaches zero. Thesagibe as refraction diminishes,
Eq. (3.2) becomes singular, normals cannot be estimatadatety, and the 3D reconstruc-
tion problem degenerates to standard stereo. In prachisecauses instability for low liquid
heights, making direct comparison of normals uninforneéind inappropriate for reconstruc-
tion.

Instead of measuring the alignment of the two normmglandn, directly, we perform an
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Figure 3.3:Optimization criteria for refraction stereo. (a) Measuring refractiveatisp Normals are
drawn according to the refractions they produce. (b) For small sutfapattern distances, swapping
n; andny does not influence the distance betwe@fy) andt significantly. (c) Measuring image

re-projection error at one of the viewpoints.

indirect measurement that is not singular when refractiomrdshes. The main idea is that
if n; andn, were truly aligned, “swapping” them would still force poi@Yq) to refract to
pixel g and pointC(q’) to pixel¢'. We therefore define the criterion by asking two questions

(Figure 3.3a):

e suppose the normal ai(d) is ny; which point on the reference pattern will refraci{®

e suppose the normal gt d) is n;; which point on the reference pattern will refracid@®

Now suppose that points t’ are the points that refract to pixelsq’, respectively. The dis-
tance betweenh andC(q) and, similarly, the distance betwe#randC(q’), can be thought of
as a measure of disparity. Intuitively, this distance tefi$iow swapping the normais, n, af-
fects consistency with the available pixel-to-patterrrespondences. To evaluate a hypothesis

d we simply sum these distances:
Refractive Disparity

RD(d) = ||t — C(q)|I* + [It' — C(d')[|* - (3.6)
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When the distance between the true surface and the referatteenpis large, refractive
disparity is equivalent to a direct measurement of the aligmt between vectons;, n,, i.e.,
it is zero if and only ifn; = n,. On the other hand, as the liquid’s true surface approaches
the reference pattern, refractive disparity diminishekisTs because the refractive effect of
changing a point’s surface orientation diminishes as wadire 3.3b). As a result, the mini-
mization can be applied to any image pixel for whickq) is known, regardless of whether or
not the ray through the pixel actually intersects the ligqusdirface.

To compute point for a givend-value, we trace a ray from the first viewpoint through pixel
q, refract it at pointp(d) according to normah,, and intersect it with the (known) surface of
the reference pattern. Poititis computed in an identical manner. To find the distandeat
globally minimizes refractive disparity along the ray wesMatlab’sf mi nbnd() function,

which is based on golden-section search [99].

3.4.2 Computing 3D Position and Orientation

Even though refractive disparity minimization yields gaedonstructions in practice, it has
two shortcomings. First, it treats the cameras asymmé{ribecause optimization occurs
along the ray through one pixel. Second, it only optimizesdistance along that ray, not the
3D coordinates and orientation of a surface point. We tloeeefise an additional step that
adjusts all shape parametersgndn) in order to minimize a symmetric image re-projection
error.

To evaluate the consistency pfandn, we check whether the refractions caused by such a
point are consistent with the refractions observed in tpativiews. In particular, leg, q',,
be the point’s projections in the two cameras and suppose thiaare the points on the ref-

erence pattern that refract &g, q',,, respectively, via poinp. To compute the re-projection
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error we measure the distance between pixglsy’,, and the “true” refracted image af t’

(Figure 3.3c):
RE(p,n) = [lap = CT'(®)[I* + [|dp, = CT'(E)* + BG(lp — poll; 0)7F  (3.7)

whereC~1(.) denotes the inverse of the pixel-to-pattern corresporel@umction,G(.; o) is
the Gaussian with standard deviatienandp, is the starting point of the optimization. The
Gaussian term ensures that the optimization will return iatpe whose projection always
remains in the neighborhood of the originally-chosen pixel Steps 1 and 2 of the algorithm
(Section 3.3). We used = 4 and = 200 for all our experiments. To minimize thBE

functional with respect tp andn we use the downhill simplex method [99].

3.5 Implementation Details

3.5.1 Estimating Pixel-to-Pattern Correspondences

Accurate 3D shape recovery requires knowing the pixelatiepn correspondence function
C(q,t) with high accuracy. While color-based techniques have besed to estimate this
function for image-based rendering applications [21]ytare not appropriate for reconstruc-
tion for several reasons. First, different liquids absoifflecent wavelengths by different
amounts [116], altering a pattern’s appearance in a ligeplendent way. Second, since light
absorption depends on distance traveled within the ligndl since this distance depends on
the liquid’s instantaneous shape, the appearance of the pamt on a pattern will change
through time. Third, the intensity of light transmitteddbigh the surface depends on the Fres-
nel effect [34] and varies with wavelength and the angle oidence. This makes it difficult to

use color as a means to localize points on a pattern with neatb-pixel accuracy.
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Figure 3.4: (a) Experimental setup. (b) Typical close-ugwof pattern, seen through water

surface. (c) Distorted view, corresponding to trackinguf& at the central corners.

In order to avoid these complications, we use a monochroraekehned pattern and rely
on corners to establish and maintain pixel-to-patternespondences (Figures 3.4a,b). We
assume that the liquid’s surface is undisturbed at ttme 0 and use the Harris corner de-
tector [42] to detect corners at sub-pixel resolution. Tdiies us the initial pixel-to-pattern
correspondences. To track the location of individual crmesubsequent frames while avoid-
ing drift, we estimate flow between the current frame and thmé at timef = 0, using the
flow estimates from the previous frame as an initial guesscddepute flow with a translation-
only version of the Lucas-Kanade inverse-compositiongbithm [8] and use Levenberg-
Marquardt minimization to obtain sub-pixel registratidinis algorithm is applied to ahl x 11
pixel neighborhood around each corner. We use the regastratror returned by the algorithm
as a means to detect failed localization attempts. In the o&sailure, the flow computed
for that corner is not used and the corner’s previously knteation is propagated instead.

This allows our tracker to overcome temporary obscuratcresto blur, splashes or extreme
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refractive distortions (Figure 3.4c). The above procedjives values of the correspondence
function C(q, t) for a subset of the pixels. To evaluate the function for ey@Erel, we use

bilinear interpolation.

3.5.2 Fusing 3D Positions and Orientations

Refraction stereo yields a separate 3D position and 3D ndionalach pixel. While this is a
richer shape descriptor, the problem of reconstructingglsisurface that is consistent with
both types of data is still open. A key difficulty is that poartd normal measurements have
different noise properties and hence a surface computedoriaal integration and a surface
computed by fitting a mesh to the 3D points will not necesgaigiree. As a first step, we used
simulations and ground-truth experiments to estimate ehahility of each data source as a
function of surface height, i.e., distance from the plan¢hefreference pattern (Figure 3.6).
Since reconstructed normals are highly reliable for largigihts, we used this analysis to set
a height threshold below which normals are deemed lesdlkelinan positions. That portion
of the surface is reconstructed from positional data. Feré&maining pixels, we reconstruct
the surface via normal integration using the Ikeuchi-Hdgoathm [56] and merge the results.
In cases where all reconstructed positions are above tighthéireshold, we rely on normal
integration to compute 3D shape and use the average 3Dgiositieliminate the integrated

surface’s height ambiguity.
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3.6 Experimental Results

3.6.1 Simulations

To evaluate the stability of our algorithms, we performeadigdations that closely matched the
experimental conditions in the lab (e.g., relative posited cameras, pattern-to-camera dis-
tances, feature localization errors, etc.). We simulatedéconstruction error for planar water
surfaces as a function of the surface-to-pattern height,fanvarious levels of error in cor-
ner localization and camera calibration. We modeled thalipation error by perturbing the
image coordinates of the projected corners by a Gaussiéawiked standard deviation. For
each height, we reconstructed 10000 individual points aedsured their deviation from the
ground-truth plane (Figure 3.6). These simulations confirat the accuracy of reconstructed
normals degrades quickly for water heights less tham:. Importantly, the accuracy of dis-
tance computations is not sensitive to variations in wagsgtt, confirming the stability of
our optimization-based framework for refractive stereecfdn 3.4.1). We also compared the

effect of localization error on the results (Figure 3.5).

In addition, we ran simulations to test the stability of aefive index estimation. We sim-
ulated a stationary sinusoidal surface whose average theagi0mm and whose amplitude
was2mm. We then computed the total reconstruction error for vaicombinations of true
and hypothesized refractive index values (Figure 3.7). &&dua localization error af.1
pixels for these simulations, to reflect our actual expenitaleconditions. These simulations
show that our objective function has a minimum very closen®dxpected refractive index.
Note also that the valley around the minimum becomes morkoshas the refractive index

increases.
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Figure 3.5: Left: Reconstruction accuracy as a function of water height, ferfthlowing
values of pixel localization error from bottom to t0@6, 0.08,0.1,0.12. Right: Normal re-

construction error for the same pixel localization errdues.

3.6.2 Experimental setup

Figure 3.4a shows our setup. The checkered pattern at thenbof the tank was in direct
contact with the water to avoid secondary refractions. Bgigur experiments, the pattern was
brightly lit from below to avoid specular reflections and twable the use of a small aperture
size for the cameras (and, hence, a large depth of field). dmagre acquired at a rate of
60Hz with a pair of synchronized Sony DXC-9000 progresstaagameras, whose electronic
shutter was set td/500sec to avoid motion blur. Both cameras were approximately 1 meter

above the tank bottom and were calibrated using the Matlaibi@tbn Toolbox [17].

3.6.3 Accuracy experiments

Since ground truth was not available, we assessed our thigosiaccuracy by applying it to
the reconstruction of flat water surfaces whose height fioentank bottom ranged fromto

15mm. For each water height, we reconstructed a ppiand a normah independently for
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Figure 3.6: Reconstruction accuracy as a function of watghtefor real (dotted line) and
simulated (solid line) flat water surfaces. Bars indicataddad deviation. Simulations are for
a0.08-pixel localization error; in real flat water experimentsrrer localization precision was

measured to be approximatelyl pixels.

each of 1836 pixels in the two image planes, giving rise to asyr8D points and normals.
No smoothing or post-processing was performed. To assesectiuracy of the reconstructed
points, we fit a plane using least squares and measured thes’g@MS distance from this
plane. To assess accuracy in the reconstructed normalympeuted the average normal and
measured the mean distance of each reconstructed normaltfie average normal. These

results, also shown in Figure 3.6, closely match the belnguiedicted by our simulations.
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Figure 3.7: Total reconstruction error as a function ofreated refractive index for several

indices increasing from left to right.
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They suggest that reconstructions are highly precise, diglance variations arourid25mm,
(i.e., within99.97% of the surface-to-camera distance) and normal variatiarte® order of 2

degrees for water heights abaem.

3.6.4 Experiments with dynamic surfaces

Figures 3.10, 3.11 and 3.12 show reconstructions for skggnamic water surfaces. The ex-
periments test our algorithm’s capabilities under a vaieétonditions, from rapidly-fluctuating
water that is high above the tank bottom, to water that isgppoured in an empty tank, where
the water height is very small and refraction is degenenateear-degenerate for many pixels.

Several observations can be made from these experimergs.dtir tracking-based frame-
work allows us to maintain accurate pixel-to-pattern cgpadences for 100s of frames, en-
abling dynamic reconstructions that last several seco8dsond, the reconstructed distances
remain stable despite large variations in water height, amedaccurate enough to show fine
surface effects even in cases where the total water height egceedémm (e.g., the “pour”
sequence). Third, the reconstructed normal maps, as peddghow fine surface fluctuations
at larger heights but degrade to noise levels for water keigdar zero.

Qualitatively, when there is sufficient water in the tanleytlfappear to contain less noise
than depth maps. Fourth, the normal integration algoritiabwe are currently using seems to
over-smooth fine surface details that are clearly presethieinlepth and normal maps. Hence,
the question of how to best extract surfaces from the raw plateided by refraction stereo
is still open. Our results suggest that a hybrid model thatlioes the benefits of the posi-
tional and normal data is necessary for accurate recomistnuguch as [91]. In the following
paragraphs, we present further analysis result sequenddbeir reconstructions [84].

Ripple sequenceThe ripple sequence shows a drop of water dripping into & tith
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approximately25mm of water in it. The drop causes layers of circular waves toreteafrom
the point of contact. There are a combination of large anddaae waves in the sequence,
making for an interesting reconstruction problem. We aadea good reconstruction of depth
and normals since the surface depth provided sufficierdetém for reliable readings in both
categories. The normals provide better resolution of treeripples. The initial splash caused
when the drop first hit the water produced strong distortiminthe underlying pattern which
our system was unable to track. We thus reinitialized théesysmmediately after the worst

distortions had elapsed and were able to capture the exgaonicular waves.

In the depth maps, at points of greatest distortion of thgleijpdepth errors are more com-
mon, causing sharp peaks in the depth maps (bright or daitk apdéigure 3.10). Despite
these depth errors, the corresponding normals appear torlectand the normal maps are

very smooth, allowing tiny leading ripples to be easily itifeed.

Pour sequenceThis sequence shows water being poured into an empty tpnéading
across the pattern from left to right. This sequence testsymiem'’s ability to cope with water
heights of zero and close to zero. The sequence also exlaityessurface shape variation due
to the ripples and several bubbles also formed on the sudiateg the sequence. Our recon-
struction successfully handled the height variationsgiire refractive disparity. Our normal
readings exhibited increased noise in the shallow portiomsever we were able to reconstruct
accurate depths (Figure 3.11). The large regions of noideeinormal maps correspond to ar-
eas with no water, however the heights are correctly reeaveNotice that the reconstructed

height map is smooth at the water edges, showing robustnessitiow water.

The normal maps provide excellent fine detail of the watefaser lacking much of the
noise evident in the height maps. Fine waves and ripplesisitderzin the normal maps in all

three time instants of the pour sequence (Figure 3.11). @welyarger scale waves appear in
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Figure 3.8: Total reconstruction error as a function ofaefive index.Left: Combined error
of several frames from the RIPPLE sequendeldle: Combined error of several frames from

the POUR sequenc®ight: Combined error of several frames from the WAVES sequence.

the height map, where noise tends to obscure these detaits. that while our system is not
designed to handle bubbles, the reconstruction actughiyioad indentations corresponding to
the bubbles as well as the resulting ripples when they bsest the middle of the normal map

in the second time instant).

Waves sequencé his sequence shows waves propagating from the left toigin on a
water surface at a height of approximatelyynm. There are several interleaving wavefronts
of various scales. This sequence provides the greatesitigarin water height and overall
roughness. Reconstructions from this dataset suffered fnome calibration error and thus
exhibit stronger noise. This is most noticeable in the mpméerns appearing in both the
depth and normal maps. Despite this, we did obtain intergseconstructions of the rough
water surface. We recover both the large and small scale fsants, which can be visually

tracked across the sequence in the normal maps.
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3.6.5 Refractive index determination

In addition to reconstructing both surface and normal dada,system was able to obtain an
estimate of the refractive index of the transparent mediWa.ran our algorithm on all three
sequences of Figures 3.10-3.12, over a range of seven framesch. Figure 3.8 shows
the total reconstruction error corresponding to speciflaesof the refractive index, for the
each dataset. The curves exhibit a minimum near the comeé&eictive index for water, 1.33,

confirming the predictions of Theorem 1. This is because 8tepour algorithm enforces a
very strongglobal constraint: the light path of every pixel at every time imstand at every

viewpoint must be consistent with tisamerefractive index value.

3.7 Discussion

3.7.1 Ambiguous surfaces

In refractive index determination we must examine the lgyi that two surfaces with dif-
ferent refractive indices produce the same observed sterage pair. Our initial analysis,
described below, indicates that pairs of surfaces withedhffit refractive indices that produce
the same images do exist, but they do not have a “simple” shageed, the points on a pair
of ambiguous surfaces must satisfy a joint system of veryptextrigonometric equations for
such an ambiguity to exist.

We use a numerical approach to construct point samples dnssutace pairs as follows:
given the refractive index of the true surface and the refractive index, of an ambiguous
surfaceRR, we construct points and normals that lie on bstland R. First we begin with a

seed poinp; on S which is imaged aty; in ¢ (Figure 3.9). Then we find a second point
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(a) (b)

Figure 3.9: (a) Ambiguous surface construction: Poptsp, andps lie on surfaceS, points
a; anda, lie on the ambiguous surfade Note that correspondence functioB$qs,), C(q5),
C(q;) andC(q») all agree with both the true and ambiguous surface pointsraidnormals.
(b) Ambiguous surface pairs constructed according to &e@i7.1. Left: The depths ofS

were chosen to fit a plan®ight: The depths of were chosen to fit a sinusoidal surface.

that lies along the ray from; to p; and on the ambiguous surfaée The depth ofa; and

its normalm; must be chosen such that the pixel ray refracts to the saragdawmn the tank
bottom described by>(q;). Next, we projecta; into view ¢’ and intersect this ray witly

to obtain another poinp,. The normal ofp, is constrained by the condition that it refract
the pixel ray fromc’ must refract toC(q}). From our initial seed point, this process gives
us two new points:a; on R andp, on S. We can repeat this process given additional new
seed points or by extending the construction by repeatia@hbiove steps with, as the seed.

Figure 3.9(a) shows this construction repeated twice.eSwe have one degree of freedom in
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the depth/normal a4, this means there is a family of surfaces that are ambigyai$ighly
constrained. For instance, if we attempt to creéitand R as parallel planes, the normals
associated with the points cannot satisfy these constraiml agree with the global planar
normal. Figure 3.9(b) shows two surface pairs created frepeaase set of points as described.
Intermediate surface points were interpolated accordinibe sparse points and their normals.
These examples show global fitting of a desired shape (eamepdr sinusoidal surface) but
locally it does not match since the ambiguity must be mana@iby specific curvature at these
sparse points. If we were to construct these surfaces assawgthen test for ambiguity at

the intermediate points, the surfaces would not be ambguou

So, while ambiguities exist they are not as important in ficacbecause in our context
the scene is dynamic: in our algorithm, a single refracthaek value must account for the
refractions produced by trentire sequencef 3D surfaces of the liquid, not just the 3D surface
in a single instant. In fact, refractive index estimatioplexs the dynamic/statistical nature of
liquids in three ways: 1) the surface is highly variable apdde we observe many different,
complex surfaces with theamerefractive index during image acquisition, 2) their deforg
surface is unlikely to globally match one of the “speciahil@guous shapes and 3) even if it
does, it is unlikely that such a “special” shape will occur fi@any time instants. In practice,
this allows us to side-step the issue of ambiguities by eiigrrefractive index consistency
with all available data (multiple time instants, even npl#iacquisition experiments) using our
search-based refractive index estimation algorithm. Ewrpantally, the lack of shape-index
ambiguities over an acquired dataset is confirmed by ermsmesithat have only one (global)

minimum, as in Figure 3.8.
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3.7.2 Pixel-to-pattern function

In the description of the algorithm and implementation, wewmed tha€C() was invertible.
We note, however, tha®() can be many-to-one and not generally invertible. The cait
that cause() to be invertible were noted by Murase, deemed reasonatilejsed in his work
on liquid reconstruction. From a technical standpoint, &egsv, our analysis does not require
C() to be globally invertible: all we need is that itlzcally invertible, i.e., for almost all pixels
q (in a measure-theoretic sense), the restrictio 0fto some open neighborhood of q is an
invertible function. This does permit the occurrence ofdated singularities (i.e., pixels or
image curves wher€() is not invertible for any neighborhood).

For example, if we were to take a simple 2D scene such as asutédined by = cos(z)
with the camera looking down they axis, C() is not globally invertible. The scene is, how-
ever, locally invertible for all values of except two: for a given refractive index value and
a camera located at infinity, there are only two incoming f@iyels where local invertibility
breaks down: these rays hit thes(z) curve near its inflection points, where the mapping
from incoming rays to points on the-axis “folds” onto itself. More generally, the singulari-
ties where local invertibility breaks down have propera@slogous to the singularities of the
Gauss map where, generically, the mapping from surfacegptintheir normals is singular
either on parabolic curves, corresponding to “folds” of G&uss map, or on isolated points,
corresponding to “cusps” of the map.

We also examine in further detail, how the flow propagatesftd(t — 1) to C(¢). There
are two cases: (1) The Lucas-Kanade algorithm is able tdizecan framet¢ a corner that
was also localized in frame— 1. In this case, the flow vector assigned to the corner at time
t — 1is its displacement between the two frames. This procesmipletely local and is well

defined whereve€() is locally- (but perhaps not globally-) invertible. (2) Th& algorithm
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fails to localize the corner at frante This doesot cause a breakdown of flow estimation for
subsequent frames. In this case, the algorithm interpotate flow vectors computed at four
neighboring corners in framie— 1 in order to assign a flow vector to the corner that was lost
in framet. Bilinear interpolation is used, with weights determinedtbg corners’ distance
from each other. We then use the position in framel of the lost corner and the interpolated
flow vector to assign it a “virtual” position in frame This position is used to initialize the
LK algorithm in framet + 1, in an attempt to re-localize the lost corner. In case otifailat

t + 1, propagation is repeated until the corner is re-acquir@cesthese distortions are local
and persist for just few frames, we have found that the gjyaterks well in practice and has
enabled propagation of pixel-to-pattern correspondefwrel)0s of frames.

Our current implementation does not check for the possgititiiat after a tracking failure
(i.e., singularity ofC()) a corner at frame — 1 appears in more than one location in frame
(or vice-versa). While is certainly possible to do so, theuseges we have acquired suggest
that such events are very transient and cause significaottihs's in the local neighborhood
of a corner, making it very hard to localize it, let alone itignmultiple images of it. In such

cases, flow propagation allows the corner to be re-acquiteshwlistortions are reduced.

3.8 Concluding Remarks

Liquids can generate extremely complex surface phenoneciading breaking waves, bub-
bles, and extreme surface distortions. While our refractieneo results are promising, they
are just an initial attempt to model liquid flow in relativedymple cases. Our ongoing work
includes (1) reconstructing surfaces that produce maltipfractions [69], (2) reconstructing

liquids by exploiting their refractive and reflective propes (e.g., by also treating them as
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mirrors), and (3) “reusing” captured 3D data to create nealistic fluid simulations.

57
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Figure 3.10: RIPPLE Sequence. All maps correspond to a tap @i¢he tank and show raw,

per-pixel data. The mesh images show a surface fit to the dakadsby5 in the vertical axis.
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Figure 3.11: POUR Sequence. All maps correspond to a top efdhe tank and show raw,

per-pixel data. The mesh images show a surface fit to the dakadsby5 in the vertical axis.
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Figure 3.12: WAVES Sequence. All maps correspond to a top vighe tank and show raw,

per-pixel data. The mesh images show a surface fit to the dakadsby5 in the vertical axis.



Chapter 4

Scatter-Trace Photography

“Don't tell me the moon is shining; show me the glint of ligimt broken glass.”

-Anton Chekhov

4.1 Introduction

A major ingredient in the success of recent 3D photograpggrahms is their ability to deal
with surface inhomogeneity.e., to produce accurate 3D models even when a scene’s sur-
faces span a broad range of shape and material propertieg87[2411]. These algorithms
apply exclusively to opaque surfaces that scatter incitight, and cannot handle scenes
that contain transparent or highly-reflective media. Farhsscenes, the state of the art in
reconstruction [9, 69, 83,84, 111, 123, 137] is still confirie the simplest possible case—a
surface bounding a single, homogeneous, transparent eolith no internal structures and

no occlusion—and even this case cannot be solved withatltefuassumptions (e.g., partially-

known geometry [9, 83], a volume that causes no more thandfvaations [69], or ability to

61
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Figure 4.1:Three objects used in our experiments: A hand-made solid crystal s@ulpithra painted
interior (about 30cm tall), a partly-full juice bottle, and a decorative gtete with an opaque hand-
painted interior. The red arrow highlights the pixel used in the example of &6, bottom right.
immerse in a refractive-index-matched liquid [123]). Uniémately, while objects with trans-
parent media are very common (Figure 4.1), they rarely appdaolation and rarely have a
simple enough shape to fall within the realm of existing teghes. For such objects, research
has concentrated on capturing their appearance rathergbhanstructing them [82, 143].

The difficulty in reconstructing such scenes stems from tmepiex relation between their
appearance, their exterior 3D shape, and the structureesofititerior. This appearance can
be heavily influenced by several light transport phenomielcéyding one or more refractions;
total internal reflection; absorption and scattering atrdaerior interface; and reflection at an
exterior surface. Inverting the interior light transpamd@ess under these conditions has proved
very difficult.

Motivated by these difficulties, this paper develops an eagh for reconstructing the ex-

terior of general, inhomogeneous transparent sceneshvik basic goals in mind:

¢ Invariance to scene interior: To the extent possible, reconstruction performance should
depend on the scene’s exterior surfaces, not the struatdreamplexity of media in the

interior.
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e Robustness to spatially-varying reflectance and transmitince: Reconstruction algo-
rithms should be able to handle a wide range of surface rafleetand transmittance

properties.

o Compatibility with existing methods: It should be possible to leverage developments
in 3D photography of opaque scenes to treat issues such ss, moissing data, and

occlusions.

To achieve these goals, we rely on the well-known fact tlaatdparent scenes reflect some of
the incident light, thereby behaving as partial, non-idgmdcular reflectors [40,117]. Using
this as a starting point, we develop a novel technique basedatter-trace photographthat

is specifically designed to analyze these reflections.

Scatter-trace photography involves capturing imagesestene from one or more view-
points while moving a proximal light source to a 2D (or 3D) skpositions. This produces a
2D (or 3D) set of measurements per pixel, which we call thelfsxscatter trace.Intuitively,
the scatter trace of a pixel can be thought of as a “photograpthe trajectories that light
followed before interacting with the scene, and beforevargi at the given pixel (Figure 4.2).

The key property of the scatter trace is that direct surfafteation leaves a highly-constrained
geometric “signature” in it, even when light transport witkthe scene’s interior is exceedingly
complex. Moreover, this signature is especially promineinén the direct reflection compo-
nent includes a non-negligible contribution from specu&dlection. This observation leads
to three main results. First, it gives rise to a geometryetlasethod for enhancing the con-
trast of the direct reflection component in each scatterefreglative to all other modes of
light transport. Second, it allows us to reduce reconstrnadf inhomogeneous scenes with

non-negligible specular reflectance to a generalized fadristexreo matching, where we es-
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tablish correspondences by comparing appropriatelygased scatter traces rather than raw
pixel intensities. Third, we show that this process prosidetailed information about surface

orientation, at sub-pixel resolution.

Our work relies on the existence of a non-negligible spea@tection component to re-
cover 3D shape and, as such, itis closely relategbeular steremnethods [15, 102, 103, 120].
These methods recover shape by analyzing the distortecduapyme of patterns placed near an
opaque, mirror-like scene. Of particular relevance is tlekwof Bonfort, Sturm and Gar-
gallo [16] and Kutulakos and Steger [69], whose goal is tenstruct the light path that con-
nects each pixel in the image with two known 3D points thajgmioto it. Both approaches
rely on an idealized image formation model, where lightasmgported along an infinitely-thin,
single-bounce path corresponding to direct specular tegteoff a mirror. Our approach can
be thought of as generalizing these methods to the case efleahinhomogeneous scenes,
i.e., scenes whose interior contributes significantly tpegpance and whose exterior is not

perfectly specular.

Although we do not explicitly decompose photos into diréatlirect, and specular com-
ponents, a weaker form of separation—relative contrasameedment—occurs implicitly as
part of our generalized stereo matching procedure. In #8pact, our work can be viewed
as a geometry-driven alternative to existing layer decaitipm methods (direct vs. indi-
rect [89, 110], specular vs. diffuse [25], reflected vs. sraitted [94, 117]). These methods
employ a variety of tools, including active illuminationg8L10], polarization analysis [25],
optical flow estimation [117], and natural image statisfic3]. Unfortunately, none of them
apply to the case of general, inhomogeneous transparemescd-or example, recent algo-
rithms for direct/indirect separation [89, 110] break dowrthe presence of strong specular

reflection, and polarization state stops being a robustragpa cue in the presence of refrac-
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tion, reflection and scattering in a scene’s unknown interio

Our work offers four main contributions over the currentistaf the art. First, we de-
rive a simple “scatter-trace stereo” algorithm for recamsing the exteriors of scenes with
transparent surfaces and inhomogeneous interiors. Sew@ndhow that scatter-trace pho-
tography provides a natural means for revealing the saagt@roperties of complex scenes.
Third, by reducing the reconstruction problem to a simplewiae pixel-matching criterion,
our work suggests that reconstruction of inhomogeneousesds possible by simply replac-
ing the “data term” in existing stereo formulations. Fouxhr results show that scatter trace
analysis enables reconstruction in the presence of congblages and spatially-varying sur-
face reflectance and transmittance properties. We are raseat other image-based methods

capable of reconstructing scenes of this optical complexit

4.2 Scatter-Trace Photography

Scatter-trace photography provides a convenient way tucaghe interaction of a scene with
proximal point light sources and viewpoints. The most geaheray of “probing” this interac-
tion is to place a point light source at some position neastie®e, emit radiance only within a
differential solid angle along some direction, and thensneaincident radiance at some other
position and direction (Figure 4.3a). The set of all such sneaments is a ten-dimensional
function that we call thelenoptic scatter functian This function describes how the scene
scatters incident light and takes into account distangeiagent effects (e.g., that objects ap-
pear dimmer as the point light source moves farther away frm). As such, the plenoptic
scatter function generalizes the familiar notions of theligbt field [74], the 5D plenoptic

function [2], and the 8D reflectance field [25, 143].
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Figure 4.2:Center, back to fronta teapot made of thin glass about 2mm-thick; a solid crystal ornament
with an internal air bubble; a mug with a 2mm-thick enclosure made of clear plasti@am opaque
interior cavity made of a purple specular material (see Figure 4.16, bottdmhfdg another view).
Sidebars:Scatter traces for the four pixels indicated by arrows. These pixelsedaght (1) by direct
reflection at an opaque point; (2) by direct reflection and by interritdatéon at the back-surface of
the thin teapot wall; (3) by direct reflection and by a secondary inteefkdation; and (4) by direct
reflection, internal reflection at the back-surface of the clear en@psmd internal reflection off the

purple interior. Note the distinct “traces” associated with each propagaiiole.

The plenoptic scatter function has extremely high dimaemaity and would be very diffi-
cult to capture. Scatter-trace photography captures afgp&lo (or 4D) “slice” of this function
that is both easy to capture and provides strong informatimout scene geometry. In partic-
ular, suppose that we observe the scene from a single vietvpaiile illuminating it with
an isotropic point light source (Figure 4.3b). In this casesry position(x, y, z) of the light
source produces a distinct image. This image represenwaithat leaves the source equally

in all directions and reaches the camera’s image planeiafeacting with the scenk.

Scatter-trace photography involves moving such a light@®to every position within a

1To simplify our discussion, we assume here that image pixal® been calibrated to measure radiance
directly [26].
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Figure 4.3:(a) To obtain a sample of the plenoptic scatter function we must choose a pasitio
orientation for both the light source and the sensor (five degreeseafdne each). (b) To measure the
scatter trace of pixels from a fixed viewpoint, we move the light source ty @ant inside a region of

space (shaded).

volume of space, to obtain a 3D set of 2D images. Every pp@h the camera’s image plane
is then associated with a volume of measurements, one farliggat source position. We call

these measurements the scatter trace of pjxel

Definition 1 (Scatter Trace of pixelq) T4 (L) is the incident radiance aj when the light source is at

pointL.

Note that if a pixel's scatter trace is zero for some lightrseuposition, then no light
passing through that position can possibly contributearack to that pixel. Therefore, the
non-zero region of a pixel's scatter trace is the set of ailhfgahat light can pass through to

reach that pixel.
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Figure 4.4:(a) Scatter trace due to reflection off a planar mirror. The radianceilooting to a finite-

sized pixelq is transported along a bundle of rays that originate;gbass through the lens aperture;
are specularly reflected at a small in-focus planar fa¢eind converge at the light source position. The
radiance at pixed; is therefore bounded from above by the total radiance incidgntia., the radiance
transported along the blue-shaded region. In the limit, as the sigepond the aperture goes to zero,
the scatter trace becomes concentrated on a singlé aayl defines thémpulse scatter tracealong

. (b) Generalized specular reflection produces a “fan” of impulse sd¢edtzes (only 3 are shown, for

clarity). (c) The indirect scatter trace produced by light transportgaBpaths ending aj.
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4.2.1 Direct and Indirect Scatter Traces

Since light transport is linear, we can express the scatiee tas a sum of two components
Ty=Tg5 + Ty, (4.1)

whereT) represents the contribution of direct surface reflectiah&represents the contribu-
tion of indirect light transport (i.e., refraction, totaiternal reflection, surface inter-reflection,
caustics, etc).

In general, the indirect component will be a significantfi@t of the total scatter trace, and
this fraction will vary from pixel to pixel (Figure 4.2). Famately, the direct and the indirect
components of the scatter trace have a distinct spatiattater Here we exploit this differ-
ence to enhance the contrast of the direct component and fasesingle-view reconstruction
(Section 4.3.2) and multi-view stereo matching (Sectief).4.

Since our analysis relies on the spatial structure of theesdaace, we consider below the

scatter trace produced by three basic types of light traispo

Direct reflection without scattering Consider an infinitesimally-small pixglthat is perfectly
focused at a point on a planar mirror. As the lens apertuiialshto a zero, only light sources
along one incident ray will contribute to the pixel's radiance (Figure 4.4a). Thay is along
the direction of specular reflection. We call the resultiogtter trace thempulse scatter trace
T, of pixel .

For a given light source position along this ray, the radeameceived at the in-focus surface
point obeys a squared-distance falloff [50]. Since theamack alg cannot be larger than this
radiance, the impulse scatter trace is a single “streakjselintensity diminishes with distance

from the point of reflection.
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Generalized specular reflection If the surface point projecting to an infinitesimally-small
pixel q is not a planar mirror, the pixel will receive light even frdight sources that are not
along a single ray. To account for this behavior, we moddiasermicro-geometry as a dis-
tribution of planar micro-facets that vary arbitrarily fropoint to point on the surface [29].
Furthermore, we assume that each micro-facet acts as armaflector, with minimal mask-
ing or shadowing [88]. This model accurately representseflectance properties of smooth
surfaces (e.g., glass, polished metal) and accounts fbrdugvature reflectors.

Consider the surface poiptthat projects to pixel. We can express the point’s micro-facet
distribution as a probability distributio® (6, ¢) over the unit sphere, with the anglés ¢)
corresponding to a unique normal. In this case, the sca#tee is a weighted superposition of

impulse scatter traces, one for each incoming ray (Figue)4.

12w - | D6, %) TE(L) de | (4.2)
rays throughp

where the normaléé, ¢%) is the bisector of ray and the visual ray through pixgl

Intuitively, as the surface at the point departs from a plamaror, the scatter trace spreads
into a “fan” of converging streaks (Figure 4.2, pixel 1). Tgent of convergence of this fan is
always the surface point projecting to pixgl Moreover, the fan’s intensity decreases mono-

tonically in a radial direction away from that point.

General indirect reflection/transmission Now suppose that all light received at pixglis

due to one or more indirect reflection and/or transmissi@nt Again, we can express the
scatter trace as a weighted combination of impulse scatieed, although the set of scatter
traces participating in this combination is much more gahezach impulse scatter trace in

this set represents the contribution of light that travési@ an arbitrary ray until it hits the
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object, and then follows a general piecewise-linear pathxel q (Figure 4.4c):

T\(L) = / ) TS e 4.3)
all rays

Here, the weight (&) is the fraction of radiance transported to pixefrom the point of first
contact of ray¢ with the object.

Unlike the case of direct reflection, the scatter trace preduby indirect reflection is much
less constrained (Figure 4.2, pixels 2-4). In general, fieeaks” it contains wilhot converge
to a single point and, even if they do (which is a non-generam8, their point of convergence

is not constrained to lie on the visual ray through pixel

2D scatter traces So far, we have assumed that the point light source moves B seBof
positions. This is rather inefficient. In practice, we obtan equivalent set of measurements
by illuminating the scene with Bnear light source (e.g., aligned with theaxis) and moving

it to a 2D set of positions (e.g., on thg-plane). This procedure gives us a reduced, 2D scatter
trace per pixel that has exactly the same properties as itO8Bterpart (see Appendix B). Our

analysis below applies both to 3D and 2D scatter traces.

4.3 3D Shape from Scatter-Trace Constraints

The previous section showed that the direct component ofed'pscatter trace is a superposi-

tion of impulse scatter traces (i.e., “streaks”) that $atisree basic constraints:
¢ Viewing-ray intersection: They must all intersect the pixel’s viewing ray.

e Convergence:They must converge to a single point on the viewing ray, armlphint

must coincide with the surface point that caused the diedtgation.
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Figure 4.5: Basic steps in scatter-trace analysis. Each step corresponds to artretifo of the
pixel's original scatter trace, for a specific depth hypothesis. Reéngaad blue colors indicate three
impulse scatter traces that contribute to the pigsldirect scatter trace for the “true” depth The
indirect scatter trace component is shown in white. Colored vectors in tinedsiffigure are along the
bisector of the viewing ray and the similarly-colored impulse scatter trac&seton 4.4 for details

and Figure 4.16, bottom right for a real-scene example).
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e Monotonicity: Their intensity must decrease monotonically in a radiaation away

from the convergence point.

Given a hypothesized depth for a pixglit is possible to use these constraints to decom-
pose its scatter trace into two components—an estimatedtcﬁomponenﬂ@, that is fully-
consistent with both the hypothesized degp#nd the above constraints, and a component that
is not:

Ty=To + Ty - (4.4)

This observation, which forms the key idea of our shape rexgoapproach, allows us to assign
a “consistency measure” to each depth hypothesis. In tlytesinew case, we use a measure
that evaluates the consistency of the estimated direct coem with pixel's entire scatter

trace. When multiple views are available, our measure etedube mutual consistency of the
estimated direct component at corresponding pixels inripativiews. Since both measures

depend on the problem of estimating the direct scatter ti@eeonsider this problem first.

4.3.1 Estimating the Direct Scatter Trace

In the absence of additional information about the scermedédtomposition of Eq. (4.4) is not
unique? In light of this ambiguity, we compute the most conservatigtimate of the direct
component, i.e., an estimate that is guaranteed to be atleémge as that of the “true” direct

scatter trace when the hypothesis corresponds to the tdepthd*:
Tow(L) > T2(L) forall L. (4.5)

We do this by enforcing the convergence and monotonicitgtramts in succession.

2For example, an estimated direct component that is zergwhere trivially satisfies the three constraints,
for any depth.
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In particular, each depti defines a unique 3D convergence point, for all “streaks” of
the direct component. These streaks must therefore lie@pehcil of rays througip,;. To
enforce the convergence constraint, we rectify the pixatatter trace so that all these rays
become parallel to the axis of the coordinate system. This is a linear projectivepvihat
maps pointp, to the point at infinity along:. In two dimensions, it corresponds to standard
epipolar image rectification [43] with the epipolemt (Figure 4.5-1).

Every line parallel to the: axis in this rectified scatter trace corresponds to a distac
throughp,. Geometrically, the rectification operation converts ttatter trace’s original spa-
tial (z,y, z) coordinates into coordinatés’, v/, ') that encode ray direction (coordinatgs
andz’) and position along the ray (coordinatg. In this coordinate system, the monotonicity
constraint tells us that the intensity of the direct compamaust be non-increasing along the
x’'-axis. Since we are dealing with discrete measurements,nfggoe the constraint recur-
sively by simply computing a “running minimum” across paiaff the rectified scatter trace in
thex’-direction (Figure 4.5-2):

To (L) =min (Ty(L'), TO(L' = X)), (4.6)
whereL’ denotes a scatter trace point in rectified coordinatesXdnd the unit vector along
thez’-axis.

Note that the computation in Eq. (4.6) leaves unaffectedsagnal that decreases monoton-
ically along thexr’-axis. As such, it will not attenuate the pixel’s “true” ditescatter trace when
rectification occurs at the correct depth. Intuitivelystimaximally-conservative, depth-based
estimate of the direct scatter trace can be thought of astestace whose direct component
is contrast-enhanced at the correct depth. This is bechas#rtie” indirect scatter trace will
typically not satisfy all three constraints (ray interseat convergence, monotonicity) and,

hence, will be attenuated for every depth hypothesis.
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4.3.2 Single-View Shape from the Scatter Trace

If we know in advance that a pixel’s indirect scatter traceagligible (e.g., we know that the
point projecting to the pixel is opaque and receives fewrirgélections), the above estimation
procedure leads to a very simple single-view depth estanatigorithm—we just search for
the depth along each pixel's viewing ray that best explanesdcatter trace as a pure direct
component.

In practice, we discretize the depths and evaluate the stemsy betweeff andTg’d for
each pixelg and depthi. To do this, we first measure the point-wise consistency éetvwhese
two scatter traces under the assumption of additive Gaussige with standard deviatien

W(d, L') = exp —% [T,(L) -T2, ]*, (4.7)

and then use this consistency to enhance the direct compondéme original scatter trace

measurements (Figure 4.5-3):

To(l)) = W(d, L) Ty(L') . (4.8)

In effect, this enhancement operation weighs each origioatter trace measurement by
an upper-bound estimate of the likelihood that it was dudrectreflection. Our final metric

aggregates the weighted measurements in Eq. (4.8) actpss#ions:
CHd) = Y Tq(l). (4.9)
L/

The metric computes the total mass of measurements exglbina given deptl, under the

condition that they are due to direct reflection. To assigstlieve maximize it.
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4.4 Scatter-Trace Stereo

The indirect component of the scatter trace cannot be ighehen reconstructing scenes with
transparent surfaces. This means that we cannot use theariin Eq. (4.9) to assess the valid-
ity of a given depth hypothesis. We therefore generalizesogle-view analysis by evaluating
the mutual consistency of scatter traces at corresponde¢spn two or more views.

In particular, letq;,q. be a hypothesized correspondence between two pixels inra pai
of views, letd be the depth implied by this correspondence, and’lgt; and T, be their
rectified and depth-enhanced scatter traces (Egs. (4®)-(4To compare these two scatter
traces, we first warp them in a way that makes point-wise coisgras meaningful and then

simply compute their cross-correlation:

C2(d) = Y Taqu(l") Tqua(L") | (4.10)

T
whereL” denotes positions in warped coordinates ?qgid ,?qzd denote the “aligned” ver-
sions ofT'y, 4, T,q - At @ superficial level, the metric in Eq. (4.10) can be thdwaflas a direct
extension of traditional correlation-based stereo matpio multi-view scatter-trace photog-
raphy.

The two outstanding questions are how to define the alignmvarps in the two views,
and under what conditions is the cross-correlation in EQ.04physically meaningful? We
answer both questions by observing that the depth-enhauadtér traces strongly constrain
the normal(s) of the surface poipy, projecting to the two pixels.

Every line along the’-axis of the rectified coordinate system corresponds to gueniay
of incidence at poinp,. Given a pixelq; and such a ray, there is a unique surface normal that

specularly reflects light to pixei; from light sources on that ray (Figure 4.5, far left). This
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normal is the bisector of the ray of incidence and the visaglthrough pixelky;, and can be
represented by two angles(y/, 2’) andg; (v, 2').

A high value of the direct scatter trace for a positiar, v/, z') along a specific ray of
incidence can be interpreted as a “vote” for its correspugaiormal. More generally, the
depth-enhanced scatter trace along viesan be thought of as voting for the micro-facet dis-
tribution at pointp,. To compare two such scatter traces point by point, we aligmtso that
points in two different scatter traces correspond to theesaommal. This alignment operation
transforms rectified coordinatég’, v/, z’) into a surface-centered’f¢-coordinate system that

is defined in terms of the surface normal at the hypothesiepthd Figure 4.5-4):
Taal@, 0:(y,%), iy, ) = Tqual@',y/, %) . (4.11)
In this coordinate system, the cross-correlation of Eq.Q¥can be thought of as measuring
the intersection of two micro-facet distributions. It wile maximized at the depth where
there is maximal overlap between them, i.e., where the@rgeiction maximally accounts for

the estimated direct scatter traces in both views. Theiloligion itself can be computed by

aggregating the votes for each normal at the dépttat maximizes Eq. (4.10), i.e.,

D(0,¢) = Y Taqula',0,0) Taua(*,0,0) . (4.12)
Therefore, maximizing Eq. (4.10) leads to a highly-dethdescription of the local surface

projecting to each pixel—both a depftand its micro-facet distribution.

4.5 Implementation Details

In this section we discuss how we practically implementexddtatter trace stereo algorithm

and applied it to multi-camera reconstruction. We alsoudisdow to obtain sub-pixel depths
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and then present a phase unwrapping technique to reducartiieen of required images for a

scatter trace.

45.1 Multi-view Reconstruction

We applied the stereo metric to a multi-view camera arramgyemm order to further constrain
it and reduce ambiguities especially in the presence ofgtcaustics.

For a given reference viewwe compute the stereo metric between this view and all other
views j, which is the cross-correlation GTTqid(a:’, 0,0) and?qjd(x’, 0, ¢) for all pixelsq. This
effectively gives us a metric response for a set of steraamet each of which has vievas the
reference. The rectifications between each stereo paibevilifferent so we need to re-sample
each stereo volume so they lie on the same discrete imagdicate space as the reference
viewi. Once we do this, we have metric responses along rays fromsta@o volume. We can
then use the cross-correlation between metrics as our-meiti metric. Figure 4.6 illustrates
the improvement of a trinocular reconstruction over theesteeconstruction from the same
reference view. Notice how much smoother the depth map ise rébovered area in the

trinocular version is also slightly expanded since an &l view is considered.

4.5.2 Sub-pixel Reconstruction

In addition, we perform reconstructions at sub-pixel resoh by upsamplingscatter trace

slices A scatter trace slicéq, is a 2D array of scatter trace responses for a row of piels
in the image as the light source moves to a 1D set of positess,Figure 4.7. In a stereo
system we have two such scatter trace slices, and so by siegethe resolution of the pixel

row dimension we also increase the depth resolution. Sdediee slices exhibit strong spatial
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Stereo depth map ~ Trinocular depth map

Figure 4.6:Juice reconstruction results. This figure also illustrates the improvemertdnstuction

between two and three view reconstructions using the same reference view

coherence, since streaks correspond to traces of the refledt of continuous surfaces. This
allows us to use a form of anisotropic diffusion [65] in orderget a smooth interpolation
that preserves image gradients. Figure 4.7 also shows tsampled scatter trace slice after

anisotropic diffusion.

4.5.3 Efficient Capture by Phase Unwrapping

In order to make data capture efficient as well as to reducagospace, we present another
method for reducing the number of required images to obtHecte/e scatter traces. This
reduction makes full object scanning far more practical.

So, rather than scanning an object by displaying a singlamgdight source, we illuminate

it with p sources simultaneously (we uge= 20 in our experiments), moving each the small
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Scatter-trace Slice Upsampled Scatter-trace Slice

q’ll) qw

Figure 4.7:A scatter trace slice shows the response for each pixel on ggoand each light source

positiony. Left: Original slice. Right: Up-sampled slice Byin the pixel dimensiono.

amount necessary to cover the same volume as the original 3te captured trace we call
13- This results in far fewer images necessary to capture time smmber of light source
positions, however there are significant ambiguities geedrin the scatter trace. This new
scatter trace essentially consistspafopies of the original signal repeated across it. While the
application of the scatter trace constraints (Sectionthrligh scatter trace stereo do constrain
the metric to the part df g corresponding to the object’s direct reflection, strongstiaeffects
become a much bigger problem when duplicated across theeistraice. In order to combat

these ambiguities, we capture a second sgawhere the scatter trace volume is illuminated
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by a larger light source that incrementally illuminatesteesgion covered by the previously
displayed sources. This allows us to unwrap the phase ofridtestian. So, our final scatter
trace is composed a@t; = Ty @ Ty, where® represents element-wise multiplication (See

Figure 4.8).

qw 7U qw qu;

Figure 4.8:From left to right: The original full resolution scatter trace slice. Scatteetsdice with

multiple sources. Unwrapping scatter trace slice. The reconstructed sictéeresulting fronT{'@ 7y

This method is significantly different from many coded pattéechniques, since these
generally require threshold decisions to determine whiethaot a pixel receives light from a
particular source. We wish to avoid this type of decisiongcsithe dynamic range of scatter
traces may be very large, depending on the reflectance piegand internal light, so making

a binary decision is not appropriate.
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4.6 Experimental Results

We acquired 2D scatter traces using the acquisition setkmure 4.9, bottom right, with the
camera aboutm away from the objects. A 2-pixel-wide vertical stripe on ti@&D monitor
acted as our light source, giving @87 distinct positions that spanned a rangeltém in the
y-direction. The monitor was physically translated in thdirection to 3-6 positions, spanning
arange of 3-6cm depending on the scene. Instead of disglagitical stripes individually, we
used Schechner and Nayar’s illumination multiplexing mdtfiL07]. This is also true of the
efficient acquisition mode, where multiple light sources @ach multiplexed in the same way.
Objects were placed on a turntable and rotated by increnwérits or 10° from their initial

position to obtain additional views.

Figure 4.9:Acquisition setup

Since depth can be computed only for pixels that receive dmht pixels whose entire
scatter trace was below an intensity threshold were prunedtp reconstruction. We used a
threshold equal td< times the median intensity across all scatter traces arubals. This

“global” median can be thought of as providing an estimatthefnoise level in the dataset—
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since each pixel receives light from only a small subsetgiitlisource positions, intensities

below this median are effectively due to noise. We ukeéd 10 for all experiments.

We assigned depth independently to each pixel in the first ig first evaluating metric
C?(d) in Eq. (4.10) at every possible integer disparity, and theively” choosing the disparity
that maximized this metric. To assign a surface normal, veel tise peak of the pixel's normal
distribution, D, computed for that disparity.

Since we simultaneously recover both depth and normalnmétion we look at the consis-
tency between these shape measures to validate our resdilésa natural outlier filter. Our
approach was to locally fit planes to the geometry around pah to give geometry based
normals. These normals were then directly compared to th@ale we recovered from the
scatter traces. We then reject surface points whose andisi@nce between the geometry

based normals and the reconstructed normals was greateritha

We did not apply any other post-processing to the computedtgpand normals (e.g.,
smoothing, cleaning, etc). Our reconstruction procedidendt involve any tunable parame-

ters.

Fish sculpture This scene represents an “easy” case for our method: itseshitgwed a
reasonably complete reconstruction because most pixéts fimotprint received some illumi-
nation via direct specular reflection (Figures 4.1 and 4.Ndte that our reconstructions are
based on a single stereo pair in this case and we used 1/8dag# resolution. Despite the
fact that all pixels were reconstructed independentlyh tloé depth map and the normal map
are highly uniform and capture fine surface details, ineigdiigh-curvature regions near the

beak and the eye.

Failures of the method correspond to (1) “missing” pixetgttwere not reconstructed at

all because they did not receive any light from the light seuand (2) reconstructed points
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that deviated significantly from their “true” positions. d latter type of failure occurs at pixels
near the object’s silhouette, where the surface is vieweg okliquely, and at pixels where
the direct reflection component has small magnitude. Thegsspare readily identifiable
because the magnitude of the matching criterion at the @pti@pth,max, C3(d), is very low
(Figure 4.10). Although we did not attempt to do so, it shdaggossible to use this magnitude

as a confidence measure for outlier rejection.

We compared our reconstruction with laser scans compldtedaating the object with a
white spray-on powder. Figure 4.10 shows the depth and rlarmaps side-by-side for these
two methods as well as the difference images and a cros®seaxdtihe reconstructions. The
depth maps closely align, with an RMS error($1mm and standard deviation 6f35mm.
The depths match well over large areas, however there aieeabte ‘stepping’ artifacts that
correspond to areas of higher curvature and those regioasewthe scatter trace meté(d)
has a broad peak. The reconstructed normals match wellnrstef low frequencies, however
there is higher frequency noise in the laser scan that ddesisb in our reconstructed normals
(or on the true surface). We also computed the Poisson reeaotien that combines both the
depth and normal data into a mesh [63] using default settifge comparison with the laser
depths show even closer alignment and most of the surfaifacéstare gone. In addition the
fine detailed features such as the ridges on the bottom ofghafe clearly recovered (shown

in the insets in Figure 4.10 and meshes shown at the top ofé-#y1).

Decorative bottle This scene had a curved transparent exterior with a paintedor with
similar challenges to thigsh sculpture We present this dataset to show that the efficient capture
process described in Section 4.5 works, and to demondtetaétric quality of our reconstruc-
tions for a full model. The bottle has four distinct sides arewere able to recover trinocular

depth maps of each side using scatter traces captured witiftbient method shown in Figure
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4.8. We estimated depths using upsampled scatter traes gjicing us 1/4 pixel depth reso-
lution. Figure 4.12 shows the depth and normal maps of oreedithe bottle, as well as the
reconstructed Poisson surface and comparisons to lasedata We aligned our recovered
point set of the full object with the laser point set using astesquares best fit. Figure 4.13
show the 3D surfels for all four sides of the bottle combinsavall as cross section compar-
isons of one side with the laser scan. Some parts of the tdpeddttle had no visible direct
reflections and only “phantom” points were recovered in éhaxeas. The very bottom also
exhibits error in the normal map since double reflectionsioed off of the stand the bottle
rested on. Also, there is some bias in the depth differermeart the top of the bottle, this
may be due to misalignment between the reconstructionsrorsein either the laser scan or
our depths. Despite these issues, the four sides matchsheling that our method is able to

recover, metric results without skew.

Juice bottle The primary challenges in this scene were the rather cong#gexnetry of the
bottle’s upper section and the presence of an opaque lalleémurface. Our method was able
to reconstruct the label’'s surface quite well, albeit witbrexnoise compared to the regions
of exposed glass. While depths and normals in those regions ngeonstructed well, the
presence of self-occlusions and high curvatures meantelaively few visible surface points
reflected light toward the camera. This caused significaps @& the reconstruction, which
would require additional viewpoints to complete. In thisgect, our approach is significantly
less efficient than techniques for reconstructing opaquespecular scenes, where almost
all surface points visible to a pair of views can be recomséd in one step. The depth and
normal maps presented show our reconstructions usingtriaostereo and the surfels are the

combination of three such trinocular reconstructions Feg.14).

Multiple objects This was by far the most challenging scene, with a varietyoofiglex light



CHAPTER4. SCATTER-TRACE PHOTOGRAPHY 86

transport phenomena and occlusions. Three observationsecanade about our results. First,
despite this complexity, we obtained detailed reconswustfor significant parts of the scene,
including small high-curvature structures (e.g., a portibthe teapot lid).

Second, the specular reflectance properties of the scepatpue regions were not suffi-
cient to enable their reconstruction in this case, becatigeedow magnitude of their scatter
trace. Third, the high curvature of the interior bubble amellack of direct reflection at pixels
in its footprint led to the reconstruction of a “phantom” f&we. This artifact can be mitigated
by collecting additional views that cause more points ondkierior surface to reflect light
directly toward the camera. More generally, however, weelielthat correct treatment of inte-
rior structures should involve reasoning analogous toustoch handling in multi-view stereo,
where depth hypotheses are analyzed globally, and recetedrfront-to-back (or outside-in).

The reconstructions in Figure 4.15 are obtained from a atpeer of views and depth

estimated at pixel resolution.

4.7 Concluding Remarks

A key contribution of our work is to show that, despite thehtygcomplex optical properties
of inhomogeneous transparent scenes, accurate recdiwstiriscindeed possible with simple
algorithms. Looking forward, we believe that even more gehesconstruction problems are
now coming within reach. We are currently investigating teeonstruction of complete sur-
face models in the presence of occlusions, and the recatistnof scene interiors, along with

their surface.
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Figure 4.10:Fish reconstruction results using stereo and 1/8 pixel depth resolutieme¥hlts show a
striking improvement over the basic depth map when the depths and norreahabened in the Poisson
reconstruction. Note the detail in the inset region, where the ridge detathggerated and noisy in
the depth map but the Poisson map is smoothed by the accurate normals alydciskes the laser
depths. The insets show how our recovered normals are much cleangh¢hiaser normals and are

able to improve the depth map when combined.



CHAPTER4. SCATTER-TRACE PHOTOGRAPHY 88
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Cross sections of Depth map, Poisson reconstruction andrldes#h map
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Figure 4.11:Top: Mesh reconstructions showing the inset regions from Figure Ntfce how the

Poisson surface preserves more detail than the laser reconstructidessgitmoise. Cross sections are

from column indicated on depth map (top left Figure 4.10), showing the depphafigned with the

laser depths and the Poisson map also compared with the laser depths.sitwsgood alignment

between the Poisson surface and the laser scan, with improved smoathtiesB®oisson surface over

the laser depths.
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Figure 4.12:Reconstruction results for decorative bottle using high speed captimesutar stereo

and 1/4 pixel depth resolution.
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Figure 4.13Reconstruction results for decorative bottle using high speed captooeiar stereo and
1/4 pixel depth resolution. 3D surfel view shows all four reconstrusiges together. The cross section
is from row indicated on depth map (Figure 4.12 top left) and the left crad®baeshows a comparison
between depths and laser depths and the right compares the Poissee suitli laser depths, showing

improved alignment and smoothness.
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Figure 4.14:Reconstruction results for juice bottle using trinocular stereo and 1/4 pepthdesolu-

tion. The 3D surfel view combines three neighboring trinocular datasets.
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Depth map max, C2(d)

Normal map 3D Surfel view

Figure 4.15:Reconstruction results for multiple object scene using a stereo view papiegidiepth

resolution.
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Figure 4.16:Scatter traces and intermediate results of applying the scatter trace stemith@go the
highlighted pixel in Figure 4.1(left). Scatter trace resolution as797. Note the double streaks, cor-
responding to a direct reflection component and a secondary contphueeto indirect reflection (this
occurs for almost all pixels in this scene). Also shown are the values oh#ttehing criterion across
disparities and the recovered normal distribution (only one angle is shdlatg the unambiguous peak

at the true disparity] = 18, despite the presence of strong secondary illumination.



Chapter 5

Depth from Reflectance Magnification

“Don’t stare into a mirror when you are trying to solve a prolohe

-Mason Cooley

5.1 Introduction

The problem of recovering the 3D shape of scenes that coatande variety of materials
from diffuse to highly specular using simple and accesslgi@pment remains an open prob-
lem in computer vision. Previous work in this area can beddidiinto two classes, those
that attempt to extend Lambertian approaches to non-Larmbeusing stereo-based meth-
ods [19, 24, 39, 141] or photometric stereo or monocular outH4, 5, 46, 48, 77] and those
that build on techniques designed for recovering speclgacts [18, 33, 85]. There is little
reason to expect scenes to be exclusively Lambertian oukgyeand while progress has been
made in both these areas, there is no one method that spdind thege from Lambertian to

specular with a single, simple capture setup. Such sceresspecially challenging because

94
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there is often a high dynamic range of brightness [26] andaipearance varies significantly
depending on viewpoint and with changes in illuminationu3 it is difficult to make assump-
tions about the reflectance that holds for all the materi&srthermore, the complexity of
the capture process is a factor that varies significantiywéenh 3D reconstruction techniques,
with some requiring multiple views [24, 85, 141], exemplaaterials [46], light source calibra-
tion [18, 85, 141], polarization filters [33, 77], hemispicat illumination gantries [77], and a
significant quantity of images [18, 48, 85].

Motivated by these challenges, we present a novel apprbatheéeks to meet the following

goals:

¢ Invariance to the BRDF: The approach should put as few restrictions on the type of

material as possible and be able to recover diffuse as wepasular materials.

e Simple capture setup:The capture process should be straightforward, withoutiape

ized equipment and requiring only simple calibration.

e Fast capture: Only a few images should be required.

In this work we present two algorithms that use the same é@xpetal setup shown in
Figure 5.1, one requiring calibration and the other catibrefree. The input to both algorithms
is the same, a small number of images are captured from sestaghera of the scene as it is
illuminated by a near-field non-uniform planar light souaa LCD monitor) which displays
a sequence of patterns. The source is then translated pieplamly to its plane, thus altering
its distance to the scene and a second set of images arearapiMe define the perpendicular
distance of a scene point from the near source plase@se-relative depthOur uncalibrated

approach is analogous to depth from defocus [98, 115] bherdhan refocusing, we use the
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I Camera

LCD
Light
Source

Figure 5.1: Experimental setup.

change in illumination between the translated source topttenthe source-relative depth. In
the calibrated algorithm, the orientation of the sourcehtodamera is known and so for each
pixel we recover a 3D point on the scene surface.

While we seek to be invariant to all BRDFs the range of recontthle BRDFs differ
between the calibrated an uncalibrated algorithms. In ti@librated version, we limit re-
construction to BRDFs that are smoothly varying and withortdrsg skew in exchange for
greater efficiency in capture. In contrast the calibratedioe is able to reconstruct non-
smooth BRDFs including specular objects. Both approachesmaited by the following. If
the light source is partially occluded from the perspeatiza point on the scene it is possible
that that point will be incorrectly reconstructed. The tigburce size constrains the amount of
the scene we are able to recover, since viable points musttréfiht from the source back to
the observer.

Our approach is related to BRDF invariant reconstruction pugtthat leverage distinc-

tive properties of BRDFs [5, 24, 39, 46, 48, 141]. However mahthese approaches rely on
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point light source illumination for their invariants. Farstance, the use of Helmholtz reci-
procity [141] is not practical for specular materials besmthe reciprocity only applies to
pairs of camera and point light source positions. In thigaady specular surface points with
a particular normal can be recovered. The same problem ®eduen image ratios are used
as in [24] because the assumption is based on changinguh@nktion of a point source and
enough light must be reflected toward all cameras to meakareatio. The approach of us-
ing exemplar materials [46] also breaks down when speclijcts are considered, since the
only change in appearance would be at the specular higklighén the light source position

is changed.

Dense arrays of point light sources have been used to overttmerabove problems in [4,
5, 18, 33, 48], however these methods are based on photorstetreo and either make assump-
tions about the symmetry of the material's BRDF [4, 5, 48] oyapply to glossy or specular
materials [18, 33]. The output from these algorithms is amamap rather than a depth map
or point cloud as in our approach. In this respect our workdser to those algorithms that are
based on specular stereo. These algorithms work by obgespecular highlights on the target
surface, allowing depth and normals to be recovered bygdulkation [13, 15,102, 133, 137].
As noted by [102], this triangulation requires either kneglde of the of incident ray direction
or a second view that can verify a hypothesized depth andalofRather than using multiple
views, in our calibrated algorithm we use the translateltigpurce to identify the incoming
direction of rays in a similar way to [70, 85]. However we goybed all these approaches
to demonstrate that even highly diffuse materials alondp wiecular materials can also be

simultaneously reconstructed using a similar capturepsetthe specular approaches.

Our work is closely related to [68] where a translated neddfpoint light source is used

to acquire depth cues for Lambertian scenes. While we usengldtad planar source, there
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are similarities such as that both approaches are improyathkeasing the distance the source
is translated, and both techniques provide uncalibrat@thdeues of the scene by observing
the effect of reflectance changes as the light source is mowddile the method in [68] is
not strictly normal independent our approach is, and whiéy tdo apply their method to non-

Lambertian materials, this requires a highlight filteringge rather than being invariant.

5.2 Reflectance Magnification

Consider a scene that is illuminated by a planar, spatialty-undform light sourced.g, an
LCD monitor). We assume that the scene is viewed under pdrgpgurojection from a
fixed viewpoint and that the scene is static, with an unkno@rsBape, and an unknown and
spatially-varying BRDF.

With the scene static and the viewpoint fixed, there is a or@ae correspondence be-
tween points in the image and points in the scene. Our goalrscover two shape quantities

independently for each image point:

e Source-relative depththe distance of the corresponding scene point from the pdéne

the light source;

e Camera-relative depththe distance of the image point from its corresponding scene

point.

5.2.1 The 4D Reflectance Function for a Proximal Planar Source

The 4D reflectance function was introduced by Debestes! [25] to represent scene appear-

ance from a fixed viewpoint under directional lighting. Ia driginal definition, this function
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Image plane

Figure 5.2:1maging geometry. (a) Quantities involved in expressing the radiance inatlémage
point q due to a patcliA on the light source plane. (b) Our basic acquisition setup involves cagturin

images of the scene for two distinct positions—near and far—of a planaskgince.

provides the radiance, (¢, ¢), arriving at an image poing when the scene is illuminated
from direction (6, ¢) on the unit sphere. We begin by extending this definition & ¢hse
where illumination originates from a planar, spatially aamform source near the scene.

Let (z, y) be the coordinates of a point on the light source plane, espekin the source’s
internal 2D coordinate system (Figure 5.2a). We model dotgoadiance a{z,y) as the

product
I(z,y) L0, ¢) (5.1)

wherel (z, y) is a unit-less modulation factor that describes variatiomadiant exitance across
the light source plane, and 0, ¢) is a spatially-independent radiance factor that repredaet
source’s directional emission characteristics. In pcatterms, the modulation factor is simply
the pattern displayed on an LCD monitor; the radiance faotothe other hand, describes the
directional emittance characteristics of a single mongteel, under the assumption that all

pixels emit light the same way.



CHAPTERS. DEPTH FROMREFLECTANCE MAGNIFICATION 100

The radiance received at an image paejrdue to light from a differential patch at position

(x,y) on the light source is equal to

[ fela=p, p—1Ly) L(p — L)
lim c(p— L) I(x,y) dedy , 5.2
Aao/A L, — p|? (p = Ly) I(x,y) dudy (5.2)

wherep is the point projecting te; A is a patch centered &t, y); 1, is the 3D point corre-
sponding to source positiq, y); f, is the BRDF afp; andc¢() is a foreshortening factor that
accounts for the normals of the source plane and the surfacé a

Intuitively, the integrand in Equation (5.2) describes timage contribution of light that
leaves pointx,y) on the source, is received directly at scene ppinand is then reflected
toward pointq on the image plane.

When the integrand is differentiable, the radiance in EQ)(Beduces to

def

Jola=p, p—Ly) Lp—1,) dA eo(p—1,) | I(z,y) © (5.3)

ey — pII?

Ry (z,y) | 1(x,y) (5.4)

wheredA is the differential area element on the plane of the lightre®u In general, none
of the quantities in Eq. (5.3) will be known for an unknown segexcept for the displayed
pattern,/(z,y).

The functionR, (x, y) generalizes the 4D reflectance function in [25] to the case 21D
proximal light source. It is also four dimensional, with teimnensions ranging over the image
plane and two ranging over the light source. For a fixed imagetpk, can be thought of as
a 2D *“reflectance image” that describes the point’s appearander illumination originating

from every possible position on the source.

1Specifically, if p1, po are the angles that vectpr— 1, forms with p's normal and with the normal of the
light source plane, respectively, thefp — 1,,) = cos p; cos ps.
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Below we consider how this image is affected by a translatf@gheolight source plane away
from the scene under the assumption of a differential BRI&FE (where Eq. (5.3) applies). We
revisit the case of a pure-specular BRDF, which is a delta fonetnd thus non-differentiable,

in Section 5.4.2.

5.2.2 Geometry of a Translating Planar Source

Suppose we move the planar light source away from the scemarslating it along its normal
by a displacement (Figure 5.2b). This translation will change the reflectafuseetion of the

scene, assigning a new, “far” reflectance ima@@,,to pointq.

The key observation in our approach is that the relation eetwthe “near” and “far” re-
flectance images af depends only the point's source-relative depth and is iedéent of the
BRDF and the emission properties of the source. In partictiarfar reflectance image can
be thought of as a magnified and uniformly-dimmed versionhef near reflectance image,
with both magnification and dimming determined by the pgisturce-relative depth. We first
express the source-relative depth as a fractiasf the translation between the near and far

planes:

s = ot. (5.5)

Observation 1 (Reflectance Magnification)If the light source has an infinite spatial extent,
then for every pointz,y) on the far reflectance image, there is a pofnty) on the near

reflectance image such that

Rq(i",:&)=Rq(x,y)( ’ ) : (5.6)
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and
T (c+1)/o 0 —ajo| |z
gl = 0 (c+1)/c —=bla| |y (5.7)
1 0 0 1 1

where(a, b) are the coordinates of the orthogonal projectionppbnto the source plane, ex-

pressed in the source’s coordinate system.

Proof Using Eq. (5.3) to expand Eq. (5.6) and re-arranging, we get:

<Uj—1>2: :izg

wherei@ denotes the 3D point corresponding to positiéng) on the far plane.

29) L(p — i;zy) c(p — ifcz)) . Ny — pl’ (5.8)

)

2,9)  fola—p, p—1

x,y) fp(q_pv p_lxy) L(p_lxy) C(p_lxy) Hl:g?;—pH2
From similar triangles, pointéz, y) and(z, §) on the near and far source planes, respectively, lie

on the same 3D ray through poipt It now follows that the BRDF, radiance, and foreshortening terms

in Eqg. (5.8) cancel, making the fraction dependent only on the ratio ofedquistances fromp. Using

similar triangles again, we get

2

ey —pl2 \o+1

Reflectance magnification tells us that the transformatidating the near and far re-
flectance images depends on just four parameters—three ioh wlletermine the 3D posi-
tion of p uniquely (the source-relative depth apid projection on the light source plane) and
one that depends on the light source (light source displan®m This suggests a very sim-
ple BRDF-invariant algorithm for computing 3D shape: (1) captthe scene’s reflectance
function for a near and a far source position, (2) computethihee transformation parame-
ters relating the near and far reflectance images of event gaon the image plane, and (3)
convert these parameters into a 3D shape. Note that thistalgodoes not rely on any cam-

era calibration information—its only requirements aret tine light source plane undergoes
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translation along its normal; indirect illumination haseghgible effect on scene appearance
(e.g, inter-reflections, transparency and sub-surface soai)eand the source’s spatial extent
is sufficiently large.

Although it is possible to implement this algorithm dirgcthis would be very inefficient
because it involves capturing the scene’s full 4D refleadnnction. For instance, aN x V-
pixel LCD acting as the light source would require capturddg? images in totalj.e., one
image per pixel per source position. We therefore focus orsvi@take advantage of the same

basic principle but with far fewer images captured.

5.2.3 Speedup by Integration

One way to reduce acquisition requirements is to captuesititegrals of the reflectance func-
tion rather than the function itself. This is possible bessathe dimming and magnification

relations in Egs. (5.6) and (5.7) are preserved under iategr.

Observation 2 (Magnification of Reflectance Integrals)If Rg (y) and Rfl (y) are the axis-

aligned integrals of?, (z,y) and R (Z, j) respectively, then

R (5) = R:(y) (U‘_’H) . (5.10)

See the Appendix for the derivation of Eqg. (5.10). The abadvseovation reduces the
reconstruction problem at poif to the problem of computing the transformation between
pairs of 1D functions, namely the integrals of the near amddflectance images along the
z- and (possibly) thg-axes. These 1D functions can be acquired by capturing isnafyihe
scene while displaying a single stripe on the monita.,(/(z,y) = 1 along a single row or
column and) everywhere else). For al x N-pixel LCD, this requires capturingyV images,

one per row/column per source position.
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Rg (blue curve) andg (red curve) Ry (blue curve) andzg (red curve)

Figure 5.3: Reflectance magnification in the spatial and frequency domains. The ptoéspond to

the middle example in Figure 5.4, with= 2.

Despite the relative efficiency of this general procedurstjli involves capturing a poten-
tially large number of samples of the functiofi§ and}?fl, and thus a large number of images
(each image gives us one sample). To reduce sampling retgnts even further, we analyze
reflectance magnification in the frequency domain. Thiswadlos to take advantage of the
broad spectral support of these functions and compute dgpampling just a few of their

Fourier coefficients.

5.3 Reflectance Magnification in the Frequency Domain

How does the spectrum dt; change when the light source moves to the far plane? The fol-
lowing observation shows that as the source moves away fieradene, the spectrum shrinks

linearly according to the source-relative depth (Figuy:5.

Observation 3 (Reflectance Magnification in the Frequency Domin) If Rg and7éf§l are the

Fourier transforms ofr?; and Rg, respectively, then

R | = ‘Rg {‘” 14 (5.11)

o
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Figure 5.4: 1D slices of the reflectance function (red) for three different BROMge)—a diffuse
BRDF on the left, and two BRDFs with an increasingly-narrow specular. INlogée that the reflectance

function quickly diminishes for points on the light source away frem

See the Appendix for a derivation of Eq. (5.11). The simptetshing relation between
near and far spectra makes shape computation especiafjesimthe frequency domain. We

use three basic ideas to do this.

First, reflectance images include the effects of foreshorteand squared-distance falloff
(Eqg. (5.3)) that cause significant spatial attenuation. Asalt, both the images themselves and
their line integrals have limited spatial support—and thusad spectral support—regardless
of a point's BRDF (Figure 5.4). This allows us to estimate séatretching from just a few

Fourier coefficients in the vicinity of the DC component.

Second, computing a Fourier coefficieRf, [w] can be done optically, by displaying the
pattern/(z,y) = cos (2nwy) — jsin (2rwy) on the light source plane and measuring the

(complex-valued) radiance gt Since we cannot display and capture complex-valued signal
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directly, we capture the coefficient in parts, using fouteais?

vF from max{0, cos(2rwy)} v from max{0, sin(27wy)} (5.12)
v, from max{0, — cos(2rwy)} v, from max{0, —sin(2rwy)}  (5.13)
with R [w] = (v =) =300 =75 ) - (5.14)

Third, since the line integral&g andf%ﬁ are typically just an isolated peak, and since this
peak will occur at corresponding positions on the near angléne? it can be localized by
temporal phase unwrapping from the available Fourier aneffts [19, 20, 53].

We turn these ideas into concrete algorithms below.

5.4 Depth from Reflectance Magnification

5.4.1 Source-Relative Depth for Differentiable BRDFs

We apply Eqg. (5.11) directly to find the source-relative tidpt a particular pixel. Specifically,
each four-pattern sequence in Egs. (5.12)-(5.14) proadssgle Fourier coefficienRg [w],

and thus a single sample of the spectrumijf We repeat this acquisition procedure for a
fixed set ofn frequencies to obtain samples of the spectrum, for each of the two light source
positions §n images in total). To compute the stretch, we fit smoothingneplto R, [w]
andR? [w], to obtainS? [w] andS? [w] respectively according to [101]. We then compute the

following error function between the near spline and thetshred far plane spline:

2Intuitively, this can be thought of as a direct optical implentation of the Fourier transform. An analogous
display procedure was used in [97, 139] for capturing emvitent mattes.

3Equation (5.10) implies that if a local extremumi@f occurs at position, then a local extremum d%g will
occur at position, with ¢ given by Eq. (5.7).
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E(o) =3 (82 [w] - (" i 1) 57 [w)? (5.15)

g

We find theos that minimizesF, giving the following algorithm:

Step 1 Capture near and far plane frequencie®(w) and R* (w) and RY (w) and RY (w)
(Egs. (5.12)-(5.14))

Step 2 For each pixeh:

Step 2.1 Fit smoothing splines to g&t; [w] andS‘g [w]

Step 2.2 Perform search fas that minimizest

In practice we used = 10 frequencies on the near screen, spanning the/ D@, N/4 ...
N/512 andn = 5 frequencies on the far screen spanning the D@, N/4 ... N/16, whereN
is the maximum spatial extent of the monitor screen. Dueédcasthetching, we required fewer
samples on the far screen to match the near screen curve.

An important feature of this algorithm is that it is complgtealibration free: it requires
no knowledge of the intrinsic or extrinsic properties of tamera and requires no knowledge
of the actual translation of the monitor (source-relatigpttis are recovered as fractions of this

unknown distance).

5.4.2 Camera-Relative Depth for Differentiable and Specular BRDFs

In order to obtain camera-relative depth, we seek to compueepair of corresponding points

on the two light source planek,{ andi@ in Figure 5.2 (b)). We then intersect the ray passing
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through them with the view ray through This idea has been used repeatedly for reconstruc-
tion in the specular case [15, 69, 85] and here we extend thisedure to the non-specular

cases as well.

In the case of a specular BRDF, the reflectance image will be ta éeiction on both
planes. In real images, it will correspond to a sharp peaR iz, y). We can compute these
peaks by transforming the same frequencies captured inrdwops section (Section 5.4.1)

into the spatial domain using the inverse Fourier transform

So even in the case of non-specular BRDFs the global extreniee ireflectance images

also lie on the same 3D ray, we can apply the same principleetmmstruction here as well.

This leads to the following algorithm:

Step 1 Capture near and far plane frequencie®(w) and R* (w) and RY (w) and RY (w)
(Egs. (5.12)-(5.14))

Step 2 Setthe remainingN —n) and(N —n) frequencies to zero and compute approximations

of R, R, andR/, I/, by the inverse Fourier transform
Step 3 For each pixed:

Step 3.1 Find1,, andl;; by taking the maxima oft,,, R, andR.,, R..

Step 3.2 Intersect this ray with viewing ray througpto obtainp

Note that this does not require more frequencies than thesé im Section 5.4.1, and is

equally efficient. The only difference is the calibratioqueéement.
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5.5 Experiments

In our experiments we used an 20 inch LCD screen as our illuimimaource and we translated
it on a track perpendicular to the screen’s plane by a distant (Figure 5.1). We placed the
objects as close to the near plaRgas possible while still being visible to the camera. This
placement is important to minimize the number of incidemtsrbom P, that are not also
covered byP; since the planes are not infinite (Figure 5.1). We chidszsed on the size of the

target object, with deeper objects needing a latger

We corrected the sinusoidal patterns to take into accoent@D’s gamma function and
for each pattern we displayed two images one of the positweponent and one of the nega-
tive component and later subtracted the negative compameuge as in [36]. The camera was
radiometrically calibrated using the method describe®8] pnd for some of scenes we cap-
tured multiple exposures (usually only one or two was swfith and created HDR images for
input to our algorithm [26]. For each exposure we requii@dnages spanning0 frequencies

on P, and5 on Py.

In the following sections we present reconstruction reduttm both the uncalibrated (Sec-
tion 5.4.1) and calibrated (Section 5.4.2) methods. We ghewecovered depth maps as well
as the half-angle vector maps for each object and we compapptroximate ground truth from
laser scans. The laser scan data was acquired with a Konivalt®liVI-9i at approximately
the same distance as our camera to the scenes. We matchaskthgdans to our reconstructed
points by a least squares best-fit approach after manuialliaattion. For the specular datasets

we had to coat the objects with white powder before scanning.

Orange Dataset This dataset is a scan of the skin of a tangerine orange whassrial has

both diffuse and specular components (Figure 5.5). We used-a20mm for the scan and
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two exposures. The uncalibrated depth recovery closelgimaatthe laser scan data. The navel
of the orange was not recovered since the signal was too ttuis @oint. The calibrated depth
map shows the subtle wrinkles of the skin, while the wrinkdesless obvious in the laser scan.
This may be because the sub-surface scattering in the leaercauses artificial smoothing

making our method more attractive, if slightly noisier ($ee cross section in Figure 5.6).

The half angle vectors here vary significantly from the traenmal map because the orange

has a significant diffuse component in addition to the s@gadmponent.

Dome datasetThis object is a white plaster dome on a pedestal created Bymaiter and its
reflectance is very diffuse. This object is a good test forapproach in terms of its reflectance
as well as interesting geometry with the planar pedestattanahtersection with the smoothly

curving dome.

We used two exposures for this scene, with 40mm and the depths fror®,, varied from
5mm to 85mm. Notice that there are some errors due to indirect illunamatespecially at
the intersection of the dome with the pedestal. This dattigstrates how the accuracy of the
reconstruction degrades as the distance from the illunsimaburce increases, especially when
it approachegt, see cross section 2 in Figure 5.8. Again the half angle vecto not model

the normal vectors well here because of the diffuse refleetahthe dome.

Sphere dataset We scanned a mirroring sphere with nearly pure specularctafiee using

a single exposure time artd= 20mm. The laser scan required coating the sphere because
of its high reflectivity. As expected the uncalibrated ag@todid not recover the depth well,
however the calibrated method achieved good results (Ei§L2). It is possible to see some
ringing artifacts on the sphere, this is due to the low fremyeof the displayed patterns. With

a higher number, such artifact would be reduced but this iadetoff with capture time. The

half angle vectors in this case give very good estimatesefthface normals as we would
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expect from a specular object.

Cylinder dataset We also scanned a highly specular cylinder (the top of arsfipeay paint
can) to further demonstrate our specular reconstructigaimithe laser scan required a coating
on the cylinder. For our scan we used a single exposure tide an20mm. Similar ringing
artifacts show up as in the sphere case, however the cuevafuthe cylinder is correctly
recovered as can be seen in the mesh view and cross sectioguoé 5.10. The half angle

vectors again give very good estimates of the surface ngrasalve would expect.

Can-opener dataset Our final dataset consists of a can-opener lying on top of &ltowhis
scene has multiple materials: the glossy metal on the canearspthe plastic handle is diffuse
and also has significant sub-surface scattering and thé ialso diffuse with highly complex
local geometry that causes inter-reflection and indireggttli Given these materials, this is a
difficult scene to reconstruct for almost all 3D reconstiwtimethods including ours and the
‘ground truth’ laser scan. We useéd= 40mm for this scan with four exposures. Figure
5.11 shows the recovered depth maps along with the lases.sd@dre glossy region on the
can-opener was partially recovered by the uncalibratedrigign and the towel shows some
problems due to the indirect light. The calibrated recartsion is more robust to the varying
materials and has a close correspondence with the lasero&s however the region of the
towel inside the loop of the can-opener that exhibits erbatsveen the calibrated depth map
and the laser depths. This is caused by partial occlusiomedight source by the can-opener.
The half-angle vectors on the metal of the can-opener mathaser normal map relatively

closely as expected.
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5.6 Conclusion

We have presented a new approach for recovering the shapmefaj scenes from a single
viewpoint using a moving planar light source (e.g. an LCD rtami Additionally, when cali-
bration is available 3D points can be reconstructed antiéurbbustness to specular materials
gained. We have shown our method to work under a variety 6€dif scenes exhibiting spec-
ular and diffuse materials. We are able to recover depth dch ef these materials using a
convenient illumination and capture system.

Our method is limited to direct light and thus inter-refleas and significant subsurface
scattering or refraction can cause errors. Since we lingitthmber of illumination patterns
to a few low frequencies, some high frequency BRDFs or ocahssgan cause errors in the
depths. However more images could be used to reduce thid effa trade-off with capture
time.

In the future we would like to experiment with broader samglacross the Fourier spec-
trum, rather that just using low frequencies. Testing aliive bases might also improve our
results or be more efficient for capture. In addition we wdikd to experiment to see how
precise the translation @, to Py needs to be to maintain reasonable results, because rgducin

the requirement of a translation stage would further sifiypie experimental setup.
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Depth Map Src-Relative Depths

Laser Depth Map Laser Src-Relative Depths
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- w— 5mm 15mm
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Figure 5.5: Orange dataset results
Half Vector Map Laser Normal Map |Half Vecs - Laser Normals .
OO

Input limage

— Reconstructed points
— Laser points

Figure 5.6: Orange dataset results
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Depth Map Src-Relative Depth
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Figure 5.7: Dome dataset results
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Figure 5.8: Dome dataset results
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Figure 5.9: Sphere dataset results
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Figure 5.10: Cylinder dataset results
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Figure 5.11: Can-opener dataset results
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Figure 5.12: Can-opener dataset results



Chapter 6

Conclusions

“It is not by muscle, speed, or physical dexterity that grémigs are achieved, but by
reflection, force of character, and judgment.”

-Marcus Tullius Cicero

In recent years we are finally starting to see the emergen8®gfhotography systems
with high fidelity that are robust to the kind of complex optiwe see every day. Scenes with
complex refractive and reflective properties that were dhoaght to be impossible to scan are
now coming within reach.

We have shown how simple multi-view camera systems as weleaatilization of multi-
planar illumination sources can remove many of the ambggiihherent in the optical com-

plexity our target scenes. In particular we have shown that:

e We can recover 3D points and normals of temporally dynaniracéve surfaces using

a simple stereo system using a known planar submergedmpatter
e We are able to reconstruct 3D points and normals from compiomogenous trans-

120
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parent objects with a multi-view system by observing “srattaces” at each pixel.

e We can reconstruct source-relative depth of scenes witlda variety of BRDFs from a
single uncalibrated view, and upon calibration we can rec@D points on the surface

and be more robust to truly specular materials.

While the main goal of this work has been to show how the firgtsstd tackling such prob-
lems with 3D photography, we have also begun to show how tleebaiques can be improved
with more rapid capture as well as broadening the range ofnmahtypes that can be scanned
with one capture. It is not hard to see such systems beingeimmgaited in important industrial
scanning tasks. All of these approaches require only sicgueera and illumination systems
and can readily be applied to 3D reconstruction tasks ifaeattarchival, oceanography, medi-

cal instrumentation, manufacturing quality assurancepmssibly in robotic systems.

6.1 Future work

We see great potential in extending the work described héranany cases we have just
‘scratched’ the surface in terms of what can be achieved.

Interior reconstruction. Our approach to 3D reconstruction of inhomogeneous trans-
parent objects focuses on the exterior surface, leavinghteeor largely unknown despite a
wealth of information in the scatter trace. Given an extaregonstruction and the refractive in-
dex, some initial experiments have shown that it is possthfecover opaque interiors through
a modified version of multi-view stereo. This alone prompteiiesting problems: how do we
find the 3D pose of a transparent object relative to images ahd how can we solve for the

refractive index of such an object from photographs. It miap e possible to jointly solve
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for the interior and exterior under some conditions. In &ddj we would like to be able to
recover transparent objects with non-opaque interioctire as well.

Material and scattering capture. While our initial work has focused on recovering the
3D shape of target objects, the wealth of information intecataces could enable us to simul-
taneously acquire BRDF models for materials on the objectndigh views are available or
sufficient normals can be classified as belonging to the saaterial a dense sampling of the
BRDF is possible. It would also be interesting to factor in tsraig properties of a medium.
It may be possible to estimate this from the indirect compboéthe scatter traces. Capturing
the material and scattering properties would also enable raccurate rendering of scanned
objects.

Exploring the spectrum. In the work presented here we assume monochromatic light,
however refraction changes its properties according teeleagth. This effect could possible
be used to estimate the refractive index or provide additiones for depth, making our ap-
proach more efficient. Additionally it would be interestitagmake use of infrared illumination

as its transmission is significantly reduced compared tashwavelengths.



Appendix A

Proof of Ambiguity Theorem

Proof of Theorem 1The proof uses two basic intuitions. First, given an arbytxalue for the
refractive index, each viewpoint can be thought of as defiaiBD constraint curverepresent-
ing all assignments of distances and normals to a pjptbht are compatible with Snell’s law.
Hence, an assignment that is consistent with both viewpaaotresponds to the intersection
of two such constraint curves. Second, and most importangri arbitrarily-shaped surface,
these 3D curves will be in general position with respect hezther and, therefore, will not
have a common intersection. From these two facts we conthadevhen the refractive index
has an arbitrary value, there will be no distance and norsgfament that is consistent with
both viewpoints. Hence, such consistency can only be aetliér isolated refractive index

values. We formalize these intuitions below.

Letr* be the true refractive index of the surface and-let * be an arbitrary value of this
index. Without loss of generality, we assume that the fmc€(q) is known for all pixels
q and is continuous. Leq be an arbitrary pixel in the first viewpoint and lét be its true

distance to the surface. Given valutor the refractive index, every distané&lefines a unique

123



APPENDIXA. PROOF OFAMBIGUITY THEOREM 124

normal,n(d, r), compatible with Snell’s law (Figure 3.2 and Eg. (3.2)). foge we represent
unit vectors with two angles: an andlecorresponding to the angle between the vector and the
ray throughq; and an angle, corresponding to the angle between the vector and the horma
of g’s refraction plane. In this representation, the distarmud rrormal assignments tpthat

are compatible with Snell’s law define a curyén (d, 0, ¢)-space. This curve will always lie

on the plane» = 0 since, by definition, the normal(d, r) always lies on the refraction plane
of pixel q.

Now let g'(d) be the projection ofp(d) in the second viewpoint (Figure 3.1). Since
C(d/(d)) is known, there is only one normal/(d, ), that can be assigned {od) and is
compatible with Snell’s law in the second viewpoint. Thigmal will lie on the refraction
plane of pixelq’. Generically, the refraction planes of pixejsandq’ are distinct. Hence, the
normaln’(d, r) may not lie on the refraction plane of pixglknd, asi varies,n’(d, r) will trace
a general curve’ in (d,0, ¢)-space, i.e., a curve that is not restricted to the plare0.

We now show that and+’ do not intersect. First note that the two curves cannotseter
in the neighborhood of the “true” distandé becausen’(d*, r) # n(d*,r).t

Now consider distances away frath. We show that’ and~ generically will not intersect
there either. In particular, the normal(d, r) is completely determined by poit(q’(d))
which, in turn, is determined by the normal of the true swefpoint projecting to pixedy'(d).
Sinceq’(d) lies on the epipolar line af for all values ofd, it follows that curvey’ is completely
determined by the surface normal of points at the intersegt!, of this epipolar plane with the
true surface. Fot/’ and~ to intersect there must be a point 6houtside the neighborhood of

p(d*) whose surface normal is identicalpgd*). This condition, however, cannot be satisfied

10Observe than'(d*,7*) = n(d*,r*) since Snell's law is satisfied for both viewpoints in the teeene.
Now, since there is a 1-1 correspondence between refrantiiees and normals wheti is fixed, and since the
refraction planes off andq’(d) have only one normal in common, it follows that(d*, ) # n(d*, r).
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for an open 2D set of points on a generic surface. It folloves thand~ are non-intersecting

for almost all points on the surface and, hence, for almogtixals in the surface’s projection.



Appendix B

2D Scatter Traces

Suppose we illuminate the scene with a linear light souratithoriented along the axis and
can move on they-plane. The radiance incident at pixgfor light source positioriz, y) is

just the integral of the pixel's 3D scatter traces alang

Ty(z,y) = /Tq(x,y,z)dz. (B.1)

Now consider each of the three types of light transport dised in Section 4.2.1 for the 3D
case. If the point projecting tq is a planar mirror, the above integral is just the 2D analog of
the 3D impulse scatter trace: itis equal to the orthograptogection ofg’s 3D impulse scatter
trace onto they-plane. As such, (1) its value decreases monotonicallywitfeasing distance
from the point of reflection, and (2) it is non-zero along ag&n2D ray that corresponds to
the direction of specular reflection, projected onto thyeplane. Analysis of the other cases

follows as a direct consequence of these two observations.
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Appendix C

Reflectance Magnification Derivations

Derivation of Eq. (5.10) Using Eg. (5.6) and integrating oveémwe have

N o 2
w6 = (75) [ Raton o ©)
o 2 o . 1 .
- <a+1> /:ERq<o+1x+a+1a’ y) di (€2)
_ <ai1> [ Ra () a: (C.3)
g XT
- (U+1>Rq(y)

where we used Eq. (5.7) to express terms ofz in Eq. (C.2). |}
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Derivation of Eq. (5.11)

Rill = [ B () exp (j2me) dy (c4)

[ Bawexp (~g2mw) di )

N <a+1>/R3< it b) exp (—j2mwy) dj (C.6)

o+1 oc+1

= /Rg (z) exp <—327r i 1wz> exp (—jZmub) dz (C.7)
o
= exp (—jQﬂ'w2> Ry [J i_ 1w] , (C.8)

where we used Eq. (5.10) to obtain Eqg. (C.5), and used Eq. (5.7) tessgin terms ofy in Eq. (C.6).

Equation (5.11) now follows by taking the magnitude on both sides of Eq..(C.8j}
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