
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

AER: Aesthetic Exploration and Refinement for Expressive
Character Animation

Michael Neff† and Eugene Fiume

Department of Computer Science, University of Toronto

Abstract

Our progress in the problem of making animated characters move expressively has been slow, and it persists
in being among the most challenging in computer graphics. Simply attending to the low-level motion control
problem, particularly for physically based models, is very difficult. Providing an animator with the tools to imbue
character motion with broad expressive qualities is even more ambitious, but it is clear it is a goal to which
we must aspire. Part of the problem is simply finding the right language in which to express qualities of motion.
Another important issue is that expressive animation often involves many disparate parts of the body, which thwarts
bottom-up controller synthesis. We demonstrate progress in this direction through the specification of directed,
expressive animation over a limited range of standing movements. A key contribution is that through the use
of high-level concepts such as character sketches, actions and properties, which impose different modalities of
character behaviour, we are able to create many different animated interpretations of the same script. These
tools support both rapid exploration of the aesthetic space and detailed refinement. Basic character actions and
properties are distilled from an extensive search in the performing arts literature. We demonstrate how all high-
level constructions for expressive animation can be given a precise semantics that translate into a low-level motion
specification that is then simulated either physically or kinematically. Our language and system can act as a bridge
across artistic and technical communities to resolve ambiguities regarding the language of motion. We demonstrate
our results through an implementation and various examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Compelling characters are at the heart of most animated pro-
ductions, yet it remains a significant challenge for anima-
tors to create rich, nuanced characters with unique person-
alities that will engage audiences. There are few tools that
directly support the creation of expressive character move-
ment – those aspects of movement that convey personality
and mood. This paper presents an animation framework de-
signed to fill that need, along with an initial implementation.
The focus is on exploring deeper conceptual design issues,
rather than a particular interface.

Our system is designed to support the authoring of expres-

† {neff|elf}@dgp.toronto.edu

sive skeletal character motion. In order to do this effectively,
the system attempts to achieve three subgoals. It seeks:
• to allow animators to control aesthetically meaningful as-

pects of motion directly,
• to allow animators to work at various levels of abstraction,

supporting both exploration and refinement,
• to support the creation of specific characters.

Two themes arise from these goals: the need for customiza-
tion and the need for explicit representations. Customization
arises from the desire to create specific characters. A specific
character shows emotion in a specific way. Systems that cre-
ate a generic “sad" or “happy" movement are likely to be
insufficient for production work. We believe customization
is best achieved through direct animator control. Thus from
a computer science perspective, we are faced with the prob-
lem of balancing the conflicting needs for generic, reusable

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

Figure 1: Three frames from an animation in which a character shows an object to the audience. Left: from the base animation.
Middle: an “old man" character sketch has been applied. Right: beauty shape edits and an “energetic" character sketch have
been applied.

classes of characters and behaviours, and for customization
and specificity.

The second theme is the use of explicit representations. If
movement properties are explicitly represented in a compre-
hensible manner, their definition can be made precise, and
they can be customized, edited and refined. Building a high-
level tool out of well defined low-level building blocks al-
lows both the high-level and low-level interface to be ex-
posed appropriately to the animator, supporting rapid, ex-
ploratory, high-level adjustments early in the process and
low-level refinements as needed.

Movement properties, or properties for short, are the build-
ing blocks of our system. To understand the aesthetic nature
of movement, we turned to the arts literature and distilled a
list of key movement properties. Many of these properties
have been implemented, along with a software architecture
that allows these properties to be combined and applied to
movements. Together, the properties and architecture form
the core of our system and provide an appealing workflow.

Animators create animation sequences by applying and then
adjusting properties attached to actions in a script. Because
properties directly vary aesthetically important aspects of
movement, they are more expedient to use than a keyframe
system, while still providing fine control at an appropri-
ate level. Properties also range from high-level effects that
vary a large set of motion parameters, such as CreateRecoil,
to specific low-level controls, like SetDOFValue. High-level
properties derive from low-level properties, and all proper-
ties in our system are procedural.

The animator’s workflow supports both exploration and re-
finement. An artist begins by listing a set of actions in a
script which define an initial animation sequence. She can
make global changes to the animation by applying differ-
ent character sketches to the script. Sketches, written using
properties, outline basic character features such as a slow
tempo, hunched back and tense shoulders. By switching
sketches, an animator can quickly experiment with various
broad characterizations. She can then refine the sequence by
adding more properties and adjusting the action descriptions,
character sketch and existing properties as needed.

To make our discussion more concrete, throughout the paper

we will refer to how a simple animation sequence is spec-
ified and refined. There are three simple movements in the
sequence: a character reaches for an object, brings it close to
him to inspect it, and shows it to the audience.

Our current implementation focuses on the creation of realis-
tic, skeletal, humanoid character motion over a limited range
of standing movements, including gestures, posture changes
and balance adjustments. Our system generates both kine-
matic and dynamic motion based on forward simulation. Al-
though limited, this range of movement demonstrates con-
siderable expressive variation while also avoiding dynami-
cally challenging movements.

2. Background
The literature describes many previous animation systems,
often with a procedural component. Early systems, such as
Scripts and Actors [Rey82], provided a language for defining
modeling and animation. Independent actors control differ-
ent visible elements in a scene and are invoked every time
step. MENV [RLO90] controls animation by changing the
value of avars, articulated variables which control various
aspects of the model. Improv [PG96] combines two proce-
dural components: a Behavior Engine for deciding what ac-
tions a character should perform, and an Animation Engine
for controlling these movements. Actions can be layered
and movement transitions are normally specified using ei-
ther sinusoids or different frequency noise functions [Per95].
Blumberg and Gaylean [BG95] present a system for direct-
ing autonomous creatures, but the emphasis is on action se-
lection, not the expressive aspects of how the motion is per-
formed. Our work is distinguished by its focus on direct con-
trol of aesthetically important qualities of animated charac-
ters, an iterative tool designed to support exploration and re-
finement, and the integration of dynamic simulation.

A significant body of work shares our emphasis on ex-
pressive aspects of motion. EMOTE [CCZB00], like our
work, develops explicit models based on the arts litera-
ture, using Laban’s Effort-Shape model to vary the man-
ner in which a movement is performed. In previous work,
we have presented various tools for modifying specific as-
pects of motion that are the building blocks for this sys-
tem [NF02, NF03, NF04]. Work on expressive transforms
([UAT95, ABC96]) attempts to extract emotional content

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

from a piece of captured motion into a transform that can
be applied to different motion. Style Machines [BH00] sup-
port high level editing of a motion by learning a style from
captured motion, such as ballet or modern dance, and apply-
ing this style to other sequences. Pullen and Bregler [PB02]
work at a similarly high level, allowing an animator to spec-
ify key frames and using a statistical model drawn from
motion capture data to texture the key-framed motion. Ap-
proaches based on learning or parameter extraction cannot
guarantee that learned animation will remain physically con-
sistent. Rose et al. [RCB98] present a data-driven system
in which a given action (verb) is captured whilst performed
several different ways (adverbs); new motion can be gener-
ated by interpolating these samples. Bruderlin and Williams
[BW95] adjust captured motion by treating movement as a
signal and adjusting the gains of various frequency bands.

Two main approaches have been used for generating physi-
cally based character animation. Spacetime constraints take
the laws of Newtonian mechanics as constraints and solve
for motion using an optimization process (see for example
[WK88]). Forward dynamic simulation generates forces at
each time step, integrating Newtonian laws of motion to up-
date the character state. Our work takes the latter approach,
building on previous efforts in hand tuned control for force
generation (see for example [HWBO95, FvdPT01]).

The prototype system described here was built on the freely
available Dynamic Animation aNd Control Environment
(DANCE) [NTHF]. Our work makes considerable use of
kinematic and dynamic simulation and control techniques.

3. Arts Background
A broad literature survey in theatre, animation and move-
ment theory was conducted to better understand what as-
pects of motion are expressively salient. A set of aesthetic
movement properties was developed based on this analy-
sis. The properties were grouped into three broad categories:
those that affect character shape or pose; those that relate to
timing; and those that relate to transitions, or how a charac-
ter moves from one pose to another. The full taxonomy is
available in [Nef05] and is summarized below.

Shape deals with the poses a character strikes over time. Bal-
ance adjustments are a very important expressive aspect of
shape. They should be amplified in a performance setting
and act to increase the intensity of movements [Bar91b]. Ac-
cording to Laban, the three principal components of trunk
movement are rotational movement about the length of the
spine; “pincer-like” curling from one or both ends of the
trunk and “bulge-like” shifting of the central area of the
trunk out of its regular position [Lab88]. The “beauty line",
a large S-curve that snakes through a character’s body and
lends a very sensual appearance, is also important [Bar91a].
Forward and backward collar movement can open or close
the chest. Upward movement adds intensity to a pose and
downward movement can suggest relaxation, dejection or

exhaustion [Sha63]. Extent or extension refers to how far an
action or gesture takes place from a character’s body.

Transitions deal with how a character moves from shape to
shape, as well as transient aspects of movement, such as the
interplay of tension and relaxation. Following [Las87], we
use transition curves to warp the timing of a motion, also
referred to as the motion envelope. Tension and relaxation
is widely reported [Lab88, Sha63, Bar91a] as an important
movement property. When doing physical simulation, we
use tension changes as an intuitive way to warp the motion
envelope, to control end effects like overshoot and pendular
motion, and to vary the effect of external forces.

The two main components of timing are tempo and rhythm
[Lab88, Moo84, Sta49]. Rhythm refers to the overall beat
structure of a set of movements. A sample rhythm could be
long, long, short, repeat. Tempo refers to the speed at which
motions are completed; the speed of the beat. Rhythm and
tempo are independent and can have a strong effect on inner
mood, ranging from excitement to melancholy [Sta49]. Suc-
cessions deal with how a movement passes through the body
and are another crucial timing property. They help generate
a sense of flow [Sta49].

Our list of movement properties is extensible and does not
rely on one particular movement theory. An animator is free
to employ whichever properties she finds most useful. It is
worth noting that psychological research suggests that peo-
ple have “style factors”, such as a certain tempo, which are
consistent across all the normal activities in which they en-
gage [Gal92]. The character sketch builds on this idea.

4. Workflow Overview
User interaction in the system follows a basic Perform-
Review-Update iteration cycle. The system is given a set
of instructions and generates an animation sequence (Per-
form). The animator then reviews the animation and consid-
ers possible adjustments (Review). The animator can then
issue additional instructions and generates a new animation
sequence (Update). This sequence is repeated until the ani-
mator converges on the desired movement sequence. Early in
the process, an animator will normally make broad changes
as he explores different possibilities and later make fine ad-
justments as he converges on a final animation.

An animator progresses through the following steps in order
to generate an animation sequence:

1. The animator provides a motion script, character sketch
and additional edits to specify the animation. (Section 6)

2. The system develops an executable motion plan based on
these instructions. (Section 7)

3. A dynamic or kinematic simulator executes the motion
plan in order to generate an animation. (Section 8)

4. The animator reviews the animation and refines the script,
iterating until he is satisfied with the result.

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

5. Basic Entities: Actions and Properties

5.1. Actions

Movement specification begins in a familiar way: with
poses. Actions are the basic unit of movement in the sys-
tem, and are defined hierarchically with the following ac-
tion levels: Action, Cycle, Pose, and DOFEntry. A DOFEn-
try controls an individual degree of freedom of a character
as a function of time. A pose is a set of DOFEntries. A cycle
is a sequence of poses that can be repeated. An action is a
sequence of cycles. Actions can control any subset of a char-
acter’s DOFs. Multiple actions controlling different parts of
the body can be superposed.

An action defines the structure but not the content of a move-
ment. Specifically, an action defines which DOFs make up a
pose, how many poses are part of an action, and their se-
quencing. The angles that define the pose, transition time,
tension changes etc. are all defined by attaching properties
to the action. Actions provide animators with a handle for
a particular component of the motion sequence. In our ex-
ample animation, each base action consists simply of a sin-
gle pose to which properties are applied that define a world
space constraint on the wrist, initial timing and an initial
transition function.

5.2. Properties
Properties are designed to encapsulate a particular aestheti-
cally meaningful aspect of movement. Properties provide an
interpretation for actions. We have identified several classes
of properties. Base properties directly modify low-level at-
tributes exposed by the system. They operate by invoking
commands exposed through the Base Representation and
Movement Property Integrator described below. Composite
properties combine several base properties. They provide for
higher level interaction. Generator properties introduce new
actions into the script, such as idle motions, nervous ticks,
or movement sequences that are more easily defined proce-
durally.

An action can be viewed as a structured container for proper-
ties, which can be applied anywhere in the action hierarchy.
By default, properties will propagate to lower levels in the
action description. If they encounter a property of the same
type at a lower level, it will be given precedence and can
choose to override the higher level property or blend with it.
For instance, a transition curve applied at the Pose level will
cascade to all DOFEntries that are part of that pose, but if a
DOFEntry already has a transition curve property applied to
it, this will take precedence.

Properties are defined procedurally. Our goal is not to pre-
scribe an exhaustive set of properties. Rather, the property
set is designed to be extensible as needed by an animator or
technical director. Properties can also be modified, so the
manner in which a particular aspect of movement is var-
ied can be customized for a given character. Seen in this

Property Description

SetDOFValue Specifies the value for a DOF

SetTension Adjusts the amount of joint tension
during a motion.

Synchronize Sets a timing relationship between two
actions.

SetDuration Varies the transition time to a pose.

SetTransitionCurve Varies the transition envelope.

VarySuccession Adjusts the relative timing of joints in
a motion.

VaryExtent Adjusts the amount of space a pose oc-
cupies.

VaryAmplitude Adjusts the angle range covered by a
motion.

GenerateWeight
Shifts

Generates idle weight shifting be-
haviour.

SetReachShape Varies posture during a reach.

SetPosture Varies character posture.

AdjustBalance Alters the character’s balance point.

SetRhythm Coordinates actions to occur with a
certain rhythm.

CreateRecoil Varies all aspects of movement to re-
coil from point.

Table 1: A few of the properties defined in the system.

light, developing specialized composite properties is a part
of character design, much like rigging. The development of
repositories of properties will facilitate re-use in future pro-
ductions.

A representative set of properties is shown in Table 1. Note
the wide range of granularity at which properties act. SetD-
OFValue will specify the desired DOF value. Properties like
VaryExtent or SetPosture vary several DOFEntries within
a single pose. Synchronization and Rhythm properties cre-
ate relationships between multiple actions. CreateRecoil is a
high level property that supports a range of different forms of
recoil and will change a character’s pose, warp the transition
function, and increase or decrease his tension and tempo.

Properties take parameters that define both how they behave
and how they should be combined with other properties. Set-
Duration for instance, takes a value and a flag. If the flag is
set to ABS, the property will override previous SetDuration
properties attached to the action level and set the item’s du-
ration to be value. If the flag is REL, the property acts in a
relative manner and multiplies the action level’s current du-

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

Channel Summary

Script Specifies a time series of actions.

Action
Description

Defines the structure of a movement, gen-
erally with an initial set of properties.

Character
Sketch

Generates a global change to the movement
sequence.

Animator
Edits

Used to fine tune an animation sequence.

Property
Definitions

Provide interaction handles.

Table 2: Interaction channels.

ration by value. Each property has a precise semantics, but
for the purposes of this paper, their names will hopefully be
sufficiently illustrative of their function.

6. User Input
There are several channels by which an animator can inter-
act with the system, as summarized in Table 2. They may be
used at different points in the production process. New prop-
erty definitions may be developed during character set up or
existing properties might be sufficient. A script must always
be provided to define the actions a character performs. Char-
acter sketches define properties that are typical of a particu-
lar character type, make global changes to the movement se-
quence and are normally applied in the early stages when an
animator is exploring different approaches. Changing char-
acter sketches allows an animator to rapidly vary broad char-
acterizations. Animator edits allow the animator to directly
change, add or fine-tune properties at any point in the action
hierarchy for any action in the script and can also be applied
globally to all actions.

Various forms of input have been used in the example an-
imation. Animator edits were used to refine the base mo-
tion sequence, and create a more feminine and languid se-
quence. An “energetic" character sketch was layered on top
to vary the feel. In other examples, “old man" and “dejected"
sketches were applied to the base motion sequence.

7. Generating a Motion Plan
The system uses input from all the channels described above
to generate a motion plan. The motion plan is stored in a
low-level Base Representation or BRep, from which a kine-
matic or dynamic animation can be generated. The Move-
ment Property Integrator or MPI is the central intelligence of
the system, and responsible for mapping the various forms of
input into the BRep. The stages involved in this process are
shown in Figure 2 and described below. In a single iteration,
the system transforms the user’s input script to an animation
sequence. The system always generates an animation.

Script
Refinement

St

Property
Merge

&
Plan

Aj, Bk

Executable
Plan

Bi S
im

ulation

User Refinement

Figure 2: Generation of an executable movement plan,
showing the three stages: script refinement, property reso-
lution and BRep refinement.

We introduce some notation in this section to make our con-
cepts clearer, omitting the detailed semantics (see [Nef05]).
The crucial point of the notation is that it captures the essen-
tially iterative nature of the construction of an animation.

7.1. Script Refinement
The Script, denoted Si where i denotes the iteration count,
defines the movements a character is to perform. It consists
of a set of time ordered tracks. Each track is populated with
actions. The animator defines the initial script and can di-
rectly edit it during any iteration. In our example animation,
the initial script consists of the three actions: reach, inspect,
display. It can also be modified by generator properties.

In building the motion plan, the MPI begins by applying all
the generator properties which add new actions to the script.
This can be represented very simply as

MPI : Si → Si+1 .

Generator properties can either be included as part of the
character sketch or specified as animator edits.

The remaining edits in the character sketch and animator edit
list act to attach properties to actions in the script. The MPI
next performs this binding. This can be represented as:

MPI : Si+1(A j),CharacterSketch,AnimatorEdits→ Si+1(A j+1) ,

where A is the initial set of actions and A j+1 is the evolving
set of actions as they are augmented with further properties.
As an example, the old man character sketch specifies a re-
duced movement duration. The property that triggers this is
attached to all the actions in the script at this point.

7.2. Property Resolution
Once the script has been completed and all properties have
been attached, the MPI develops an executable Base Rep-
resentation. We will first define the BRep and then explain
how the script, actions and properties are mapped to it.

7.2.1. Base Representation
The BRep contains a track for every DOF in the skeleton.
In addition, the BRep contains signal parameter tracks that
act as blackboard space. These are used to specify contin-
uous variation in higher level properties controlled by the
system, such as a centre of mass offset for balance control
or the amount of pelvic twist. Each track is time ordered

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

and can thus be seen as defining a time series of activi-
ties for every degree of freedom in the animation. A track
T = 〈a0, a1, · · · , ai, · · · , an〉 is populated with a sequence
of Transition Elements or TElements denoted ai. As dis-
cussed below, each ai indicates (at minimum) an interval of
time over which an activity operates on the specific DOF to
which a given T is bound. The intervals are (currently) pre-
sumed to be disjoint, but their union may leave gaps in the
timeline for that DOF, which indicates that no actions are
active in that interval. We define T to be the set of all such
sequences T .

Any instance B of a base representation is an m-tuple con-
taining at minimum one track for each DOF. Thus B ∈ Tm,
B = (T1, · · · ,Tm). Each Ti is bound to a specific DOF in the
character’s state. Let B denote the space of all representa-
tions B.

There is currently a one-to-one correspondence between
Transition Elements in the BRep and DOFEntries in the ac-
tion description. TElements are labelled based on the actions
that generate them, facilitating query and edit operations.
TElements contain all the information necessary to generate
a final animation. A Transition Element has three pieces of
timing data: start time, duration and hold time, with a TEle-
ment becoming active at the start time and transitioning the
DOF to its desired value over duration sec., then holding this
value for hold time seconds. Other basic information TEle-
ments hold includes a desired value, a transition curve that
specifies how the interpolation from the current value to the
desired value should proceed, and data related to dynamic
simulation, such as tension values. They can also be tagged
with data that is used in later stages of the planning process,
but is not directly used to create the final animation.

The BRep is iteratively constructed during a motion speci-
fication process. This creates a sequence of refinements of
valid BReps 〈B0, · · · ,Bi, · · · ,Bn〉, where Bi ∈ B and i indi-
cates the i th iteration on the BRep. Any such Bi may well be
executable by the simulator, but Bn should be seen as a “con-
verged” base representation. The initial base representation,
B0, is the null operation, and is defined to be an m-tuple of
empty DOF track sequences. modified in the representation.

7.2.2. Property Merging and Application

The MPI generates a set of operators which regulate how the
properties and actions defined in the script are mapped to
the BRep. Algebraically, any such operator M is a mapping
from the base representation together with information about
the activity to be performed, to a base representation. More
formally, the operator M : B×A×P→B, where P is the set
of animation properties and A is the set of actions that are
modified by these properties. The MPI performs a sequence
of mapping operations: M = 〈M1,M2, . . . ,Mn〉. The order-
ing of these operators is based on the type of property being
applied as some property types need to be applied ahead of
others. The current mapping order is as follows:

1. Generate signal parameters.
2. Apply shape calculator properties.
3. Apply other shape properties.
4. Apply timing properties.
5. Apply transition properties.
6. Apply properties that need to query the BRep.

Each operator normally consists of a merge phase followed
by an apply phase. Composite properties are handled some-
what differently. The merge phase is the same as for other
properties, but the apply phase acts to tag the actions with
a new set of low-level properties rather than writing directly
into the BRep. Composite properties are processed first so
that the low-level properties they generate can be merged
with other active properties of the same type.

7.2.3. Merge
In general, an individual action will be tagged with multiple
instances of a property, such as SetDuration. These differ-
ent versions of the properties come from the different input
sources: the initial action description, the character sketch
and animator edits. It is important that all the applied prop-
erties can potentially affect the final motion, rather than one
property replacing all earlier properties of a given type. This
allows later edits to refine earlier exploratory edits. For in-
stance, the character sketch adjusts an existing movement
sequence, rather than defining it.

Before a property is written into the Base Representation,
all properties of a given type acting on a specific action
level are merged. This resolution process effectively leaves
a single property of each type attached to an action level.
This merge process involves three steps. First, properties are
pushed down to the lowest level of the action hierarchy at
which they can act. This ensures that all properties of a given
type will be at the same node when the merge operation is
performed. Second, properties are sorted based on priority
level. Priority level is based on the property source (default
order: action description first, character sketch, animator ed-
its) and the level in the hierarchy the property is applied
at (higher levels being used first). Third, the sorted prop-
erty list is merged. Prototype merge functions are available
which support merges that overwrite, scale by a factor, av-
erage or add parameters, and properties can also define their
own merge semantics. This allows the property designer to
decide how best to merge a property. The SetDuration prop-
erty supports absolute and relative duration specifications,
the latter acting to scale a lower priority absolute duration.
Returning to our example animation, the first action initially
contains a SetDuration property that specifies a 1.1 sec. du-
ration. The old man character sketch specifies a SetDura-
tion property that requests scale of 1.8. After the merge, one
property remains that sets the duration to be 1.98 sec.

7.2.4. Apply

Once the properties have been merged, the application pro-
cess is quite straightforward. Each property defines an apply

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

BiStatet Sensors

Reactive
Controllers

Bi+1

Control Signal
Generator

Simulator

Statet+1 Animation
Frames

Figure 3: Data flow for one time step of simulation.

method. This is called for the one property of each type that
is still active at an action node. The method can query the
BRep, perform any necessary calculations and then writes
the resultant data either into the BRep or a data store asso-
ciated with one of the solvers described below. Once data
has been committed to the BRep, it can be queried by future
properties and filters.

7.3. BRep Refinement

Once the action-based properties have been applied, the
BRep can be further refined through filtering or post-
processing. In a manner similar to above, a filter F : Bi →
Bi+1. These processes no longer make any reference back
to the script, working solely from the information contained
in the BRep. Examples from this stage include a filter that
smoothes transition curves or the Time Planner described
below which enforces the timeline semantics. This is a pow-
erful notion as it admits the full extent of signal processing
to be incorporated into the framework.

8. Executing the Motion Plan

The process of executing the motion plan for one time step
is shown in Figure 3. Reactive controllers allow the charac-
ter to adjust its behaviour based on its state at the beginning
of the time step. This is particularly important in dynamic
simulation, where the effect of an action is not completely
known ahead of time and adjustments may be needed in or-
der to ensure that a motion completes successfully. The main
reactive controller in our system provides balance control.

Reactive controllers receive the system state, the current
BRep, and sensor information as input. State is a vector of
position and velocity values for every DOF in the character.
Reactive controllers can update the BRep to attempt to better
achieve the requested motion. As an example, it is the bal-
ance controller that works to achieve balance adjustments,

knee bends and pelvic twists, as specified in the signal pa-
rameter tracks of the BRep. Reactive controllers update the
BRep by inserting short elements into the DOF tracks that
change the control parameters for the current time step.

The Control Signal Generator takes the DOF tracks of the
updated BRep as input and produces the control information
required by the current simulator. For the kinematic simu-
lator, this information consists of the value of each DOF.
The dynamic simulator requires a torque for each DOF. The
torque values are generated by an actuator positioned at each
DOF. These actuators can either be proportional derivative
controllers, such as described in [HWBO95] or an antago-
nistic controller variation based on [NF02]. When calculat-
ing muscle activation levels (i.e., spring gains) for each DOF,
the system performs gravity compensation to ensure that po-
sitional errors are small, even when the character is moving
in low tension. Gains are calculated at each pose and activa-
tion curves are stored in the BRep.

The simulator takes the input from the control signal gen-
erator and updates the character state, producing animation
frames. The dynamic simulator is based on code generated
by the commercial software SD/Fast [HRS94].

8.1. Balance Control
Movements near their balance limits have strong expressive
impact [Lab88], making balance control particularly diffi-
cult. Two different, feedback based balance algorithms are
used. The idea behind both is to calculate an error term
between the location of the projection of the COM on the
ground plane and the desired location for this value and use
this error to adjust the ankle angles. The first balance con-
troller is based on the algorithm of Wooten [Woo98] and pro-
vides true balance control, but has a limited stability range
and supports limited lower body adjustments. The second
is described in [NF04, NF05] and provides a wider range
of lower body movement. To maintain stability in dynamic
simulation with this controller, however, we must employ
“sticky ground"; simulated springs to help hold the feet in
position, thus making the balance control task easier.

9. Planners and Solvers
When designing properties, there is a trade-off between
maximizing encapsulation by embedding all the functional-
ity required to achieve a particular effect within a particular
property versus encouraging code reuse by creating a com-
mon code base for functionality that will be shared by multi-
ple properties. Both approaches are used in our prototype.
Corresponding to the categorization of movement proper-
ties, the system supports a transition planner, shape solver
and time planner. The latter two are described below.

9.1. Shape Solver

Solving for a character’s pose can be made easier through
the use of inverse kinematics and balance correction tools. It

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

is impractical to include such complex code within an indi-
vidual property. Instead, properties should be used to dictate
how these solvers behave when determining a pose.

The system includes a body shape solver described in
[NF04, NF05] which combines balance adjustments, world
space constraints and aesthetic constraints in a single hy-
brid IK system. We have extended the system to allow shape
properties from different input sources to be blended. This
allows default shape properties to be specified in the char-
acter sketch which are combined with the shape properties
that are used to define an action. The solver parameters are
controlled through the application of properties. Composite
properties are used to encapsulate shape sets that describe a
particular type of pose and provide an animator with a small
number of parameters.

Shape calculator properties are associated with a particular
pose in the action. Once they are merged, their application
sets values in a data store that is accessed by the shape cal-
culator. The calculator solves for a set of joint angles that
meet the constraints and stores these angles as SetDOFValue
properties attached to the pose’s DOFEntries. The calculator
may also add signal parameters to the action description.

9.2. Time Planner

Time planning benefits from a global view of the timeline.
Properties operating on individual actions may request syn-
chronization constraints, scaling of TElement duration and
hold times, and shifting of transition elements that cascade
through the timeline. A Time Planner implements a timeline
semantics that works directly on the BRep as a post-process,
making use of tag data added to the TElements by proper-
ties. All time effects are ultimately achieved by adjusting the
three time properties in the TElements: start time, duration
and hold time.

Scaling edits can be applied to adjust the hold time, dura-
tion or both and can act at any level in the action hierarchy.
The edits are pushed down to the DOFEntry level before be-
ing applied. By default, the time planner will adjust the start
time of DOFs within an action to maintain the same relative
timing, providing a local scale. This can be overridden.

Relative timing between actions may also need to be main-
tained. For instance, a punch might need to start at the same
point relative to the start of a lunge. This can be enforced by
creating a link between the two actions, which instructs the
time planner to maintain the same relative timing.

Placement edits shift the position of TElements in the time-
indexed BRep tracks and can be applied at arbitrary action
hierarchy levels. Succession edits are a specialized place-
ment edit that adjust the start time of joints involved in an
action as one moves outward from the base of the spine.
Placement edits are applied before synchronization edits.

Synchronization edits act to either synchronize actions to

each other or synchronize them to particular points in time.
Three forms of action-action synchronization are supported:
TElements in different actions can be set to end or start at
the same time, or to maintain the same relative spacing.

The time planner implements elastic behaviour for the time-
line where no TElemnts can overlap and there can be no gaps
in the timeline. Once all time adjustments have been applied,
if a TElement overlaps another, all TElements that are part
of the overlapping pose and all TElements that occur after
the end of the overlap will be moved forward in time by the
amount of the overlap. If there is a gap, all future actions
are shifted back so that the first TElement to start after the
gap now starts at the beginning of the gap. Gaps can be cre-
ated by inserting spacer TElements on a special track in the
BRep. Spacers prevent the timeline from contracting and can
be effected by time edits, but have no effect on the final ani-
mation.

10. Sample Results

Several simple animations have been produced to illustrate
system functionality and are available online [Nef]. We use
a skeleton for our sample animations as this focuses the
viewer’s attention on what can be achieved by varying skele-
tal motion - what we control - and avoids the distractions of
varying body types and clothing.

A composite property such as CreateRecoil encapsulates a
full set of movement properties, and is suitable for rapidly
exploring a movement idea. It takes as input the location of
the object to react to, a parameter that indicates one of sev-
eral styles of reaction and an intensity value that indicates
the vehemence of the reaction. The property will adjust the
motion based on the location and alter pose, timing, and tran-
sition features based on the intensity value. The animation
shows three different style recoils.

Approaches that view animation as a time series of body
state vectors enforce an unnecessary correlation between all
joints. In our system, actions may use a subset of the char-
acter’s DOFs and be overlapped in time, allowing an ani-
mator to independently modify the movement of subsets of
joints. This different form of retargeting is illustrated with
two versions of simple twisting dance. The first is correlated
with a slow tempo, 4/4 rhythm. Both the lower body twist
and upper body twist and arm swings are aligned with each
beat. The second sequence is based on a faster tempo 3/3
rhythm. The lower body twist is still aligned with each beat.
The upper body movement from the first sequence is used
on the third beat of each measure and its motion envelope
is warped to punctuate the beat. New actions are inserted on
beats 1 and 2 that simply feature a small elbow bend and
head twist. The result is two very different sequences, based
on the same action descriptions. Such retargeting differs sig-
nificantly from what can be achieved by motion warping a
state vector.

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

Our example animation illustrates how properties are lay-
ered together to generate a final sequence. An initial version
of the animation has the basic timing and defines the reach
constraints. To each pose, we then add the beauty line reach
property which takes the reach constraint and an intensity
parameter and triggers the shape calculator to determine the
pose. The tempo is reduced to give the animation a more lan-
guid feel and forward successions are added to increase the
sense of flow. Transition warps are used to give the anima-
tion a bit more pop, and finally, it is dynamically rendered.

A character sketch can be used to prototype different ap-
proaches to a character. We take a simple animation se-
quence that shows a character greeting a friend, beckoning
him over and then showing him an object to the right. Two
different character sketches are applied, one for an old man,
one for a more energetic character. They produce two very
different sequences, allowing the animator to quickly play
with different styles. Due to the global nature of the charac-
ter sketch, some of the adjustments may not be appropriate
for some of the actions. In a subsequent pass, the animator
can add additional edits to fine tune the motion, supporting
refinement.

The character sketch for the old man is as follows:
#Scale duration
SetDuration {*} REL 1.8
#Scale hold time
SetHoldTime {*} REL 3
#provide default shape settings
SetCharShapeParam {*} 1 load oldMan.shp
#flatten the transition functions
SetTransitionFunction {*} AVG 0 0 0 0
#reduce extent
VaryExtent {*} 0.8
#add a normal succession
VarySuccession {*} normal 0.01
#reduce neck rotations
SetDOFAngle {* * * neck_y} REL 0.5
#add some shake to the forearms
SetShake {* * * forearm_x} ABS 0.017 7

On any row, the first term is the property to apply, the curly
braces specify the recipient action level (* indicates a global
edit) and the rest of the entries are parameters. The extent
variation is applied post-burn in, after a pose has been solved
for that may involve a world space constraint. It should not
be used on actions with hard touch constraints as it will not
maintain them. The rest of the properties will not interfere
with constraint satisfaction. By using a different scaling on
the hold and duration times, both the character’s rhythm and
tempo are adjusted. The old man takes longer to prepare for
a movement than the default character.

Edits and sketches can be freely layered together. For in-
stance, we combine the beauty line shape edits with the “en-
ergetic" character sketch to generate the third frame in Fig-
ure 1. The first frame shows the same pose from the base an-
imation and the middle frames shows the “old man" sketch

Figure 4: Default postures for the “old man", “energetic"
and “dejected" character sketches, respectively.

applied to the base animation. The default postures used with
these sketches and an additional “dejected" sketch are shown
in Figure 4.

11. Discussion

We have presented an approach and prototype system for
generating expressive character motion. Procedurally de-
fined properties provide direct handles on aesthetically im-
portant aspects of motion. High level interfaces like the char-
acter sketch and composite properties support rapid explo-
ration, while animator edits and low-level properties allow
for detailed refinement. Furthermore, high level properties,
such as shape sets, are built out of low-level properties, al-
lowing an animator to switch between high and low-level
interfaces as needed. These mechanisms combine to meet
our second sub-goal of supporting both exploration and re-
finement. Finally, since there is an explicit, well-defined and
editable representation for every movement property and in-
put channel in the system, these can be customized. We feel
that this is important for supporting the creation of specific
characters, our third sub-goal. The system is validated in two
ways: first, by grounding the ideas in the field that tradition-
ally studies expressive movement, the performing arts. Sec-
ond, by demonstrating how these ideas can be implemented,
how they alter animation sequences and how they can be
combined for expressive effect.

The system is designed to be open and extensible. The main
mechanism for extension is adding new properties, which
may be desired for three reasons: to implement new ideas
from the arts literature or experience; to customize control
for a particular animation style; to create or adjust high level
properties that are specialized for a specific character. Ac-
tions and character sketches are also reusable animation re-
sources that can be augmented over time, leading to resource
libraries. New sources for these resources based on motion
capture and machine learning can also be explored.

Production work will require a larger range of motions. Bet-
ter dynamic control algorithms remain a difficult problem
and limit the range of tasks that can be simulated using for-
ward dynamics.

Knowledge representation could be used to greatly expand
the capabilities of the character sketch by allowing the sketch

c© The Eurographics Association 2005.

M. Neff & E. Fiume / Aesthetic Exploration and Refinement

to vary the edits it performs based on both the action that it
is editing and the current mood of the character. In a similar
vein, our framework could be used as a low-level subsystem
for a high level AI character controller as it provides an ap-
propriate set of handles for varying the style and content of
a character’s movements.

Finally, properties represent a step towards a language for
movement, with the ultimate goal being the ability to provide
concrete definitions for terms like “graceful". Such terms
will in general not have a single definition as they encom-
pass a range of movement nuances. Having concrete repre-
sentations that cover a good portion of this range, within an
extensible system, would be of immense value.

References

[ABC96] AMAYA K., BRUDERLIN A., CALVERT T.: Emotion
from motion. Graphics Interface ’96 (May 1996), 222–229. 2

[Bar91a] BARBA E.: Dilated body. In A Dictionary of Theatre An-
thropology: The Secret Art of The Performer, Barba E., Savarese
N., (Eds.). Routledge, London, 1991. 3

[Bar91b] BARBA E.: Theatre anthropolgoy. In A Dictionary of
Theatre Anthropology: The Secret Art of The Performer, Barba
E., Savarese N., (Eds.). Routledge, London, 1991. 3

[BG95] BLUMBERG B. M., GALYEAN T. A.: Multi-level direc-
tion of autonomous creatures for real-time virtual environments.
Proceedings of SIGGRAPH 95 (August 1995), 47–54. 2

[BH00] BRAND M., HERTZMANN A.: Style machines. Proceed-
ings of SIGGRAPH 2000 (July 2000), 183–192. 3

[BW95] BRUDERLIN A., WILLIAMS L.: Motion signal process-
ing. Proceedings of SIGGRAPH 95 (August 1995), 97–104. 3

[CCZB00] CHI D. M., COSTA M., ZHAO L., BADLER N. I.: The
emote model for effort and shape. Proceedings of SIGGRAPH
2000 (July 2000), 173–182. 2

[FvdPT01] FALOUTSOS P., VAN DE PANNE M., TERZOPOULOS

D.: Composable controllers for physics-based character anima-
tion. Proceedings of SIGGRAPH 2001 (August 2001), 251–260.
ISBN 1-58113-292-1. 3

[Gal92] GALLAHER P. E.: Individual differences in nonverbal
behavior: Dimensions of style. Journal of Personality and Social
Psychology 63, 1 (1992), 133–145. 3

[HRS94] HOLLARS M. G., ROSENTHAL D. E., SHERMAN

M. A.: SD/FAST User’s Manual. Symbolic Dynamics Inc., 1994.
7

[HWBO95] HODGINS J. K., WOOTEN W. L., BROGAN D. C.,
O’BRIEN J. F.: Animating human athletics. Proceedings of SIG-
GRAPH 95 (August 1995), 71–78. 3, 7

[Lab88] LABAN R.: The Mastery of Movement, fourth ed. North-
cote House, London, 1988. Revised by Lisa Ullman. 3, 7

[Las87] LASSETER J.: Principles of traditional animation applied
to 3d computer animation. Proceedings of SIGGRAPH 87 21, 4
(July 1987), 35–44. 3

[Moo84] MOORE S.: The Stanislavski System: The Professional
Training of an Actor. Penguin Books, 1984. 3

[Nef] NEFF M.:. http://www.dgp.toronto.edu/people/neff. 8

[Nef05] NEFF M.: A Framework for Expressive Character An-
imation. Ph.D. dissertation. Department of Computer Science,
University of Toronto, 2005 (expected). 3, 5

[NF02] NEFF M., FIUME E.: Modeling tension and relaxation for
computer animation. In ACM SIGGRAPH Symposium on Com-
puter Animation (July 2002), pp. 81–88. 2, 7

[NF03] NEFF M., FIUME E.: Aesthetic edits for character ani-
mation. In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (July 2003), pp. 239–244. 2

[NF04] NEFF M., FIUME E.: Methods for exploring expressive
stance. In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (Aug. 2004), pp. 49–58. 2, 7, 8

[NF05] NEFF M., FIUME E.: Methods for exploring expressive
stance. Graphical Models (2005). to appear. 7, 8

[NTHF] NG-THOW-HING V., FALOUTSOS P.:
Dynamic animation and control environment.
http://www.cs.ucla.edu/magix/projects/dance/index.html. 3

[PB02] PULLEN K., BREGLER C.: Motion capture assisted ani-
mation: Texturing and synthesis. ACM Transactions on Graphics
21, 3 (July 2002), 501–508. 3

[Per95] PERLIN K.: Real time responsive animation with person-
ality. IEEE Transactions on Visualization and Computer Graph-
ics 1, 1 (March 1995), 5–15. 2

[PG96] PERLIN K., GOLDBERG A.: Improv: A system for script-
ing interactive actors in virtual worlds. Proceedings of SIG-
GRAPH 96 (August 1996), 205–216. 2

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.: Verbs and
adverbs: Multidimensional motion interpolation. IEEE Computer
Graphics and Applications 18, 5 (September - October 1998),
32–40. 3

[Rey82] REYNOLDS C. W.: Computer animation with scripts and
actors. vol. 16, pp. 289–296. 2

[RLO90] REEVES W. T., LEFFLER S. J., OSTBY E. F.: The
menv modelling and animation environment. Journal of Visu-
alization and Computer Animation 1, 1 (August 1990), 33–40.
2

[Sha63] SHAWN T.: Every Little Movement: A Book about Fran-
cois Delsarte, second revised ed. Dance Horizons, Inc., New
York, 1963. 3

[Sta49] STANISLAVSKI C.: Building a Character. Theatre Arts
Books, 1949. Translated by Elizabeth Reynolds Hapgood. 3

[UAT95] UNUMA M., ANJYO K., TAKEUCHI R.: Fourier princi-
ples for emotion-based human figure animation. Proceedings of
SIGGRAPH 95 (August 1995), 91–96. 2

[WK88] WITKIN A., KASS M.: Spacetime constraints. Proceed-
ings of SIGGRAPH 88 22, 4 (August 1988), 159–168. 3

[Woo98] WOOTEN W. L.: Simulation of Leaping, Tumbling,
Landing, and Balancing Humans. Ph.D. dissertation., Georgia
Institute of Technology, 1998. 7

c© The Eurographics Association 2005.

