
1

CSC418 Computer Graphics

n BSP tree
n Z-Buffer
n A-buffer
n Scanline

Binary Space Partition (BSP) Trees

n Used in visibility calculations
n Building the BSP tree (2D)

– Start with polygons and label all edges
– Deal with one edge at a time
– Extend each edge so that it splits the plane in two, it’s normal

points in the “outside” direction
– Place first edge in tree as root
– Add subsequent edges based on whether they are inside or

outside of edges already in the tree. Inside edges go to the right,
outside to the left. (opposite of Hill)

– Edges that span the extension of an edge that is already in the
tree are split in two and both are added to the tree.

– An example should help….

2

BSP tree

Using BSP trees

n Use BSP trees to draw faces in the right order
n Building tree does not depend on eye location
n Drawing depends on eye location
n Algorithm intuition:
n Consider any face F in the tree

– If eye is on outside of F, must draw faces inside of F first,
then F, then outside faces. Why?

c Want F to only obscure faces it is in front of
– If eye is on the inside of F, must draw faces outside of F

first, then F (if we draw it), than inside edges
n This forms a recursive algorithm

3

BSP Drawing Algorithm

DrawTree(BSPtree)
{

if (eye is in front of root)
{

DrawTree(BSPtree->behind)
DrawPoly(BSPtree->root)
DrawTree(BSPtree->front)

} else {
DrawTree(BSPtree->front)
DrawPoly(BSPtree->root)
DrawTree(BSPtree->behind)

}
}

Visibility Problem

n Z-Buffer
n Scanline

4

Z-Buffer

n Scanline algorithm
n Z-buffer algorithm:

1. Store background colour in buffer
2. For each polygon, scan convert and …
3. For each pixel

– Determine if z-value (depth) is less than stored z-
value

– If so, swap the new colour with the stored colour

Calculating Z

n Start with the equation of a line
0 = A x + B y + C z + D

n Solve for Z
Z = (-A x – B y – D) / C

n Moving along a scanline, so want z at next value of x

Z’ = (-A (x+1) – b y – D) / C
Z’ = z – A/C

5

Calculating Z

n For moving between scanlines , know
x' = x + 1 / m

n The new left edge of the polygon is (x+1/m, y+1), giving
z' = z - (A/m + B)/C

Z-Buffer Pros and Cons

n Needs large memory to keep Z values
n Can be implemented in hardware
n Can do infinite number of primitives.
n Handles cyclic and penetrating polygons.
n Handles polygon stream in any order throwing away polygons

once processed

6

A-Buffer

n A-buffer

A-Buffer

n Z-Buffer with anti-aliasing
– (much more on anti-aliasing later in the course)

n Anti-aliased, area averaged accumulation buffer
n Discrete approximation to a box filter
n Basically, an efficient approach to super sampling

n For each pixel, build a pixel mask (say an 8x8 grid) to
represent all the fragments that intersect with that pixel

n Determine which polygon fragments are visible in the mask
n Average colour based on visible area and store result as pixel

colour
n Efficient because it uses logical bitwise operators

7

A-Buffer: Building Pixel Mask

n Build a mask for each polygon fragment that lies below the pixel
n Store 1’s to the right of fragment edge
n Use XOR to combine edges to make mask

A-Buffer: Building Final Mask

n Once all the masks have been built, must build a composite mask
that indicates which portion of each fragment is visible

n Start with an empty mask, add closest fragment to mask
n Traverse fragments in z-order from close to far
n With each fragment, fill areas of the mask that contain the

fragment and have not been filled by closer fragments
n Continue until mask is full or all fragments have been used
n Calculate pixel colour from mask:

n Can be implemented using efficient bit-wise operations
n Can be used for transparency as well

)(
)(

)(

1

icolour
maskarea

iarea
colour

tsNumFragmen

i
∑

=

=

8

Illumination

Illumination

n Coming soon!

