CSC418 Computer Graphics

- BSP tree
- Z-Buffer
- A-buffer
- Scanline

Binary Space Partition (BSP) Trees

- Used in visibility calculations
- Building the BSP tree (2D)
- Start with polygons and label all edges
- Deal with one edge at a time
- Extend each edge so that it splits the plane in two, it's normal points in the "outside" direction
- Place first edge in tree as root
- Add subsequent edges based on whether they are inside or outside of edges already in the tree. Inside edges go to the right, outside to the left. (opposite of Hill)
- Edges that span the extension of an edge that is already in the tree are split in two and both are added to the tree.
- An example should help....

Using BSP trees

- Use BSP trees to draw faces in the right order
- Building tree does not depend on eye location
- Drawing depends on eye location
- Algorithm intuition:
- Consider any face F in the tree
- If eye is on outside of F, must draw faces inside of F first, then F, then outside faces. Why?
\square Want F to only obscure faces it is in front of
- If eye is on the inside of F, must draw faces outside of F first, then F (if we draw it), than inside edges
- This forms a recursive algorithm

BSP Drawing Algorithm

```
DrawTree(BSPtree)
{
        if (eye is in front of root)
        {
            DrawTree(BSPtree->behind)
            DrawPoly(BSPtree->root)
            DrawTree(BSPtree->front)
        } else {
            DrawTree(BSPtree->front)
            DrawPoly(BSPtree->root)
            DrawTree(BSPtree->behind)
    }
}
```


Visibility Problem

- Z-Buffer
- Scanline

- Scanline algorithm
- Z-buffer algorithm:

1. Store background colour in buffer
2. For each polygon, scan convert and ...
3. For each pixel

- Determine if z-value (depth) is less than stored zvalue
- If so, swap the new colour with the stored colour

Calculating Z

- Start with the equation of a line

$$
0=A x+B y+C z+D
$$

- Solve for Z
$Z=(-A x-B y-D) / C$
- Moving along a scanline, so want z at next value of x
$Z^{\prime}=(-A(x+1)-b y-D) / C$
$Z^{\prime}=z-A / C$

Calculating Z

- For moving between scanlines, know

$$
x^{\prime}=x+1 / m
$$

- The new left edge of the polygon is $(x+1 / m, y+1)$, giving $z^{\prime}=z-(A / m+B) / C$

Z-Buffer Pros and Cons

- Needs large memory to keep Z values
- Can be implemented in hardware
- Can do infinite number of primitives.
- Handles cyclic and penetrating polygons.
- Handles polygon stream in any order throwing away polygons once processed

A-Buffer

- A-buffer

A-Buffer

- Z-Buffer with anti-aliasing
- (much more on anti-aliasing later in the course)
- Anti-aliased, area averaged accumulation buffer
- Discrete approximation to a box filter
- Basically, an efficient approach to super sampling
- For each pixel, build a pixel mask (say an 8×8 grid) to represent all the fragments that intersect with that pixel
- Determine which polygon fragments are visible in the mask
- Average colour based on visible area and store result as pixel colour
- Efficient because it uses logical bitwise operators

A-Buffer: Building Pixel Mask

- Build a mask for each polygon fragment that lies below the pixel
- Store 1 's to the right of fragment edge
- Use XOR to combine edges to make mask

A-Buffer: Building Final Mask

- Once all the masks have been built, must build a composite mask that indicates which portion of each fragment is visible
- Start with an empty mask, add closest fragment to mask
- Traverse fragments in z-order from close to far
- With each fragment, fill areas of the mask that contain the fragment and have not been filled by closer fragments
- Continue until mask is full or all fragments have been used
- Calculate pixel colour from mask:
- Can be implemented using efficient bit-wise operations
- Can be used for transparency as well

Illumination

Illumination

- Coming soon!

