COUPLED SIMULATION OF FLUIDS AND GRANULAR MATERIALS

Michael Tao

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

(© Copyright 2014 by Michael Tao

Abstract

Coupled Simulation of Fluids and Granular Materials

Michael Tao
Master of Science
Graduate Department of Computer Science
University of Toronto
2014

This thesis presents a novel method for the simulation of mixed fluids and granular materials. In contrast
to the existing technologies in graphics for simulating granular materials, we choose a continuum based
approach in order to capture interesting phenomena with a large number of particles. By extending
pre-existing models for simulating both fluids and granular materials as continuua, we generate novel
phenomonology in our simulations of both fluids and granular materials, including their interactions

with each another.

Contents

3.1.2 Particle Fluid Representations| o 0L
8.1.3 Semi-Lagrangian Fluids| o oo

3.2 Granular Simulation Techniques| 0L

4.1 Operator Choice| o
4.1.1 Cubical Complexes|

4.2 Levelset Based Hodge Star|.
4.2.0.1 Lengthofedges|

10
10
11
12
12
13
14
15

16
16
16
17
17
18
18
19
19

CONTENTS

4.2.0.3 Dealing with Degeneracies|

4.2.1 Pressure Projection|

4.3 Darcy Flow|] e
..
4.3.2 Porosity Based Hodge Star| oo
4.3.3 Capillary Forces| o

4.3.3.1 Maintaining Particle Density],

4.5.1 Ordering Operations| o e
4.5.2 Advecting quantities| e

4.0 UMINATY| .« . v v v o e e e e e e e e e e e e e e e e e

5.2 Modiied MPRGP Quadratic Programming Solver|
P.2.1 Convergence Criterion| Lo e
b.2.2 Projection Methods|

H.2.4 DS . o e e e e e e e

7

Concluding Remarks|

[[.1 Future Workl
[7.1.1 Stability Issues|

|A.4 Differentiating Differential Forms|o oo
IA.5 The Hodge Star|. o o o

23
24
24
25
26
26
26
26
27
28
28
28
28
29
29
30
30
30

31
31
31
32
32
32
33
33

36
36
36
37
39

41
41
41
41

CONTENTS

IA.6.1 Hodge-Helmholtz Decomposition|
A7 Integrating Differential Forms| o o
IA.7.1 Cube Complexes|

IA.7.2.1 Laplace-de Rham Operatorf
IA.7.3 Integration|

IA.8.1 Exterior Derivative and Boundary Operators|
IA.8.2 Hodge Star| o .o
IA.9 Pressure Projection|. L

[B Discrete Differential Forms on Cubical Complexes|

IB.1 Level-set based Hodge Star|
IB.1.1 Connection to Staggered Grid Methods|
IB.1.2 Boundary Operator] e
IB.1.3 Hodge Star| o

IB.1.3.1 Hodge Star on Uniform Grids|
IB.1.3.2 Difterential and Codifferential Operator|
IB.1.3.3 Constructing the Laplace-deRham|

|[C Numerical Optimization|

|C.0.4 Constrained Optimization| o
|C.0.5 Linear Complementary Problems|

|C.0.7 Complimentary and Minimization Duality]

46
47
47
47
48
48
49
49
50
50
50

51
51
o1
52
52
52
53
53

Chapter 1

Introduction

Uncountably many films have scenes that contain beaches, but there is rarely, if ever, a proper simulation
performed on the large body of sand. That is because simulating the interactions of sand particles is
an intractable problem: there are simply too many particles that can interact with one another. Even
if we could make the simulation of sand tractable, we would have only shown how to simulate a desert.
Without being able to simulate water, and its interactions with sand, we would not have a method for
generating beaches.

Sand is a granular material; this family also includes materials like rice and cornstarch, which are
ubiquitous materials in human the world. By taking into account the prevalence of water and other fluids
on our planet, the combined dynamics of granular materials and fluids are some of the most common
phenomena on the planet. In fact there are many recreational human applications of this multi-material
interaction such as sand castles and cooking, as well as industrial applications in the design of crucial
infrastructures such as water filtration systems and bridges.

Although the combination of granular materials and fluids has such great presence in our lives, there
are only a few methods available for simulating them at a scale of more than thousands of particles,
which wouldn’t be able to even fill a pail of sand in a sandbox. The reason for this lack is multi-fold,
but mostly it derives from a variety of representational issues.

The natural way one might think of granular materials is as a collection of its constituent granules.
That is, a granular material is a collection of small, relatively rigid, particles that interact with each
other through rigid body collisions and conservation of momentum. Though this solution is direct and
obvious, it is not easily scalable because the forces generated by any single particle can perturb the
whole system, which implies that we would need a global solution for the dynamics of each simulation
timestep. Indeed, advecting a body of granules is a global problem, where the force from one particle
can easily affect fairly distant particles as one can readily see in an apparatus such as Newton’s cradle.

Furthermore, the granule-based approach is not amenable to some standard representations of fluids.
If one were to choose a particle-based method the fluid particles would have to be significantly smaller
than the size of the granules in order for the fluid particles to be able to advect through a mass of
granular particles. With the choice of grid or mesh based methods, there are several issues that arise
due to the fundamental differences between the sort of quantities stored. Communication between the
granules and the fluid stored on the grid would lead to a fair amount of averaging and interpolation

between the grid and the particles.

CHAPTER 1. INTRODUCTION 6

Now if we instead consider the option of treating granules as a continuum, we are quickly confronted
withtwo fundamental issues. The first is that much of the interesting behavior from granular materials
comes from the behavior of individual particles, which can quickly disappear as “interesting” simulation
scales would require particles to be at such fine scales so as to would make them invisible. The second,
far more glaring issue is that there is no general consensus of a single model for granular materials as a
continuum. There are too many variables available such as granule distribution and granule geometry
to take into account that can change the behavior of the granular material as a whole and the addition
of fluids doesn’t help with the situation.

In this thesis we discuss how one can ameliorate some of the issues that one encounters through a
hybrid simulation method that advects individual granules, and allows for granule-granule interactions,
but also takes into account global scale effects through a grid to maintain global effects, which include

the addition of fluid matter into the bodies of granules.

1.1 Outline

This thesis is organized as follows:

e Chapter 2 reviews some rheological preliminaries, with Appendix A to provide some further math-

ematical preliminaries.

Chapter 3 provides comparison with previous work in the field.

Chapter 4 overviews of the method in fairly general terms.

Chapter 5 describes the method in its technical details.

Chapter 6 finishes the thesis with some results and final remarks.

Chapter 2

Preliminaries

In order to develop an intuition for the nature of granular materials, fluids, their mixtures, and how to
simulate them we will first explore some necessary physical and mathematical foundations. This section
will provide an overview of the intuition behind the various data structures and equations that are used
later. We choose to use the language of exterior calculus and differential forms in our mathematical
descriptions. This choice allows us to use a simple and elegant family of linear differential operators that
allow for a significant amount of deformation in the space. For completeness we have included a brief
overview of the those topics in Appendix [A]

The two categories of material we will discuss are what are frequently called Newtonian and a dilatant
Non-Newtonian fluid. Though we will go into their definitions in further detail in the following sections,
Newtonian fluids are what one normally thinks of as a fluid such as water and oil. Other types of
fluid are called Non-Newtonian fluids, where dilatant (or shear thickening) fluids are a specific type of
Non-Newtonian fluid that act more like a solid when a moderate amount of pressure is applied to it. In
our case we are looking at sand, but dilatancy is a common feature in different types of mixtures such
as blood, ketchup, and oobleck

We will first tread through the more commonly known constitutive equations used for Newtonian
fluid simulation, then expand on those equations to generate constitutive equations for more general

flows.

2.1 Constitutive Equations for Newtonian Fluids

Deriving a model for the dynamics of fluids begins by trying to tracking infinitesimal parcels of fluid
material while guaranteeing that basic material laws are followed. In particular, all materials must
satisfy the conservation laws of mass and balance of momentum. With just those two conservation laws,
viscosity, and incompressibility we can obtain the standard equations used for modeling Newtonian fluids

— the Navier-Stokes Equations.

CHAPTER 2. PRELIMINARIES 8

2.1.1 Conservation of Mass

The amount of mass of fluid in a particular volume € can be identified by the integral of density p

defined over €2 through the integral
mass({2) = f pdV
Q
Conservation of mass is precisely stated by looking at the time derivative of mass:

eS|
= — dV = — w-n dA.
ot Qp an

where u is the velocity of mass, n is a the unit outwards normal vector, dV is the volume. Because

0

u - n represents the “amount of velocity going outside on the boundary of €2,” the right hand side can
be interpreted as the “amount of density moving outside on the boundary of Q.”

By using the divergence theorem and moving everything to the left hand side we obtain

0
P4V (pu)dV =0
q Ot

Because this equation applies to any domain X c €2, we can write this integral equtation as a differential
equtation:

ap

riy. =0
7 TV (o)

which is called the continuity equation. Quite simply, the change in density at a point is equal to the

amount advected through that point, so no material will spontaneously appear.

2.1.2 Conservation of Momentum

Fluids follow the Newton’s famous equation for balancing momentum: F' = ma. When we write it by

tracing the forces applied to an infinitessimal parcel of material, treated as a particle:

_ Du
~ "D
where % is the material derivative, which represents the change in a function for a specific particle.

This special derivative takes into account the fact that the derivative we evaluate at a particular point
in space/time does not correspond to the derivative of a value on a particular location. For example, if
one were to place a depth sensor on a boat and allow it to sail into an ocean, the sensor would probably
detect changes in depth, resulting in a nonzero derivative for the depths recorded by the sensor. The
material derivative would take into account the velocity of the boat, causing the derivative to be zero.
This virtual particle is best explained through an exposition of the Eulerian and Lagrangian perspec-

tives, as we now discuss.

2.1.2.1 Lagrangian and Eulerian Perspectives

As a fluid is advected in a domain there are two natural ways to record quantities of those fluids as they
move: the Lagrangian perspective and the Eulerian perspective. In the Lagrangian viewpoint the fluid
is represented as a collection of constituent particles. Dynamics are performed by moving the positions

of particles in space through time, similar to the boat in the previous example. The Eulerian viewpoint

CHAPTER 2. PRELIMINARIES 9

maintains measurements of quantities at fixed positions in time, similar to the ground in the previous
example.

The material derivative is simply derived by utilizing the chain rule. Taking the derivative of a
scalar quantity g being advected along a velocity field u we define the material derivative to be the time

derivative of the quantity at a particular point and time:

Dq d dq dx; 0q
ot~ @’ +Zaxz T A

The material derivative is split into two terms: the change of a quantity at a point, E;tz’ and the offset
caused by the quantity being advected by u, Vq-u. This second term can be seen as correction required
to translate between the Eulerian and Lagrangian perspectives.

Assuming incompressibility is the same as assuming %’Z = (0, we obtain, through subtraction with

the continuity equation and the chain rule, that

T
op op
0 = 8t+vP u—E—V(pu)
0 = pV-u
0 = V-.u

Such a velocity field is said to be divergence-free. Requiring the velocity field to be divergence-free is

often called the incompressibility condition.

2.1.3 Forces

In the Navier-Stokes equations there are three types of forces that direct the motion of fluid: pressure,
viscosity, and external forces. The force generated by pressure is the force pushing a fluid from high
pressure regions to low pressure regions and the force from viscosity is the fluid equivalent of a frictional
force from within the fluid. External forces will generally mean the sum of body forces including gravity
and boundary forces such as interactions with rigid bodies.

Computationally, viscosity and pressure are typically separated. This comes from Chorin’s splitting
method[Cho67], where the computation required to maintain incompressibility and to generate viscous
forces are separated. Splitting is crucial to maintain incompressibility, and also allows for the trivial
removal of viscosity in situations when simulating fluids that have a low viscosity. These fluids are
called inviscid fluids, and are very common in graphics because of water’s low viscosity and the cost of

numerically solving for viscosity would suggest taht additional computation be used only when necessary.

2.1.3.1 Pressure

In an incompressible fluid, pressure can be seen as the force that maintains the incompressibility con-
straint, so pressure can be computed as the force returning V - u to zero. After applying the various
other forces present in a system, the velocity field for a fluid tends not to be incompressible anymore. A

simple way to maintain incompressibility is to find new velocity fields to substitute the invalid velocity

CHAPTER 2. PRELIMINARIES 10

fields, which can be done through a projection in the L? sense from the invalid velocity field back into
the space of gradient-free vector fields.

We find that the best derivation of this is done with differential forms. In the language of differential
forms the incompressibility condition can be written as du’ = 0. When it is not ambiguous, we will omit
the -* from u because the contexts for when w is treated as a 1-form and vector field are unambiguous.
From the perspective of differential forms the incompressibility condition is the same as u being co-closed.
This is easily seen by considering the Hodge-Helmholtz decomposition [A6.1] that any any differential
k-form can be written in terms of a k — 1-form, k + 1-form and a k-harmonic form. If we set the 0-form

in our case to be labeled as p for pressure, we see that

du odp + 88w + 7y
du = &dp

Therefore u — dp = dw + ~ represents a divergence-free vector field, which is therefore incompressible.
This definition of pressure treats can be treated as a projection operator of a velocity field u to the
L2-nearest incompressible. The force necessary to set V - u is therefore —Vp.

For a more traditional vector-calculus perspective, one can check our discussion of differential forms[A-7]
to see that du’ = V - u as well as that (dp)ﬁ = Vp to derive

du = &dp
V-u = V-Vp,

which is the standard pressure projection problem.

2.1.3.2 Free Surface Conditions

One crucial component for interesting fluid simulations is to have a visible fluid boundary. In order to
produce such a simulation there are some minor changes required in the pressure solving step to take
into account the incompressibility of the system while handling the boundary. One standard solution is

to set the pressure of the air to be 0, which we will utilize and go into more detail in the Overview

2.1.3.3 Viscosity

Viscosity can be seen as a sort of friction between infinitesimal particles. The force effectively reduces
the amount of shearing that the fluid can do, which homogenizes fluid flow. That is, it pushes the
velocity field of a fluid to be closer the local average velocity. It is essentially a diffusion of momentum
in a fluid. The force from viscosity does not satisfy an intrinsic constraint like incompressibility, but is
a force returning to a body to counteract shearing in the material.

Viscosity is most readily defined on the boundary as a tensor o such that for a point on the boundary,
with normal n, the viscosity force is on. Unlike pressure, where we used a scalar value p, ¢ has to be a
tensor to take into account the fact that the force of viscosity will not be parallel to n.

The local changes in u are represented by Vu, so viscosity forces must be representable as a function
of Vu. As a first order approximation we will assume that ¢ is linear with respect to Vu. Because of

constraints such as the symmetry and rigid-body invariance of o, not all of Vu is relevant, and it is

CHAPTER 2. PRELIMINARIES 11

possible to remove parts of the operator that have no bearing to the computation of viscosity. First,

consider the decomposition

_ Vu+Vut+Vu—Vut
N 2 2

Vu =D+ 5.

Because rigid rotations should not have an affect on the relative velocities, we can ignore S and only
pay attention to D.

Because D is symmetric, that is, it is invariant on the order of its vector arguments, it can be
diagonalized. In order to be symmetric on each of the axes, the operator from D to ¢ can only be a
scaling of D and an added diagonal term. The only possible linear term to add to the diagonal is a

scaling of V - u in order to add the different d;u; terms symmetrically. We therefore have a form like
o =MV -ul+2uD

Because we are looking at an incompressible fluid, V - u = 0, the leftover terms of viscosity will be

By applying the divergence theorem in the same way utilized for pressure, we see obtain a body term of

V- -Vu+ V- (Vu)

V-D=
I I 5

=uV - Vu.

The viscous Navier-Stokes equations therefore have the following form:

Du
Vu = 0
T = w(Vu+ (Vu)T)

where g are all external forces, usually including gravity, and p is the viscosity coefficient, which is a

property of the fluid being simulated.

2.1.4 Darcy Flow

Fluids in a porous medium are by definition surrounded by solid matter so the velocity of a wet porous
mass should be approximately the same as the velocity of the particles and porous material. In this sort
of flow, which is commonly called Darcy flow, we can therefore assume that the momentum is eliminated
by the solid medium. When the porous medium is not moving in space, one can represent the removal

of momentum as the Eulerian and Lagrangian perspectives being identical. That is, we will assume that

Dq dq
dt — dt
in the context of Darcy flow.
We also add a force of capillary action, which is defined by a surface potential that defines the affinity
of the surface of granules with whatever fluids are interacting with them. Capillary action is what allows

for water to diffuse against the flow of gravity, through porous materials like sand, sponges, and paper.

CHAPTER 2. PRELIMINARIES 12

Though capillary action is a surface-to-surface interaction, at a continuum level it is treatable as a
volumetric quantity through homogenization, utilizing some assumptions on the porous body’s internal
geometry [Bea72]. For instance one can assume that the interior of a sponge is a series of spheres or
cylinders to generate different models for the volume to surface area ratio.

With those two changes, we obtain the following equations for incompressible flow:

ou K Kk
i —;Vp—i— ;PQ
Vu = 0
g = —Vo+yg

where x is permeability, p is viscosity, and —V® is capillary potential, and g is usually gravity. This
same procedure has been seen applied to heat transfer in [?]. We will suppress the above fraction with

the variable & = ﬁ

2.1.5 Constitutive Equations for Non-Newtonian Fluids

The rhelogical behavior of sand is quite different from water. At the continuum level this difference is
often mentioned as the differences between a Newtonian and a non-Newtonian fluid, with water being the
former and sand being the latter. What determines whether a fluid is Newtonian or not is its response
to shearing.

In the case of a Newtonian fluid stress is a linear response to shearing. The behaviors described by
this model are the standard ones one imagines for a fluid like water: the resistance one meets when
pushing against the fluid is proportional to the relative speed of the fluid itself.

Any fluid with a nonlinear stress/strain relationship is considered non-Newtonian. In the non-
Newtonian case, the viscous stresses can depend on a variety of other factors such as pressure, tem-
perature, or electromagnetic effects. The behaviors are much more varied than those of Newtonian
fluids. With shear thickening fluids like cornstarch suspensions, beyond some amount of pressure on the
fluid the force required to move through the material becomes substantially more difficult. It is even
possible to run on a pool filled with cornstarch suspended in water.

On the other hand, shear thinning fluids like ketchup seem somewhat rigid at rest but will become
fluildized when pressure is applied. This particular behavior is why many modern condiment containers
have caps on the bottom: gravity applies insufficient pressure for the ketchup to fluidize so it does not

escape the container, but once some pressure is applied the ketchup will fluidize and squirt out.

2.1.6 Continuum Behavior of Sand

The rheological behavior of granular materials at a continuum scale is that of a time independent
viscous non-Newtonian fluid; in particular they are shear thickening. The structure of the relatively
rigid individual particles aggregates frictional forces so that, past a specific amount of pressure, a given
amount of shear stress will not generate further shearing. Because of its time independence, the flow of
a granular material can be locally defined as an energy minimization based on its stress tensor o which
we separate into the isotropic mean stress term (pressure) p and the traceless deviatoric stress term
(frictional) s:

o= —pl +s.

CHAPTER 2. PRELIMINARIES 13

This is similar to the decomposition that we saw before for incompressible fluids, but here we do not
force the frictional component to be linear. Sand can be treated as being incompressible, so pressure
should be the same linear equations as before, while the s is not due to the existence of two different
modes of friction that exist: static and kinetic.

The boundary between the two frictional regimes can be expressed through a yield criterion. The
criterion demarks a boundary constraint on the stress tensor before the granular material acts in a rigid
regime. Intuitively what we want to represent is that a sufficient amount of shearing stress must occur
before any motion happens, and that the yielding point increases monotonically with pressure. Usually
the yielding point is linear to pressure. Here we use the Drucker-Prager yield condition, a continuous
variant of the Mohr-Coulomb yield condition [ZB05]:

[s] < V3ap + ¢

for some norm | - | (we will use the Frobenius or L? norm) and «,c being material parameters. The
term c¢ corresponds to cohesion, which I will assume is 0 to simulate dry granular materials. « has a
geometric interpretation: if the steepest angle that granules can be piled, the angle of repose, is 6, then
o= \/%sin 0.

The method we use alternates between solving for a velocity that satisfies pressure constraints and

solving for frictional constraints using a variational principle.

2.1.6.1 Unilateral Incompressibility

In the above framework the static representation of granular material is stored precisely as that of a
viscous fluid. The only difference represented is the yield condition that appears in the resolution of
the stress. However, by treating granular materials like a viscous fluid, some crucial information on the
incompressibility of individual grains is lost. Traditional fluid incompressibility does not assume any
atomic set of spherical particles, and each parcel of fluid is allowed to deform into arbitrary shapes and
aspect ratios. Granular materials, however, consist of real physical particles that cannot deform and
so a standard pressure solve is not sufficient. Resolving particle collisions is a global problem because
forces are propagated at a much higher speed than our intended timesteps, so some form of global
incompressibility solution is required. Narain et al. [NGCL09] introduce the Unilateral Incompressibility
Constraint (UIC) in order to roughly solve this problem at a global scale. The intent is to use continuum
methods to find a rough but adequate global solution using a cheap local solver to find a reasonable
solution.

Enforcing the Unilateral Incompressibility Condition, which represents the maximal density obtained
when packing spheres, at global scale seems to be a decent candidate for the approximate solution we

seek. The condition explicitly sets a maximal density
Pmax = 2a/(\/§d?nin)

for a parameter « representing imperfections in packing and d,;;, representing the minimal distance
allowed between objects (the radius of a particle of sand). When the density of a grid cell is below the
packing density, the system assumes that there is no need to interrupt the advection of particles in that
particular grid cell. However, if the particle density increases to beyond the maximal density, the system

generates a pressure force to guarantee that by the next timestep the density is lowered to a valid level.

CHAPTER 2. PRELIMINARIES 14

Within a homogeneous medium and given a density constraint, the mass of material in a finite volume
can be identified with a volume fraction ¢, and the momentum of that mass can be identified with ¢v.

In [NGCLQ9] the advection of density through pressure is given by

At?
pPmax

o = " pmo - ——V7p

where ¢"+1|p=0 is the density at the next time step ignoring pressure. The complimentary constraint
p(1—¢"*1) = 0, implies that a nonzero pressure will exist if and only if the system is completely packed

in that cell. We can therefore formulate this as a linear complementary problem (LCP):

Ap+b

VAR
o o
O
o =

p
p" (Aip + b1)

Il
o
—
o
w
=

where
AQ
A = t D" D, (2.4)
Pmax
by = 1—¢" |z (2.5)

given that D; is the finite difference gradient operator on the density. For more information on LCP
problems refer to Appendix [C]

This method is sufficient for guaranteeing that particles do not usually get too close but it is not an
exact solution to completely avoiding self intersection. Therefore, after each UIC solve the simulation
usually pushes each particle around in a small random walk, which works because the particles are

already mostly separated out and only need to be jittered slightly.

2.1.6.2 Friction

Frictional stress is computed by minimizing the kinetic energy in a system:

1 T
£=3 [rlolPav.

For computational purposes a reweighting is performed for w = p"/pmaa
1 n 2
E =35 |wp"[v]*dV.

This modification introduces some error but improves the conditioning of the problem by reducing the
variation of coefficients used by low-density portions of the discretized system. The constraints of the
Druker-Prager yield criterion are approximated with a series of planar constraints by bounding the
coefficients of the tensor by smax = ap [NGCL09]. Minimizing this energy functional is a quadratic so

we obtain the following quadratic system:

CHAPTER 2. PRELIMINARIES 15

sTAys +bls = 0 (2.6)
Smax =S 2= —Smax (2.7
where
At?
Ay = DI D (2.8)
Pmax
At
bg = P DQTpn’U|S:0 (29)

given that s is a vector of the stress tensor coefficients and D5 is the finite difference gradient operator
on the stress tensor. This system is easily transformed into a linear complementary problem by applying
the Karush-Kuhn-Tucker conditions, which are an extension of A-multipliers that takes into account

boundary conditions.

2.2 Summary

In this chapter we first derived the necessary equations for describing the dynamics we will discuss in
later sections. We first derived standard fluid flow equations to provide some basic insight on fluid
simulation and how the dynamics are conventionally separated. From there, we provided alternative
models for pressure and for viscosity to present a model for simulating granular materials, including
some numerical details. For details on the mathematics we will use or for further information on LCP

problems please refer to the appendices (Appendix [Al and Appendix |C| respectively).

Chapter 3

Relevant Work

The rheology of non-Newtonian fluids has only recently appeared in computer graphics literature [GBO04],
with wet granular materials only appearing as recently as 2008 [RSKNO§|. Non-Newtonian fluids in the
general sciences are a well known topic, though the precise mechanisms behind how they operate are still
open for discussion. There have been some results in non-physical simulation of sand and mud such as
the work of [SOH99|, but we will primarily pursue the physical aspects of simulation. Cohesive granular
materials and porous flow have a strong history in engineering, in areas such as soil mechanics [Har25]
but we will focus our scope on simulations of visual phenomenology and thus focus on the computer

graphics literature. We primarily restrict our discussion to publications from the domain of graphics.

3.1 Fluid Simulation Techniques

The first attempts to fully simulate the Navier-Stokes equations in graphics literature was by Foster and
Metaxas [?], but there is a deeper history in the engineering literature. Foster and Metaxas’s paper was
based on the earlier work of Harlow and Welsh [HW™65] which is the origin of staggered grid methods.

In fact, many of the modern fluid simulation techniques have deep histories in engineering.

3.1.1 FEulerian Grid Fluid Simulation

Grid based simulation methods have a long history in computer graphics, starting with the seminal work
of Foster and Metaxas mentioned above. That method, and many of its successors, had difficulties with
numerical stability with large timesteps where the total energy of a system would explode. The issue
lay with the use of the use of an explicit time integrator. It was with Stable Fluids by Stam [Sta99] that
a semi-implicit integration method appeared in the graphics literature, which prevented such energy
blowups. That guarantee, however, came at the cost of significant numerical viscosity, which caused
energy to disappear from a system. Since then multiple methods have become popular in graphics to
compensate for numerical viscosity like vorticity confinement [FSJOI].

The methods mentioned above are excellent for defining fluid flow when a static domain is filled
with fluid and a few quantities are advected around by a velocity field, as is the case when simulating
smoke. However, for many graphics applications, fluid does not fill a static domain, and instead covers
a dynamic subdomain of a larger domain. For example, in a scene where water is being poured into

a glass, there is initially no water in the interior of the glass and over time the subset of the domain

16

CHAPTER 3. RELEVANT WORK 17

comprised of water changes dynamically. In order to handle such a scene using a Eulerian method, some
extra work is required.

Simulating fluids with boundaries that can form waves and splash are commonly called free surface
fluids. Surface tracking technologies like the level set method [EMF02] [ZOF01] have become popular
because they allow simulations to represent the interface between a fluid and air. Eulerian fluid simulation
techniques are exemplary at simulating incompressible free surface flows when properly coupled with
levelset data [BBBO7]. This is due to the availability of simple differential operators for computing
the pressure required to maintain incompressibility. Purely Eulerian methods, however, are inherently

limited and have a difficult time with numerical viscosity and handling free surfaces.

3.1.2 Particle Fluid Representations

Particle-based fluid techniques are naturally amenable for simulations involving free surfaces, though
the smoothness of the generated surfaces can be difficult to maintain. There has been, however, sub-
stantial efforts in that direction like [YT13]. The most popular particle-based method used for fluid
simulation, and more recently granular simulation, is Smoothed Particle Hydrodynamics (SPH). This is
a method whose origins are in the astrophysics community in work by Gingold and Monaghan [GM77]
for tasks in compressible flow. SPH was brought into the graphics literature by the work of Desbrun and
Gascuel [DGI6] for purely Lagrangian fluid simulation. Beyond representing particles being advected
through space, it represents a family of radial basis functions ¢! around a set of points advected through
space. Under this framework, a function f discretized at a time ¢ would be computed by attaching

coefficients f! = (f, !y (where ¢! is a dual basis function for ¢!), therefore producing the approximation

Fr=Y 1t ool = flel.

The basis functions do not inherently represent the boundary of a surface and the repulsive forces they do
generate are smooth, which naively leads to timestep restrictions and “soft” particles - in that particles
act as if they were undergoing elastic deformation. This “soft” particle property is problematic for SPH
in that it has trouble maintaining incompressibility in the long run, though work on maintaining a sem-
blance of incompressibility has been an area of active research [BT07, [SP09, ICS™13|. Compressibility
is a difficult problem to solve in a purely Lagrangian context, but not too difficult to handle in Eulerian
methods, so one could imagine trying to alleviate ompression issues by combining both methods. Meth-
ods that utilize the advantages of both Eulerian and Lagrangian methods are genreally what are called

Semi-Lagrangian methods.

3.1.3 Semi-Lagrangian Fluids

Among the the most succcessful Semi-Lagrangian methods are Stable Fluids and FLIP. FLIP was in-
troduced into the graphics community by Zhu et al. [ZB05]. This method utilizes particles to advect
velocities and a grid to solve for pressure and add external forces. Although it suffers from some long
term volume loss and numerical viscosity from the large amount of interpolation that is performed , the
loss is much less than plain SPH, and the numerical viscosity is also much less than that of a standard
purely Eulerian technique. The work of Batty et al. [BBB0OT] extended the use of FLIP particles to

generate a levelset to generate a more accurate Laplacian operator. More recently, the Hybrid SPH

CHAPTER 3. RELEVANT WORK 18

Method [RWTTI] by Raveendran et al. have utilized that sort of pressure solve to guide the advection
of SPH particles to decrease compression.

Pure levelset surface tracking has evolved to utilize particles in methods like the aptly named Particle
Levelset method [EFFEMO02] of Enright et al. In the method they tie the signed distance function to a
family of particles situated near the interface. The particles are used to correct the levelset from the
inherent information loss that interpolation causes during levelset advection.

Traditionally Semi-Lagrangian simulation has depended on particles because managing topological
changes in fluid simulation is an arduously difficult problem to solve. More recently, meshing technology
by those like Brochu et al. [BBO9] has advanced far enough that using Lagrangian interface tracking
with triangle meshing has become feasible [WMFB11]. The main disadvantage of these methods is the
necessity to invest time to develop and tune a mesh cleaning tool. Many methods have requirements
that the tessellations they use must be manifold or delauney. Another common reason why a decent
mesh cleaning is required is to make sure that the tessellated elements do not become too small or too
large. Elements that are too small restrict the size of each timestep in the simulation, which reduces

performance, while large elements can reduce the quality of the simulation.

3.2 Granular Simulation Techniques

Granular simulation has primarily been performed through purely particle-based methods, but recently
there have been more attempts to simulate them as a continuum in order to handle scalability issues

that arise from simulating too many particles.

3.2.1 Particle Granular Materials

The most obvious way to simulate dry granular materials is as a collection of rigid bodies. Although
many granular materials have a variety of anisotrophy that varies from being simple ellipsoidal shapes
like in rice grains or fairly complicateted geometries of “arbitrary” shapes such as is found in sand, a
common assumption is that in aggregate they act like spheres. As such, the most common form of
simulation of granular materials is as a familiy of rigid spheres, despite the actual geometry of what is
being simulated [YHKOS]. The work of Bell et al. [BYMO5] allowed for the simulation of non-spherical
particles, but they only allowed for objects represented as the union of spheres held together statically.
From that perspective simulating dry granular materials the problem becomes simply a particular use
case of rigid body simulation [KP06l L1o05], especially because the contact properties of spheres are so
easy to implement. Recently there has been some interesting work by Smith et al [SKV™12|, which is
able to preserve spatial symmetries, kinetic energy, and momentum in large rigid body systems, which
extends nicely to granular media. Through their work they were able to reproduce complex emergent
patterns generated by vibrating granules in rectangular bins.

Although dry granular materials are well represented as spherical rigid bodies, cohesion is a difficult
force to represent. There has been work such as that of Lenaerts and Dutré [LD09], which utilize SPH
to simulate wet granular materials. They utilize SPH for both the fluid and the granular components
of the simulation. They utilize their preceding work on porous flow using SPH [LADO§| to simulate the
porous flow of fluid entering bodies of sand. Further work in simulating wet granular materials through
SPH was explored by Thmsen et al. [TWT13], though it does not discuss how to do porous advection.
The work of Rungjiratananon et al. [RSKNO§] uses SPH for the fluid simulation, but uses the Discrete

CHAPTER 3. RELEVANT WORK 19

Element Method for simulating the forces between granules as a sort of mass-spring system generated
by the adjacency of particles in each timestep.

The Material-point method[BBS00] is a method that evolved from FLIP.TODO: find earlier refer-
ences.

Despite significant improvements on the field, solving for rigid body dynamics for large numbers of
particles is an inherently intractable task. There have been several interesting approaches, however, such
as the work of Zhu et al. [ZY10] which matches particles with a height field which allows for particles
to be labeled as rolling, interface, or static. Through that separation they only need to worry about
a narrow band of particles undergoing dynamics. The method is optimal for simulating sand being
dropped or undergoing low magnitude forces, but because there is no simulation in the lower depths of

material, the method is not amenable to other situations.

3.2.2 Continuum Granular Materials

The first explicit use of continuum methods for simulating granular materials was in the original graphics
paper for FLIP by Zhu et al. [ZB05]. The method implements friction through a linear scaling of
tangential velocities and clamping them to a non-negative value. They even support cohesion in their
model, but mainly to remove some seepage issues that were a side effect of using such a simple friction
model.

To solve for an even “stronger” form of incompressibility than what is used in FLIP, Narain et
al. utilize the Unilateral Incompressibility Constraint [NGCL09] in an effort to guarantee that the
constituent particles will not intersect with each other. Their application for that result was not for fluid
simulation, but rather for simulating large numbers of independent agents such as crowds navigating
through terrain as sophisticated as the interior of a building. They were able to handle large quantities
of agents because, although the agents individually only respond to local stimuli, global flow issues are
handled through a linear complementary problem, which enforces a density constraint for each cell in
a regular grid. The constraint maintains an L? optimal set of forces such that no cell can have higher
density of agents than that prescribed by the optimal sphere packing density.

By setting these particle-agents to advect in the same fashion as a FLIP fluid simulation, and by re-
placing the viscosity computation with a constrained energy minimization simulation of friction, Narain
et al. were able to convincingly simulate granular materials as a continuum flow [NGL10]. This con-
strained energy minimization problem is solved with a quadratic programming problem, where the yield
criterion between shearing strain and pressure formulated approximately through a set of constraint

hyperplanes.

3.3 Porous Flow

Porous flow, also called Darcy flow, lacks the visual intrigue that vortices of smokes and splashing of
water, but has serious consequences on the rheological behavior of materials, as in sand and paper.
Although we have mentioned some methods that can support cohesive granular materials, and even wet
ones, they do not contain a proper discussion of porous flow. Some of the work like Zhu et al. [ZB03]
and Thmnsen et al. [[WTT3| simulate cohesive granular materials, but are silent on the fluid causing the
fluid to be cohesive, while in the work by Rungjiratananon et al. [RSKNO8] water particles are removed

upon contact with granular particles to accumulate “wetness” on each granular particle. In that method,

CHAPTER 3. RELEVANT WORK 20

the “wetness” of individual granular particles are propagated only when a particle becomes “over-wet”,
simulating that a granular particle only propagates wetness once it becomes saturated with water. They
also assume that capillary forces are insignificant compared to gravity.

Within Graphics, the study of Darcy flow has not received much attention, only really being men-
tioned in the work of Lenaerts et al [LADOS] that derived everything through SPH. We found that the
book by Bear [Bea72] is a very good resource for the general flow of the phenomenon, including some
insights on the nature of capillary pressure and individual models for different pore topologies in porous
media. Furthermore, the work by Hirani et al. [?] discuss how to solve the problem of Darcy flow using

Discrete Exterior Calculus.

Chapter 4

Overview of Simulation Methods

In this chapter we provide a high level description of the core components of our method. The method
combines two independent simulations: one for the fluid component and one for the granular material.
We then connect the two simulations by mapping pertinent physical characteristics between the two
simulations as parameters. Through the synchronization of these parameters in the respective simulations
we obtain a coupling between the two simulations that is visually convincing.

In order to utilize these parameters in our simulations of granular materials and newtownian fluids
we had to augment existing techniques for both the fluid and granular simulations, which we will soon
discuss. This chapter will walk through the process of augmenting and combining simulation methods
through a series of steps. We will begin by describing a novel method for computing a Hodge-Star from
a levelset, which is a crucial component in everything that follows. From there, we will discuss a method
for simulating a free surface fluid immersed in a porous body where porosity is variable over both time
and space. Independently we will describe a method for simulating a cohesive granular material where
the cohesion can change over time and space. Finally we will discuss how to combine the two techniques
to provide a method for simulating the interactions between a fluid and granular body.

Before we enter the core of our work we will provide a light discussion on our choice of discretization.

4.1 Operator Choice

We utilize operators from exterior calculus, as described in [Al The primary reason for utilizing this
extra structure is that it makes implementation much simpler, while at the same time making the theory
more general to other types of discretization. This ease of implementation is due to the small number
of operators that need to be implemented and the simplicity of those individual operators, which makes
it possible to create a full working system with less code to implement and debug. Furthermore, those
operators are amenable to a wide variety of other discretization techniques beyond the one that we chose.
This is because they only depend on having a cell complex with some reasonable concept of a dual mesh
attached. This mathematical language is also dimension agnostic, which implies that the algorithms
defined here have easily extensions to even higher dimensions with minimal effort, which accelerated our

conversion from 2D to 3D code.

21

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 22

4.1.1 Cubical Complexes

Although the following theory is trivially generalized to other sorts of complexes, we will be only using
cubical complexes. We choose to only discuss cubical complexes because although other structures, like
simplicial complexes, are from a theoretical perspective simpler, we want to show that our method is
not only equivalent to other existing grid-based methods and can even be easier to implement than
them as well. We include some useful implementation details in Appendix [B] which defines the cubical
structure somewhat rigorously and presents the simplifications that cubical complexes have over generic

cell complexes.

4.2 Levelset Based Hodge Star

As discussed in the Appendix [B[the Hodge Star operates as a way to map between k-forms and (n — k)-
forms and allows for the definition of an inner product on differential forms. For simplicity of imple-
mentation DEC uses the diagonal Hodge Star operator, a sort of mass lumping that guarantees that
between a k-cochain and a (n— k)-cochain that the evaluation of a k-form and its respective (n — k)-form
on the k-cochain and (n — k)-cochain produce the same value. In order to guarantee an isomorphism
between k-cochains and (n — k)-cochains in the discrete setting, DEC introduces a dual mesh, for which
the Hodge Star defines a correspondence between the primal mesh and its dual mesh. In general the
functionalities available to the primal mesh are identical to those available to those of the dual mesh
and the difference comes down to the topological and geometric features of the choice of primal and dual
meshes.

For instance, the vertices of the dual mesh are usually defined by the circumcenters of simplices,
which is created by attaching a vertex at the circumcenter of every n-cochain, a dual edge between dual
vertices for which their corresponding primal n-cochain share a (n — 1)-cochain, and so on. The above

construction leads to a trivial computation for the discrete boundary operator of the dual co-chains:

o =0
where 3,’§+1 denotes the dual boundary operator and -! represents the transpose operator. In later sec-
tions we will not distinguish between primal and dual operators because the choice of storage between
the primal and dual mesh is generally arbitrary. The Hodge Star operator, however, is the main corre-
spondence between the primal and dual meshes so we will still talk about primal and dual meshes for
the remainder of this section.

The discrete Hodge Star maps a k-form w” sitting on k-cochain o* to a (n — k)-form *w* on (n— k)-

cochain o™ %, We compute the value of the Hodge star by first recalling its definition:

1 k 1 k, .k
— W' = —F *wr.
o ok on— on—k

By using the integrated quantities as the discrete value for the forms and by letting §_,,_, *h = %P S

on—k :

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 23

we obtain the diagonal Hodge Star:

1 Kk 1 J k Kk
—_— W' = — *“w
HO—’CH ok Ho-nka on—Fk

1 _k 1 T k—k
—w = * W
lo]| lom=*]

lo™*| _ whgk
lo*]|

Standard DEC is designed around having a static primal and dual meshes but we extend the concept of
the diagonal Hodge star to describe more dynamic situations.

Our method operates by maintaining a static dual mesh (in this case a regular cubical complex) and
extrapolating a dynamic primal mesh extrapolated from a levelset. A standard problem with levelsets
is that they do not have any inherent information on the input geometry within a single cube, so the
particular geometry inside of a cube is underdetermined. We therefore do not generally have enough
knowledge to explicitly generate the primal mesh, and in fact take advantage of the fact that we have
some unknown information to virtually pick the interior data that satisfies our wants. In particular we
use the levelset to determine the Hodge star directly from the levelset using linear interpolation schemes.

As levelsets are scalar fields, it is natural to store the levelset on the primal or dual 0-forms, and for

each of these types of levelsets there are different ways to extrapolate quantities.

4.2.0.1 Length of edges

For a levelset ¢, stored on the primal grid we can compute the length of the primal edge e = v;, v; from
the levelset directly. If ¢, < 0 at both points then vol(e) = Az and if ¢, > 0 on both then vol(e) = 0.
WLOG, assume ¢, (v;) < 0 and ¢,(v;) > 0 and we can set:

¢p(vi)

volle) = A g) — on(wy)

which is, under the assumption that ¢, is linear, Ax scaled by the fraction of the edge such that ¢, < 0.

If the levelset ¢4 is stored on the dual grid, the length of a primal edge requires a bit more effort. If
we assume that levelset is bilinear within each dual cube we can average the values of ¢, at each of the
dual vertices to generate a primal ¢/, for which we can use the above procedure for generating primal
volumes on primal grids.

The obvious analogues work for computing edge lengths on a dual mesh.

4.2.0.2 General Volumes

In general, for higher dimensioned edges there is more freedom in how one can compute volume from
a levelset. As in the case of edge lengths, for dual elements we have to take averages to translate
the primal levelset to a dual levelset. We assume that objects are piecewise linear and utilize the
volumes of the triangles/tetrahedrons generated by evaluating a square/cube respectively using marching
squares/cubes.

Once we have the volumes, we can generate the Hodge star operator between the primal and dual

elements through dividing the primal and dual volumes and vice versa.

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 24

4.2.0.3 Dealing with Degeneracies

One complication with these volumes is that we may have degenerate elements (elements with 0 vol-
ume). When these entries are used to compute the Hodge star, the resulting operator is no longer an
isomorphism between the primal and dual forms, which is a fundamental property of the Hodge Star.
This, however, is not an issue, as the places where the Hodge star is degenerate are precisely the places
where computation is unimportant. In our problems our only concern is to solve for pressure inside the
fluid domain, which is definitely outside of the solid domain. The Hodge star on that restricted region
is guaranteed to be nondegenerate because the levelset of a solid is always disjoint from the levelset of
a fluid, and the levelset for a fluid is always inside the levelset of a fluid. By zeroing the Hodge star
when we get zero or infinite volume ratios we obtain a projection operator on forms that projects into
the restricted space.

This projection, along with some numerical considerations, will create some additional restrictions on
how we set up the system. One important consideration is that we will not be projecting the boundary
operator to the projected space, which will result in an underdetermined system unless we take special

care in whether to store our quantities in the primal and dual meshes.

4.2.1 Pressure Projection

Of course the final goal of all of this theory is to produce a satisfactory system of equations to perform
the standard pressure projection step in fluid simulation. By storing pressure p as a primal n-form and
velocity u as a dual 1-form we we can obtain the amount of “pressure”, we can decompose u by using
the Hodge decomposition to obtain

u+dkp=u

where @ is the summation of the two remaining terms from the Hodge decomposition: @ = 63 + 7. Since
56 = 0 and the fact that 6y = 0 for harmonic functions, we see that da = 0.

Because u is in the kernel of & we can do the following;:

u+d¥xp = u
du+dd*xp = du
*xdkd*xp = *dku

dxdxp = dxu.

By storing the dual of pressure as p we get the weak Laplace-deRham operatorciteabraham1988manifolds:

dxdxp = d%u.
dxdp = d%u.
Lp = dxu.

This produces a positive symmetric semidefinite linear system, which can solved efficiently using pre-

conditioned conjugate gradient, with a modified incomplete Cholesky factorization as the preconditioner,

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 25

following [BBBOT].

From there one can easily find a value @ by

u=u—d
which is the L? projection of u into the space of gradient free fields.

4.2.2 Free Surface Boundaries

We require one further addition to compensate for the force of pressure on the fluid boundary, which is
taken care of by using the ghost fluid method mentioned in [EMF02]. With a free surface boundary the
volume of fluid is not contained and the pressure from the air must be taken into account. The standard
solution is to set a Neumann boundary constraint that the pressure at the boundary is 0, which is what
we do. However, applying the boundary condition with levelsets is difficult because the interface is not
precisely defined on a grid boundary, and so a method such as the ghost fluid method is necessary. The
ghost fluid method uses Neumann constraints to extrapolate values of a scalar quantity right outside
the boundary. This is particularly relevant in our case, where the quantity is pressure and the boundary
value is always 0.

If we use a linear extrapolation of pressure from a cell-center p; that is inside to generate the value

of a cell-center outside p;, such that ¢(x;) = —6 we see that the values must satisfy

0= (1+0)p;, —0p,

which provides us with
146
pj = 9 Di.
If we look at the effect of the exterior derivative operator d on p;,p;, we see that on the face they share
we get, up to sign dependent on orientation,

1
dpla = pj — pila = gPi = = x!|op

vol(e;;)
where x!|q is the Hodge Star restricted to the boundary. If we take d%® of the operator to generate
a full Laplacian, notice that by definition of the situation only the cell storing p; will only have one
side of the pertinent axis nonzero, so the d%* simply maps the the face value to the vertex cell-center.
By noticing that we are purely adding terms to the system, the result of the linear extrapolation is the

following system:

(L' + %% % q)p = d *' u,

It is easy to convince oneself that this is still a positive semidefinite symmetric system which is advan-

tageous for numerical solvers.

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 26

4.3 Darcy Flow

To extend the above method to support flow in a porous medium, also called Darcy flow, there are two
key insights. The first is that the porosity can be treated as a scaling of the permeability through a
plane, which leads to a porosity-based Hodge Star. The second is traversing through a porous medium
mutes the momentum of a porous material, and so the velocity from a previous step has no bearing on
the velocity of the current timestep. In fact, the velocity of fluid in a porous medium is determined by
velocity of the porous medium itself, the pressure effects to maintain incompressibility, and the force

capillary pressure.

4.3.1 Porosity

In our simulation technique we use a scalar porosity function p across the whole domain, with the value
1 specifying that fluid can fully fill a region and 0 signifying that the body in that space is completely
filled. By defining porosity as a scalar function across over our entire domain we obtain a representation
that allows for variable porosity throughout both time and space. When p = 1, there are no obstructions
to fluids flowing through that neighborhood, so any fluid in the region {z : p(z) = 1} can be represented
as a standard free surface fluid. However, when porosity is below some threshold we assume that the
fluid in the region will be under a porous flow regime and will have the same velocity as the bulk material

surrounding it.

4.3.2 Porosity Based Hodge Star

We model the porosity as the percentage of a volume that can be filled with fluid material. The amount
of available volume is the sum of available volume between open air and the volume available in porous
solid materials. We assume that all solid material in a region is porous with the same porosity p found

in a grid. That is, the solid volume in a region of space V is

(1 — p)volgs (V).

The total amount of fluid that can fill a volume is then defined by a scaling of the solid volume and the
remaining available space:

pvolys (V) + (vol(V') — volgs (V).

If we modify the Hodge Star operator to take into account this modified fluid volume we obtain a Hodge
Star that represents the porous medium. The previous assumption could be removed by keeping track
of the porosity of each constitutent object in a solid levelset and subtracting the solid volume filled by
the materials appropriately. By using the above formulae we can define modified versions of the fluid

Hodge Star operator, and apply the same pressure solving technique as before.

4.3.3 Capillary Forces

Our capillary forces are derived by the difference in potential between the wetted and dry phases of our
granular material, in our case water and air.
There are various models that assume different microstructure geometries [?] but we have chosen

to go with a simple 4/-»~1 relationship to map volume to surface area due to its simplicity. Most

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 27

graphics fluid methods assume that air is really a vacuum, and we will continue with that except for
when considering capillary potential, which depends on the existence of air. In particular we do not
consider wind blowing on the sand, leaving this topic to future work.

We chose to represent this capillary potential ® by setting the potential on air-surface cells to be
0 and on fluid-surface cells to be a function of the fluid density per cell, while taking into account the
surface area of porous material available. By using the previously mentioned approximation between
volume and surface area, and by taking into account that the fluid-solid interface cannot be more than

the minimum surface area of the two, we obtain

(n—1)
@ = {/min(Vol; (V), Vol.(V))

Though this is an extremely crude approximation of the potential between the two areas, it is not the
focus of this work. A correct model for the solid porous region would require analysis on a per-object
basis and would likely exceed our needs for our phenomenological purposes. A more careful scheme is

left for future work.

4.3.3.1 Maintaining Particle Density

A basic FLIP implementation has no mechanism for managing the density of fluid. This is very important
when the porosity of a region changes such as when a sponge is squeezed. Although FLIP generally
has satisfactory volume preservation properties, the particles in a FLIP simulation have a tendency to
clump together. Once they do, they rarely ever separate, which causes volume loss. [NGCL09| utilized
a lightweight algorithm to separate particles in each timestep in their UIC simulation, which we likewise
apply in our FLIP simulation. The scheme applies symmetric pair-wise position modifications in an
attempt to cheaply remove as much self-intersection as possible. Im a general flow of particles such a
scheme fail in when multiple particles converged, so these corrections would not work. However, because
fluid particles move in a relatively divergence-free fashion, the piecewise corrections become the sufficient
nudge required to prevent the vast majority of intersections. In fact, we applied this pairwise scheme on
a normal FLIP simulation and observed almost no particle self-intersection and significantly less volume
loss without any seemingly different phenomenology.

This method of particle separation does not require both sets of particles to be of the same size,
though one could imagine making the repulsion match the interacting particles’ radii. Because the fluid
simulation method described so far does not explicitly take into account the density change that occurs
when a parcel of fluid goes into a porous material, the density of fluid inside a porous region could be
equal to the density outside, which is not physically plausible. Because the porous material fills space,
the fluid must diffuse and fill more volume at a continuum level. In order to compensate for the required
density loss we change the radius of each fluid particle in order to give the particle a constant volume
while immersed in a porous medium. Specifically, given a particle with air-based radius r in a porous

medium of porosity p, we satisfy the equality

with the new radius being 7 = %r. In higher dimensions, of course, the radius would be scaled by %\/ﬁ.
We utilized spatial hashing in order to accelerate the performance of the pointwise comparisons. By

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 28

creating cell-center based storage grid that could hold vectors of grids we stored particles on these grids
and performed the pointwise comparisons between every particle in a single cell with all of the adjacent

cells.

4.4 Cohesive Granular Materials

The rheological behavior of wet granular materials is a generalization of the behavior of granular materials
that stick together. We therefore first discuss how to simulate a granular material that has cohesive
forces sticking the particles together. Although cohesion holds particles together at a per-particle-pair
isotrophic force, at a continuum level the effect of cohesion on a bulk of granular material results in both

isotropic and deviatoric strains.

4.4.1 Isotropic Strain

The theory behind how to deal with isotropic strain is quite simple: each particle induces an attractive
force to every other particle to which it is connected. In practice, we utilize the most rudimentary
method possible: we introduce attractive forces between two particles in order to introduce particle
level cohesion. We generate this particle-wise force during the collision detection step in order to take
advantage of the existing distance comparisons. We add cohesive forces to particles a of distance less
than 1.1 = radius through a radial cube spline function once collisions have been dealt with.

The simple, explicit scheme described above is too naive to support more delicate overhanging be-
haviors, but it appears to be sufficient for small scale clumping and for preventing the boundary of wet
material from eroding. The use of a more sophisticated method would be prohibitive at the scales in

which we are interested, but would definitely be interesting further work.

4.4.2 Deviatoric Strain

The deviatoric forces are a direct result of the complex structure generated by a network of cohesive
particles pulling on each other. This results in a force to resist shearing, which increases the amount
of shearing strain required to make a bulk yield. This is why the yield criterion utilizes cohesion as an

added scalar factor to the right hand side of the yield criterion:
5] < vV3ap +c.

4.4.2.1 Discretization

Since the deviatoric effects of cohesion are primarily an artifact of homogenization of a bulk of granular
material, we can only discretize it at a continuous level. We therefore only deal with these effects at the
continuum level of our representation.

The approach we take at the continuum level is through an extension of the original dry granular

material method of Narain et al., but with some further modifications to support the effects of cohesion.

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 29

With cohesion, the system of discrete formulation we obtain is

sTAss +bls = 0 (4.1)
(smax +¢) =5 > —(smax +c¢) (4.2)
(4.3)

where As and by are defined as they were before at and respectively.

As used by Narain et al., we solve this system of equations by using a customized implementation
of Modified Proportions with Reduced Gradient Projections, which we will discuss in more detail in the
technical details section in order to handle the above linear complimentary problem.

One artifact that appears is that any cell that has nonzero cohesion is connected in this linear system.
Cohesive cells with few particles act as if they are filled with some cohesive aether and prevent actual
particles from moving. Because of this issue some care must be taken to reduce the amount of cohesion
in order to prevent cohesive forces from being generated by cells with few particles. We choose to not

include cohesion in cells where the particle density is below some threshold that we manually tuned.

4.4.3 Using Levelset Hodge Star for UIC

Similar to the original paper on the Unilateral Incompessibility Condition [NGCL09| we switch from using
the Laplacian d”'d to using the weak Laplace-deRham operator d” % d to take into account the amount
of solid available in a region. In the original UIC discussion the population density is considered, but
we utilize our existing code for computing the Levelset Hodge Star to approximate the granular density

in a cell.

4.5 Wet Granular Materials

The final step is to merge our above methods for free surface fluid simulation with porous materials
and cohesive granular materials into a single simulation method for a coupled simulation of fluid and
granular materials.

As we have mentioned before, we create this coupling by changing the porosity of space in the fluid
simulation and by changing the cohesion of particles in the granular simulation. We do this through a
fairly simple connection at the continuum level and through a bit of care at the particle level.

Porosity is particularly easy to define; it is simply the fraction of volume, per unit volume, that is

free:
vol(V') — volsana(V)

vol(V)

p=

On the other hand, the cohesion forces introduced by the fluid into the sand simulation is something
we need to model. In reality computing the cohesion requires analysis on the aggregate behavior of
particles being held together with water without any consideration of contact geometry or material

properties. For simplicity, we utilize a simple linear function of the fluid volume fraction in a cell as well:

VOI(V) - VOlfluid(V)

¢= vol(V)

CHAPTER 4. OVERVIEW OF SIMULATION METHODS 30

4.5.1 Ordering Operations

There are two crucial components of each simulation method which require careful ordering of operations.
The first is that we need to pass the coupled quantities between the two simulations, and the second
is that particle advection needs to be performed with care so the fluid in a mass of granular material
moves with the granular material.

We chose to follow a simple approach for the passing of coupled quantities: we generate the porosity
and cohesion grids at the very beginning of each timestep. This choice seems reasonable to us because
the various coupled quantities only depend on particle densities, and those densities only change during
advection, which is at the end of each timestep. Thus throughout the evaluation of a timestep, until
the advection at the end, the coupled quantities are consistent with the simulations from which they are

derived.

4.5.2 Advecting quantities

For advection we look at the momentum stored in each of the velocity grids to get a velocity field for
the whole system. In general, we maintain separate velocity grids for each simulation, but for only the
advection part of FLIP/PIC we pull velocities from this merged grid:

_ M fluidW fluid + MsandUsand
M fluid + Msand

For regions where there is only granular material or only fluid, the velocity maintains the same value as

the respective velocity field, and in merged regions we obtain a unified velocity field.

4.6 Summary

We began this chapter by defining the Levelset Hodge Star, which allowed us to reinterpret the pressure
solve from of Batty et al.[BBB07] and the first order ghost fluid method [EFFMO02| in the language of
Discrete Exterior Calculus. This reformulation allowed us to then generalize the Levelset Hodge Star to
support porosity, which led to a porosity-aware pressure solve. We then developed a model for capillary
pressure and a method for obtaining reasonable particle densities in porous materials. With those three
components we were able to develop a method for simulating fluid flow in porous materials.

We then developed local and global modifications to the granular simulation method of Narain et
al. [NGLI0] to support cohesion. Finally, we combined the two simulation methods to create a technique

for simulating the interactions between a fluid and a granular material.

Chapter 5

Technical Details

5.1 Introduction

In our opinion the most challenging components of the techniques we discuss in this thesis are the
numerical solvers required for solving systems efficiently. The systems we solve all utilize banded,
symmetric, positive semidefinite problems. We know that to be true because all of our matrices are
generated by AT A or AT DA where D is a diagonal matrix, where A is a sparse banded matrix. Therefore
we have a perfect setup for using Krylov subspace methods - namely the conjugate gradient method.
A great reference for both solving linear systems and for doing conjugate gradient is Robert Bridson’s
SIGGRAPH 2007 notes [BMFEQ7] so we will not go over the details here. In particular, it discusses how
to use MICO preconditioned conjugate gradient which is one of the best choices for solving linear systems
composed of the types of matrices we encounter.

For our systems that are quadratic programming or linear complementary problems, however, stan-
dard conjugate gradient doesn’t directly work because of the boundary constraints. Therefore we use
a form of conjugate gradient that can handle linear inequality constraints, namely MPRGP (Modi-
fied Proportioning with Reduced Gradient Projections). If the reader needs a refresher on quadratic
programming or linear complementary problems please refer to Appendix [C]

It’s worth noticing that in the cases where our systems aren’t positive definite we can use the minimal-
norm solutions to the systems of equations for two reasons. First, because we only use the derivatives
of our solutions, adding a constant to the coefficients doesn’t change the results.

Second, because our levelset Hodge star is applied on the solutions, extraneous information from
entries represnting data outside of the levelset are zerod out and ignored in the min-norm solution.
Because MPRGP is a fairly recent algorithm [DS05] and we need to modify it, we will discuss it in detail

for completeness.

5.2 Modified MPRGP Quadratic Programming Solver

Like [NGCL09] we utilize a version of MPRGP with modifications for handling our constraint manifolds.
For satisfying the Unilateral Incompressibility Constraint we can utilize the algorithm without modifi-
cations, because the base solver requires a constraint manifold of the form {z = (x;)|z € R",z; = ¢;}.

However, for solving friction, the constraint manifold is {z = (z;)|z € R", |z;| < ¢;}. We will now provide

31

CHAPTER 5. TECHNICAL DETAILS 32

some background knowledge for solving these sorts of systems.

5.2.1 Convergence Criterion

Having a good stop criterion for LCP and mLCP problems can be tricky because of the complimentary
condition. For LCP residuals are also not useful because the constraints will usually force the solution
to be far away from where the residual goes to 0. A particularly nice and easy error metric for a normal
LCP system is given by
E = Z (|ziw;| — min(z;,0) — min(w;, 0))
i

where our current solution z and residual w are punished for negative values and also for being far from
complimentary.

For mLCP we have a more sophisticated stop condition because we need to confirm that the residuals

ok, p’g, p¥ go to 0 where they are defined by

oF = |Au* + CvF + 4
pr = min{v;, (CTu* + Bvk —w® +b);}
3

p¥ = max{0, —(CTu* + Bv* — w" 4 b);}

This leads to an error function

K K K
Pa pb Pe
FE = max (>
L+ [a] T+ [b] 1+ [b]

We will use this criterion as our stopping criterion in the algorithm defined below.

5.2.2 Projection Methods

One common technique for handling the nonlinearity of LCP problems, which is how MPRGP operates,
is to explore specific submanifolds of the entire constraint manifold. The usual restriction is that, given
that the constraint manifold is a set of axis-aligned planes, to only modify a subset of the variables at a

time. The set of variables that are currently active is called the active set.

5.2.3 Notation

Before we begin, with the details of the algorithm, we will first introduce some notation that will be
used significantly in the algorithm. The manifold solutions that satisfies our constraints is defined as 2.

Let g be the current descent direction and let 8 and ¢ be vector functions defined as follows:

oi(x) = gi(x)Vie F(x) oi(x) = OVi e A(x)
Bi(x) = 0Vi € F(z) Bi(x) = min{g;, 0}Vi € A(x).

where

e ¢.the free gradient operator, describes the proportion of g that is not in a constrained dimension.

CHAPTER 5. TECHNICAL DETAILS 33

e (3, the chopped gradient operator, describes the proportion of g that goes in a constrained dimen-

sion, though modified as to not break the constraint.

Together they form v(x) = ¢(z) + S(z), which is 0 precisely when the KKT conditions are met.

5.2.4 Steps

The algorithm works by picking one of three step choices each iteration: a conjugate gradient step, an
expansion step, or a proportioning step. The conjugate gradient step is precisely the standard conjugate
gradient step, while the other two steps are corrections to take into account the constraints. The choice
of step type in a given iteration is made by determining the relative magnitude of the current descent
direction that breaks through € through.

The simpler of the two correctional steps is the expansion step. It’s the reaction to when conjugate
gradient is about to break a constraint: it moves the current solution in the same direction conjugate
gradient would normlly go, but stops right at the constraint boundary. It’s derived quite simply:

If we let P be a projection operator back onto 2 and & some minimal step size parameter set in the

interval (0, |M~1|] we set the expansion step to be
2F L = Po(af — ag(ah)).

This projection operator can be made more explicit by defining a reduced free gradient operator ¢ which

will set 2%+ to activate the constraint in the step. It’s defined by:
d(x) = min{(z; — li)/a, ¢:}
which, because z¥ € Q, allows us to write the projection operator in terms of
gt = Po(a® —ag(x)) = 2" — a(e(a®) + B(a)).

The logic for whether to use the proportioning step is checked before the conjugate gradient step
length and is used to push away from useless active constraints as much as possible . This is done with
the inequality

[6(2)]* < T?¢(2)" ¢ ()

with a parameter I' in (0, 1] to determine the proportion of ¢ the gradient is allowed to face into Q. If
the proportioning step is chosen, it does one round of conjugate gradient using 3 as the gradient for that

step.

5.2.5 Performance

Conjugate gradient, as a Krylov subspace method, depends on iterating through a sequence of matrix
multiplies off of an initial vector v {A*v}. This sequence of matrix products conflicts with projection
operators because modifying only the active set destroys information of the subspace explored by the
multiplication, thus ruining the convergence properties of the method.

The way that MPRGP deals with that fundamental issue with conjugate gradient is that it only uses

a projection when the algorithm things that there will be sufficient gains by doing so. In our experience

CHAPTER 5. TECHNICAL DETAILS

Algorithm 1 Modified Proportioning witih Reduced Gradient Projections

Set r — Az — b,p — ¢(x)
while v(z) > e do
if 5(2)] < T24(2)7¢(x) then
g — 1p/p" Ap
af — max{a:z —ape Q}
if aey < ay then
Conjugate Gradient Step
X — T — OegP
T — ¢(x) — acgAp
p < ¢(z)
else
Expansion Step
X — X —app

r—1r—ofAp
x «— Po(x — ag(x))
r— Az —b
p < ¢(z)

end if

else
Proportioning Step
d — p(x)

Qeg — rTd/dT Ad
T — T — Opqd
71— QegAd
p < ¢(z)
end if
end while

CHAPTER 5. TECHNICAL DETAILS 35

this doesn’t happen very frequently, mostly as the algorithm nears convergence on a solution. That sort
of experimental evidence led us to try applying MIC(0) preconditioning on the conjugate gradient steps,

which was effective.

Chapter 6

Results

In this section we will briefly describe our implementation and then continue to discuss some visual

results of our algorithm.

6.1 Implementation Details

We implemented our method using C++ using Eigen as our matrix and vector storage mechanisms. We
utilized C++ templates rather heavily in order to define the various grid types by the dimension of the
forms that they held as well as to define and store the various differential operators. In general we found
that template metaprogramming significantly improved the debugging experience because compilation
errors would report bugs expediently rather than at runtime. This was especially convenient for storing
quantities like the offsets used between different grids for their origins and dimensions.

We implemented our own linear and quadratic solver libraries, though our MICO cholesky factorizer
was a translated version of Robert Bridson’s code around Eigen’s sparse matrix implementation. For

generating scenes we also utilized Bridson’s fast poisson-disk sampling scheme [Bri07].

6.2 Porous Results

Our method for simulating porous fluid can be seen in the sequence of images Figure which displays
several different phenomena related to porous flow. On the top left there is a circular fluid source, which
we will call the emitter, that emits fluid to the right. To the right of the fluid source there is a porous
wall that acts as a barrier that limits the flow of fluid from the left void to the void. Fluid still, however,
does seep from the porous wall as the wall is saturated with fluid particles (Figure .

The seeping action is particularly visible at the point where the emitter shoots water into the wall.
Some of the seepage is caused by the fluid pushing itself into the porous body, as can be seen in
Figure the velocity field inside the porous region indicates that the fluid is trying to push through
the porous region. This phenomenon is caused by the porous pressure that we compute. The computed
pressure makes penetration into the porous medium more difficult for the fluid than flowing back into
the voids, so although some fluid is being pushed into the porous areas, splashing occurs and fluid flows
parallel to the porous body. This splashing behavior is already visible in Figure as the fluid begins
to rush to the left after hitting the wall in a clockwise fashion even though the area is not yet saturated.

36

CHAPTER 6. RESULTS 37

(a) (b) (c)

Figure 6.1: Fluid being spilled into the junction between a porous block and a porous wall. The redness
of the background grid implies the porosity, the white boundary defines the fluid boundary, and the
turquoise lines label the velocity field

Furthermore, in Figure both voids have vortices that avoid the porous region because of how the
pressure solve restricts the fluid from entering that region.

The effectiveness of using pairwise particle separation in standard FLIP fluid simulations can be seen
in Figure [6.2] The fluid particles have very little self-interesction except at the boundary, which is a
difficult region to prevent intersection because the particles have less movement options. Intersecting
particles on straight boundaries can only move along those boundaries, which means that there is only
a one-dimensional axis for which these particles can move. These sorts of density-based issues are much
more noticeable in the 2D case than in the 3D case, where in general a larger proportion of particles will
have more than one axis of available movement. Our method of modifying the particle radii according to
the region’s porosity is also visible in Figure the particles in the porous areas have an appropriately

lower density than in the voids.

6.2.1 2D Rendering Artifacts

Figure [6.2] illuminates two types of rendering artifacts that cause issues in our 2D boundary rendering
that are easily fixed. These artifacts are the duals of one another: sometimes particles disappear and
sometimes voids appear in fluid bodies. In order to avoid clutter when rendering sand particles we
utilize a boundary based rendering approach. It is created by running the marching squares algorithm
on the levelset we use for computing the Levelset Hodge Star. Because the grid is purposely coarser than
the particles, sometimes the particles travel in paths that make them invisible to the marching sqaures
algorithm. The algorithm depends on sign flips on edges to determine vertices and edges to render, so
because there are no sign flips nothing is rendered. The inverse issue is that sometimes there are not
enough particles in a sampling location, which then causes a void to be rendered although no effects like
cavitation are being simulated.

The solution to these artifacts would be to increase the resolution of the levelset generated for

CHAPTER 6. RESULTS

Figure 6.2: Figure of fluid particles rendered in the same simulation as Figure

38

CHAPTER 6. RESULTS 39

Figure 6.3: Water and sand being emitted in near proximity

rendering, which is a trivial operation to do but we did not think it would be necessary to prove the

effectiveness of our method for the purposes of this thesis.

6.3 Combined Fluid and Granular Results

Our method successfully increases the steepness of sand piles and increases sand’s resistance to movement.
We focus on the steepness of piles generated because that is a useful characteristic for determining
the effectiveness of cohesion. As the cohesion of sand particles increases, sand becomes capable of
achieving steeper angles because particles hold each other together. It’s this effect that makes the sort
of overhanging behavior required to make sandcastles possible. In fact we are capable of producing a
small amount of overhanging behavior.

Figure [6.3| shows a scene where sand dropped from the center of a scene and water is dropped to
its left. The cohesive effects of the water are clearly visible by Figure as the sand that dropped
forms a significantly more stable pile on the left side than on the right side. Because we wanted to
generate higher piles we placed our emitters fairly high up, which caused impulses onto the sand pile.
These impulses reduced the steepness of the piles generated. Furthermore, we had difficulty creating
a constant stream of sand because particles coming out of the emitter tended to interact with other
particles, causing the particles to come out in a spray.

In order to see the effects of sand falling into an existing cohesive region, we dropped sand into
an existing pool of water (see Figure . In this simulation we were able to see that for very light,
completely submerged piles, we were able to obtain very steep hills. The initial impact passed the
momentum accumulated by the falling sand particles to shoot fluid particles into the air as can be seen
in Figure [6.4el Once the sand had risen above the water it once again formed a shallow pile and the
submerged portion obtained a more shallow slope as well.

After we had run the simulation behind Figure[6.4]for a while tried turning back on the water emitter,
which resulted in what we show in Figure[6.5] The configuration became reminescent of the porous scene
for Figure [6.1] as the sand began partitioning the water into two parts. Some of the momentum from the
fluid seemed to pass into the sand and the pile began leaning away from the water and some overhanging

behavior emerged.

CHAPTER 6.

RESuULTS

40

Figure 6.4: Sand being dropped into water.

Figure 6.5: Water and sand being emitted in near proximity

Chapter 7

Concluding Remarks

Before we conclude this document, we shall first discuss some potential areas of future research for the

methods we have described in this document.

7.1 Future Work

The most blatant omission of this work is that it doesn’t have a working 3D counterpart, which we will
look into in the near future. Beyond that there are still several issues with the method that need to
be taken care. Many of the modeling assumptions in this paper were rudimentary and linear operators
were chosen instead of measured quantities that correspond to actual material properties. Some of these
modeling assumptions include the effect of wetness on cohesion could be done without changing the
performance of the system because they would simply be changes to different grids.

Our method is not necessarily limited to only ball-like shapes and it would be interesting to see
whether the simulation could be extended to more complicated or even heterogeneous particle shapes.

That sort of exploration, however, would require some improvement on the stability of the system.

7.1.1 Stability Issues

We experienced a significant amount of stability issues with our sand simulation method. This was
because particles bouncing into each other would significantly alter the velocity field in an area, which
caused widespread vibrations that didn’t stabilize. Using an alternative medium for connecting the
particles to the grid like PIC instead of FLIP might have fixed some of those issues, but it would have
made the dry sand lump together a bit more than desired. However, PIC would have been an excellent
choice for advecting sand that was cohesive enough. Since the bulk of this work was done the material
point method has gained some popularity in graphics [SSC*™13| and would be appropriate for replacing

the current granular simulation method.

7.2 Conclusion

In this work we have presented several novel contributions to the area of physically-based simulation in
computer graphics. In order to achieve this result we have delved into the theory behind existing fluid

simulation results for by reinterpreting their operators in terms of Discrete Exterior Calculus. Using

41

CHAPTER 7. CONCLUDING REMARKS 42

this reinterpretation we have extended those results to support porous fluid flow without much in the
algorithms. We have also extended a dry granular material technique to support cohesion between par-
ticles at multiple scales. Finally we have prescribed a method for the simulation of interactions between
fluid and granular media by utilizing the augmented fluid and granular media simulation methods we
created.

We have only touched the begining of this area, as there are many ways for which this work could
be improved. In particular stability of the granular simulation still is an issue, as is the fact that we
must define a cutoff for which cells it is reasonable to label as cohesive. Furthermore the phenomology
of interacting continuum materials like sand and air to create sand dunes is a poorly explored area. We
hope to see further work published on novel physical phenomena, from both ourselves and others in the

future.

Appendix A

Calculus of Differential Forms

Differential forms provide a graded algebra of the family of differential operators. The different grades
of this algebra provide represent different types of fields suchas scalar fields, vector fields, tensor fields,
fluxes, and metrics through a unified representation. Through operators like the Hodge star and exterior
derivative, which operate on differential forms, we can reproduce many of the standard operators from
vector calculus.

We will begin with defining differential forms in a familiar context before we provide a more rigorous
definition. After that we will define some standard operators on differential forms and finally discuss

the tools necessary to do integration, which is necessary for the discrete setting.

A.1 Ordinary Integration

Let us begin this discussion by first thinking about the components of a standard integral. From a

traditional standpoint we are integrating over a subset of R" like [0, 1]" and will see a term like
f flxy, ... xp)dxrdas - - - day,
[O’l]n

where the dx; are symbolic quantities that direct us of the axes for which we must integrate. For a more
general manifold 2 this sort of coordinate-based representation might not feasable. What we want is a
coordinate-free representation. One such representation is called differential forms. In this context we

consider the dx; as differential one-forms.

A.2 Tangent Bundles on Manifolds

Before we dig into the details of what differential forms are, let us first remember some elementary
details about manifolds and their tangent bundles. We do this because we are now trying to integrate on
mamnifolds which are a a sort of generalization of Euclidean space: a manifold is a collection of patches
that are locally Euclidian, so when we need to do local analysis we can transport ourselves to a Euclidian
space. We need the tangent bundle because that’s where the things that we want to integrate live.
Consider what a vector v is in an n-dimensional space like R", disregarding any manifold business

for now. It’s not a quantity in the space, but rather a quantity of a particular point. v sticks out from

43

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 44

a point p in a direction d, which means that it is really a equivalent to a tuple (p,d). Returning to
manifolds, call the space of point/direction tuples the tangent bundle, or TM for a manifold M. For
each point p € M we have a linear space of tangent vectors denoted T,M. A vector at a point p is an
element of the tangent space 7, M. The space of vector fields over M is the space of sections over T'M,
that is, the family of functions V' : M — T'M such that for any x € M,V (x) € T,,M.

As we have said earlier, manifolds are objects that are locally Euclidean. That means that we can
pick one coordinate chart ¢ : R™ — M for a neighborhood on the manifold M to correspond between that
neighborhood of M and a normal Euclidean space. For some orthogonal basis {e'};—1..,, we can obtain
a basis for vectors in that neighborhood {%}j=1'“" by evaluating the tangent map D¢ : TR™ — TM,

which is defined by
9

— OxJ
J

Do, () (z)v?

d
= (x + tv)|t=0 =

at every point using the basis vectors.

The definition of a manifold provides a gluing map between coordinate charts taht allows for us to

.0
X, = X ax]
J

This formulation of a vector on a manifold has a secondary notion that any vector is also a differential

write any vector X, € T, M as

operator that we can use on functions.

In a Fuclidean space the tangent bundle almost leads us to the space of affine transformations
which discerns points and directions. The direction doesn’t need a designated point because there’s
an implicit translation of the vector at the origin to every other point in space. On a manifold that
implicit translation operator isn’t available and we have to build it using an affine connection like the
Levi-Cevita connection to obtain parallel transport, which is a sort of translation of vectors at one point
to vectors at another. With the connection we can compare vectors in T, M with vectors in T M, so in
a Euclidian space we can endow the structure of an affine space by applying a Levi-Cevita connection

and quotienting the the space T'M by vectors that can be parallel transported to one another.

A.3 Differential Forms

Now consider the space of linear functionals that take elements from 7,M and map them to R. This
is called the dual space of T),M and is usually denoted by T)¥M and called the co-tangent space. The
collection of all co-tangent spaces is the co-tangent bundle T* M.

The natural pairing between vectors v and dual vectors ¢ is denoted by

(v, D).

The space of differential zero-forms is on a manifold is simply the space of scalar functions f on the
manifold. When one takes the exterior differential operator d on a f one obtains a dual vector field.
That is, for each point p e M,z € T, M, dfy(p) = D fp(z) evaluates to a scalar value € R. This is precisely
a section of the co-tangent bundle, and so differential one-forms are identified with T*M. Just like we
had the basis {%} for vectors, we can obtain a basis for the dual vectors by identifying the vector dx;

with the basis vector such that <9L;17 d;y = d;; where d;; is the Kronecker delta function. This produces

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 45

the family of differential one-forms
QM) ={w= Ewid:ﬂi}.
We can then read the differentiation of a zero-form f as

df = > & da;.

By using the wedge product we can extend the one-forms dx1,dxs - - - dz,, to obtain differential two-

forms

QM) = {w = ZZwijdxi A dxj}.

By continuing this process one can obtain differential forms all the way up to Q" (M), which is a one
dimensional space comprised of scalar multiples of the determinant.

It’s worth noting that dimQ*(M) = dimQ"~*(M) .

Intuitively, differential forms correspond to some common quantities. Though we won’t elucidate
the explanations too much quite yet, here are some some of the common quantities associated with the

forms in R®

QOR3) = Scalar functions
QYR3) < Vector functions or velocity fields
2R3 < Vector functions or Flux
PR3 = Scalar functions or Volume

A.4 Differentiating Differential Forms

The exterior derivative d allows for one to jump from differential k-forms to differential k+1-forms
through
d(fdzy A dxo -+ Adry) =df Adxy Adxg--- A dzy.

For a finite dimensional space one can draw a diagram
Qo —ay N —ay Q2 —ay D

which is usually called the deRham complex, which is a graded algebra. In the above diagram we have
used d; to denote the particular exterior derivatives from Q; — ;1 and so far we are only able to
differentiate to the right.

The exterior derivative corresponds to some common quantities in when M is R3:

Vi = dof
Vxu = diu
V-u = dyu

where f is a scalar function (identified with a 0-form) and u is a vector field (identified with a 1-form

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 46

and 2-form at the appropriate times).

A.5 The Hodge Star

As we have just implicitly mentioned, 1-forms and 2-forms can both correspond to vector fields, which
is a particular feature of being in R3. As we listed even earlier, there is a connection between 0-forms

and 3-forms in R? as well, all thanks to the Hodge star, which has the prototype
*, : QF (M) — Q"7F(M).

The Hodge star is a bijective map that takes advantage of duality between differential forms of degree
k and n — k in an n dimensional manifold. For a k-form w we define *w as the unique n — k form such
that

WA *w=dry Adxs--- A dx, = det

where det is the volume form defined by our metric. This operator defines an inner product for differential

forms defined by
{a, By = *(a A *[3)

which is easily confirmed to be an inner product (linearity by all operators being linear, positive-
definiteness by o A *a = 1).

This pairing is bijective, for as we noted earlier the space of k-forms and (n-k)-forms are the same
size, (,",)-

With the Hodge star operator we can now differentiate to the left as well through the following

commutative diagram:

Ok+1
Qk} ES—————y Qk+1

dy,
*kJ l*kﬂ
6n—k

Oy (k1)

dnfkfl
where the bijectivity of the Hodge star allows for us to define the co-differential operator

1
dpt1 = *p dn—g—1*k+1 = *n—k@n_k—1 *k+1 -

With the codifferential operator we can define more interesting operators Laplace-de Rham operator,
which is defined by &d + db.

A.6 Closed and Exact Forms

Because we now have a few differential operators we can define what closed, exact, co-closed, and co-
exact forms are. A k-form « is closed if da = 0 and co-closed if dax = 0. « is exact if & = df for some
(k — 1)-form 8 and co-exact if o = 8¢ for some (k + 1)-form €.

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 47

A key fact to note is that every exact form is closed and every co-exact form is co-closed by the fact
that dd = 0 and 66 = 0.

A.6.1 Hodge-Helmholtz Decomposition

A useful tool from this calculus is the Hodge-Helmholtz decomposition, which decomposes any k-form

as the sum of three forms: an exact form, a co-exact form, and a harmonic form.
oa=dp+on+7y

This decomposition is unique and guaranteed to exist for any C?

If we assume that our velocity field is a C? 1-form u this decomposition gives us the following:
u=dp+ dw + 7.

where p is a O-form representing pressure, w is a 2-form representing vorticity, and =y, which is a
harmonic form such that Ay = 0. The flows represented by harmonic forms are the space of Laminar

flows and have little relevance to the systems we will be looking at, so we will neglect it.

A.7 Integrating Differential Forms

Before we can uncover how to integrate we need to discuss what we are integrating over. Rather than
always integrating over the whole manifold, we will integrate over quantities called chains. It’s through

the discretization of chains into chain complexes that we obtain our numerical methods.

A.7.1 Cube Complexes

Before we define what chains are, lets first talk about cubes and cube complexes. Though the usual
discussion on this topic utilizes simplices and simplicial complexes, we choose to use cube complexes
because we use cube meshes in our discretization, not simplicial meshes. In this context a k-cube on
a manifold M is a chart from [0,1] — M, which we will usually identify with its image on M. When
M = R3? a point is a 0-cube, a line is a 1-cube, a square is a 2-cube, etc.

A k-cube complex is a collection of cubes S such that the following two statements are true:
e For any two cubes a, 5 € S, a n 3 is a cube in S of dimension lower than those of a and S.
e For any cube a € §, a = 8 for some k-cube S € S.

The discretization I chose to use was a staggered grid as initially described by [?]. The essense of this
grid format is that rather than store values on only the vertices of a grid or on the centers, we store
quantities on the vertices, cells, and edges. This storage of a n dimensional staggered grid is generated
by a highly regular cube complex spanning one larger cube [0, 1]". If we set the number of ticks per axis
to be INV;, one i per axis, we get that each n-cube is a translation of X [0, Az;], the product of n intervals
of width Ax; = N% We will only talk about uniform cubes where all N; = N for some N. That makes

each top-level cube a translation of [0, £]".

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 48

A.7.2 Chains

A k-chain is a finite sum of k-cubes with integral coefficients. That means that if we have a couple of
k-cubes ¢y, co, - ,c; € S we can generate a k-chain by attaching coefficients a1, aqo,--- ,a; € Z to create
a k-chain

o = a1c1 + asco + -+ - + a;cy.

We will identify individual k-cubes ¢ with the unit k-chain 1ec.
The boundary of each k-cube to its 2k (k-1)-cubes on its boundary, so we define the boundary
operator 0 to be the chain generated by the following:

1 2 2k
Ocp = Cpq + g+ + gy

where ¢y, is a k-cube and the ¢}, are (k-1)-cubes.

so from any k-chain we can generate a (k-1)-chain through
Op—1 = 00} = a10cy + as0cy + - - - + a;0¢y.

This boundary operator defines yet another graded algebra, the chain complex, that goes the opposite
way of the deRham complex.

CO e Cn—l o s Cn—2 —a, cr
where C! S is the set of l-cubes in a k-cube complex.

A.7.2.1 Laplace-de Rham Operator

In the following discussion we will depend heavily on the Laplace-de Rham operator, which is a gen-
eralization of standard Laplacian operator to work for differential forms. We’ll refer to the Laplace-de

Rham as the Laplacian where the situation is unambiguous. It is defined as
Lu = (dé + dd)u
where v is a k-form. Because for 0-forms w and n-forms v we have

dw = 0
dy = 0

In our case we only need the Laplacian of a 0-form, so du = 0. This allows us to simplify the Laplacian

operators we’ll use as

Lw = bddu
Ly = ddu

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 49

It’s fairly clear that L is self adjoint according to the Riemannian metric v by the relationship between
d and 6 and that the Hodge star is self adjoint:

{(dd + dd)u, vy, = {ddu,v), + (ddu,v),
= (bu,dv), + {du, dv),
= (u,ddv) + {u, ddv),
(u, (dd + dd)v).,

We can see the special n-form and 0-form cases by simply following the left or right sides of the addition
above.

In numerical methods solving the Poisson problem (Au = p) quite a few methods depend on having
a matrix that is self adjoint with respect to the standard metric. In the special cases, however, the
Laplace-de Rham matrix is clearly not diagonal with respect to the standard metric:
)T

(dxd"x) = (d8)" =8Td = %d % d”

We therefore call the above the strong Laplace-de Rham operator (or strong Laplacian) and call the

following diagonalization of the operator the weak Laplace-de Rham operator (or weak Laplacian):
L=d" %d

which is clearly self adjoint by the self adjoint-ness of the Hodge star.

A.7.3 Integration

Now that we have a defined differential forms and chains we can finally discuss how one integrates on
cube complexes. Integration is done through a pairing between k-chains and differential forms, most
easily explained through the constitutive k-cubtes. By abusing notation slightly and referring to k-cubes

initially as sets and then as maps from [0, 1]¥ — M we obtain that
{w,o) = J w= f w(o(x))J(z)dx
o [0,1]*

where o € C*,w e QF, and J(z) = det(Do(z)) is the Jacobian of o evaluated at .
Under this pairing Stokes theorem becomes the statement that the exterior derivative and boundary

operators are each others adjoints:

dez(dw,a>=<w,&a>=£aw.

A.8 Discrete Calculus on Differential Forms

In the previous section we discussed differential forms, but haven’t answered why this is relevant to our
problem of numerical simulation. The primary reason for all of this is that we really only have two

operators to compute in the above system, so by defining discrete analogues to those two operators on

APPENDIX A. CALCULUS OF DIFFERENTIAL FORMS 50

a discrete space should be sufficient. The main question on how to define those two operators is the
same as in any problem: where do we store the discrete samples to approximate our space. We choose
to follow the practice of DEC (Discrete Exterior Calculus) [HNCO§| which is to store objects where they
integrally make sense. By that we mean that a k-form is integrated over a k-dimensional manifold so
we store k-forms by their evaluated values on k-dimensional manifolds. For instance, if we were using
a simplicial complex (say a triangular mesh or a tetrahedreal mesh) 0-forms are stored on points and

2-forms are stored on trianges.

A.8.1 Exterior Derivative and Boundary Operators

This discretization makes generating the exterior derivative rather simple: assume we have k-polyhedron
MPF and a differential form o stored as integrated quantities on the faces M*, Mikf1 the integrated of
do over M*. That is, we have some integrated values of o for each face M*~! discrete values stored on
the faces 6; defined by

and by applying Stoke’s theorem we have

(25=de
Mk:

= ngnif o
7 Mk‘fl

i

= Z sgn,;0;.
i

where sgn, denotes the sign of face Mi’“*1 with respect to MF: 41 if they share orientation and —1 if
not.

This leads to a simple definition of the exterior derivative of a complex of polyhedra: the discrete
exterior derivative of every polyhedron is the signed sum of its boundary elements depending on ori-
entation. This is the transpose of the signed boundary operator, which is a natural result from the
adjointness of the exterior derivative and the boundary, and so this operator is generally very easy to
compute.

The other main component to consider is how to define the Hodge Star in the discrete case.

A.8.2 Hodge Star
In our case we are using a cube complex which means that we are storing quantities on k-cubes. This
turns out to be identical to what is commonly used as staggered grid methods, which we discuss in the
main body of this thesis.

A.9 Pressure Projection

TODO: Maybe i’ll move pressure projection differential forms stuff to here?

Appendix B

Discrete Differential Forms on

Cubical Complexes

Appendix [A] provides the preliminaries of doing exterior calculus on cubical complexes, and here we will
discuss the explicit construction of those operators.

We will only consider a particular family of cubical complexes: those that only have vertices from Z3
and are axis-aligned. This simplification is what will allow us to tie our work with standard staggered-
grid methods. Because of our use of a regular cubical grid, there are several convenient simplifications
that can be made in implementation. Some of these will be placed in this section while others will be

placed in Appendix [B]

B.1 Level-set based Hodge Star

Let us begin with the derivations of the basic exerior calculus operators on cubical complexes, which
will be used in our discussion of a levelset hodge-star: the Boundary operator and the Hodge star.
Because of the structure of our chosen family of cubical complexes there is a very convenient indexing
scheme that we will use for the rest of this article: If in R™ we let a (4,4, k) € Z* denote the index of
the unit n-cube that is centered at that location, we can uniquely index every k-cube by the location
of center. The set of centers is isomorphic to (Z/2)". In fact the centers of all of the k-cubes can be
represented by the subset of (Z/2)" such that k of the numbers in the n-tuple are integral (i.e (2,3,4.5)

represents a 2-form and (0, 0, 0) represents a 3-form). From herein we will denote a n-cube by its index.

B.1.1 Connection to Staggered Grid Methods

In a staggered grid configuration one usually maintains a couple of grid types: one for vertices, one for
cells, and n grids for fluxes along each coordinate axis.

The cell grid is usually used to represent pressure, which is a volumetric quantity and therefore
representable as a n-form. The flux grids are used to represent one coordinate of the velocity at a time
and are exactly where our n — 1 forms are placed — and a common interpretation of n — 1 forms is flux.

The forms of lower dimension are usually not used.

o1

APPENDIX B. DISCRETE DIFFERENTIAL FORMS ON CuBICAL COMPLEXES 52

B.1.2 Boundary Operator

Because of the regularity of our cubical complexes (the vertices form a lattice), Each n-cube is surrounded
by 2#n edges, two per coordinate axis. Per axis, one of the boundary n—1 cubes has a lower index in the
grid and one has a higher index in that chosen axis. We choose to give the lower index a different sign
and the higher index the same sign. For a cube (i, j, k) this makes the relevant entries in the boundary

map the following:

Ok (i-3gk) = —1
Oagk)(i+dgk) = 1
Ok (ig—td) = 1
OignGg+sey = 1
Ogm k-3 = —1
Ok (igh+d) = 1

In implementation this is usually performed on a 3-dimensional array of cubes forming a filled rect-
angular prism. If we set the height, width, and depth of this prism to by M, N, O respectively we obtain
a boundary operator matrix with dimensions NMO by (N + 1)MO + N(M + 1)O + NM(O + 1).

B.1.3 Hodge Star

First let us go over how the Hodge Star on uniform grids is the same as standard finite difference
operators.

B.1.3.1 Hodge Star on Uniform Grids

On a staggered grid with uniform spacing the diagonal Hodge Star turns out to be scalar. This begins
with remembering that the diagonal Hodge Star is defined as the ratio of the volumes of the cube and

then noting that the volume of a k-cube is Az¥, so the diagonal Hodge Star on is

*k 3 Axn—k
- Agk
1
no_
* - Axn
Al Azt

Axn—1 '

APPENDIX B. DISCRETE DIFFERENTIAL FORMS ON CuBICAL COMPLEXES 53

B.1.3.2 Differential and Codifferential Operator
Now that we have the boundary and the differential operator are adjoint, we see that the discrete
representation of the differential operator is

d= 0%

Then if we remind ourselves that the codifferential operator is defined by 8™ = (*”_1)71(0!")**" we
quickly see that
Azt 1 Azt 1

n n— -1 n n m m 1 m
SR IRl v Gl vo iy v v vl

so the codifferential operator is simply the boundary operator scaled by ﬁ.

B.1.3.3 Constructing the Laplace-deRham

For n-forms the Laplace-deRham operator is the standard finite difference Laplacian, with a 5-point
stencil in 2 dimensions and 7-point stencil in 3 dimensions comprising of —ﬁ off diagonal bands and
positive entries to main diagonal to make each row sum zero. To see this consider the following:

First the explicit representation of Laplace-deRham is

dd Ldaﬂ: !

T
T Ag? AmQa 0.

To compute the value for the row representing o = (4, j, k) and column representing & = (2, j, k) recall
from linear algebra that the entry for o, & is 0, - 0s,. where 0, . is vector of the a column in ¢. With
that information we can directly compute the entries of the matrix from three cases:
s a=0a
Since all entries line up and all of the entries are +1 we get 2 *n nonzero entries: one for each face
on the boundary of the cube. Therefore (dd), ; = x=z2n

e « shares a face with &

Here the only shared nonzero entries are those representing the shared face. This face, by con-
struction, is the upper face of one and the lower face of another, so the signs of the only nonzero
entries are different. Therefore (d8),, 5 = — s

e « shares no faces with .

Since no nonzero entries coincide the dot product must result in 0.

Appendix C

Numerical Optimization

In order to implement the methods described above it was necessary to implement and utilize a Quadratic
Programming solver in two separate locations, with one of the systems actually being a Linear Com-
plementary Problem. Because of the structure of systems being solved, it seemed prudent to use one
particular solver called Modified Proportions with Reduced Gradient Projections (MPRGP) and there
was need to modify the solver to make it usable in our systems. Some of these modifications were utilized
in [NGCLOQ9] but not detailed in the paper, but we will discuss them fully in the technical details section.
Therefore, we thought it prudent to provide some introduction to LCP and QP problems and solvers.
First we will discuss some basic notations of constrained optimization. We will then overview the
formulations of LCP/QP problems. Finally, we will discuss the duality between LCP and QP problems,

which allows for us to use one solver for two types of systems.

C.0.4 Constrained Optimization

Constrained optimization is the task of minimizing some function f : R™ +— R under equality and
inequality constraints. Let us notate these constraints all as ¢; where i € £ are equality constraints and
i € T are inequality constraints.

The feasible set, the set of legitimate values for x in this constrained space, is defined as
Q= {zlc;(z) =0,i€ & ci(x) 20,ie T}

The boundary of € is quite important so there’s a fair bit of terminology around it. The active set A(x)
is the set of constraints for which ¢;(x) = 0 and F(z), the inactive set, denotes the complement of A(x).
The set of constraints that are active becomes a fundamental tool in the algorithms to come.

The Karush-Kuhn-Tucker (KKT) conditions are first order necessary conditions for a local minimum

for an optimization problem with equality and inequality constraints and can be seen as a generalization

54

APPENDIX C. NUMERICAL OPTIMIZATION 55

of Lagrange multipliers to support inequality constraints. They can be seen as the system

V. L(x,\) = 0
ci(x) 0, Vie &
ci(x) = 0,VieT
Ai = 0, Viel
Aici(z) = 0,VieEuT

where V, is the gradient with respect to x and

Lz,) = f(z)— > Nei(w).

i€EVL

C.0.5 Linear Complementary Problems

In my exploration of LCP solvers two distinct formulations of the problem definition that were used to

develop algorithms. The standard formulation of linear complimentary problems is given by

= Mz+gq (C.1)

> 0 (€2)

z = 0 (C.3)
wlz = 0 (C4)

where M usually assumed to be symmetric positive definite. The SPD assumption exists because so-
lutions are only known if it is SPD. The reason for this assumption can be understood through the
connection between LCP and quadratic programming. Any LCP instance can be seen a the solution to

the Karush-Kunn-Tucker (KKT) constraints of the quadratic problem instance

1
min ¢(z) = izTMz +q"z (C.5)

given inequality constraints that z; > 0 for all 7. If we allow for equality constraints we obtain the mixed
LCP (mLCP) formulation of

Au+Cv+a = 0 (C.6)
CTu+Bv+b = w (C.7)
vTw = 0 (C.8)
v,w = 0 (C.9)
(C.10)
which solves a slightly different quadratic system:
. L r T
min ¢(z) = 57 Qz+r'z (C.11)

APPENDIX C. NUMERICAL OPTIMIZATION 56

f)]

The equivalence of the two formulations is rather easy to formulate. Given an LCP (M, q) we can
create an equivalent mLCP by setting (A, B, C, a,b) to be (0,M,0,0,q).
An mLCP can be reduced to an LCP by rearranging terms in the mLCP formulation by solving for

where v > 0 and

A C

C=ler 3

u and substituting,which provides us with:

M B-CcTA 'C (C.12)

=b—-CTAa (C.13)

q

C.0.6 LCP and Karush-Kuhn-Tucker Conditions

Though I've mentioned that LCPs can be written as the solutions to a quadratic programming instance,
it can also be shown that the KKT first order conditions for a quadratic programming instance can
easily be described in terms of an LCP. The natural instance of a quadratic programming problem is a

quadratic functional bounded by linear inequality constraints like this:

1
min ixTG:L‘ +alc (C.14)
Az > b (C.15)
(C.16)

Under the standard LCP formulation the only bound on x is positive and other constraints are not
obviously represented. By applying the KKT conditions on this system, we see that a solution to the

above quadratic programming instance must be a solution to the LCP given by the system below where

-1

Given that if the above system has full rank and G is positive symmetric definite the solution is unique

a slack variable A must be introduced:

G -AT
A 0

and so solving the LCP is equivalent to solving the quadratic problem. Therefore we see that LCP is

equivalent to QP.

C.0.7 Complimentary and Minimization Duality

Maintaining the complimentary condition in an iterative process is quite difficult. When the constraint
variables are strictly positive instead of directly forcing the complimentary condition in iterative algo-
rithms, it’s simpler to treat the constraint as a minimization problem. That is, two vectors u,v > 0 are
complimentary to each other if and only if for any index ¢, min(u;, v;) = 0 so we can reformulate our com-
plimentary equality constraint as a minimization constraint on the min of the two vectors coefficient-wise.

This will be used to determine convergence tests in the iterative algorithms that follow.

Bibliography

[BB0Y)

[BBBO7]

[BBS00]

[Bea72]

[BMF07]

[Bri07]

[BT07]

[BYMO5]

[Cho67]

[DGY6]

[DSO05]

[EFFMO02]

Tyson Brochu and Robert Bridson. Robust topological operations for dynamic explicit
surfaces. STAM Journal on Scientific Computing, 31(4):2472-2493, 2009.

Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational framework for
accurate solid-fluid coupling. ACM Transactions on Graphics (TOG), 26(3):100, 2007.

SG Bardenhagen, JU Brackbill, and Deborah Sulsky. The material-point method for gran-
ular materials. Computer methods in applied mechanics and engineering, 187(3):529-541,
2000.

Jacob Bear. Dynamics of fluids in porous media. Courier Dover Publications, 1972.

Robert Bridson and Matthias Miller-Fischer. Fluid simulation: SIGGRAPH 2007 course

notes Video files associated with this course are available from the citation page. ACM, 2007.

Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH,
volume 2007, page 5, 2007.

Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows. In
Proceedings of the 2007 ACM SIGGRAPH /Eurographics symposium on Computer anima-
tion, pages 209-217. Eurographics Association, 2007.

Nathan Bell, Yizhou Yu, and Peter J Mucha. Particle-based simulation of granular mate-
rials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 77-86. ACM, 2005.

Alexandre Joel Chorin. A numerical method for solving incompressible viscous flow prob-

lems. Journal of computational physics, 2(1):12-26, 1967.

Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new paradigm for ani-

mating highly deformable bodies. Springer, 1996.

Zdenek Dostal and Joachim Schoberl. Minimizing quadratic functions subject to bound
constraints with the rate of convergence and finite termination. Computational Optimization
and Applications, 30(1):23-43, 2005.

Douglas Enright, Ronald Fedkiw, Joel Ferziger, and lan Mitchell. A hybrid particle level set
method for improved interface capturing. Journal of Computational Physics, 183(1):83-116,
2002.

o7

BIBLIOGRAPHY 58

[EMF02]

[FSJ01]

[GBOO4]

[GMT7]

[Har25)

[HNCOS]

[HW+65]

[1CS*13]

[TWT13]

[KP06]

[LADOS]

[LD0Y]

[L1005]

[NGCL09)]

[NGL10]

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and rendering of
complex water surfaces. In ACM Transactions on Graphics (TOG), volume 21, pages 736—
744. ACM, 2002.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke. In Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 15-22. ACM, 2001.

Tolga G Goktekin, Adam W Bargteil, and James F O’Brien. A method for animating
viscoelastic fluids. In ACM Transactions on Graphics (TOG), volume 23, pages 463—468.
ACM, 2004.

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Monthly notices of the royal astronomical society,
181(3):375-389, 1977.

F Hardy. Cohesion in colloidal soils. J. Agric. Sci, 15:419, 1925.

Anil N Hirani, Kalyana B Nakshatrala, and Jehanzeb H Chaudhry. Numerical method for
darcy flow derived using discrete exterior calculus. arXiv preprint arXiv:0810.3434, 2008.

Francis H Harlow, J Eddie Welch, et al. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. Physics of fluids, 8(12):2182, 1965.

Markus Thmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias
Teschner. Implicit incompressible sph. 2013.

Markus Thmsen, Arthur Wahl, and Matthias Teschner. A lagrangian framework for simu-
lating granular material with high detail. Computers & Graphics, 37(7):800-808, 2013.

Danny M Kaufman and Dinesh K Pai. Randomized quadratic programming with applica-

tions to rigid body contact. 2006.

Toon Lenaerts, Bart Adams, and Philip Dutré. Porous flow in particle-based fluid simula-
tions. In ACM Transactions on Graphics (TOG), volume 27, page 49. ACM, 2008.

Toon Lenaerts and Philip Dutré. Mixing fluids and granular materials. In Computer Graph-
ics Forum, volume 28, pages 213-218. Wiley Online Library, 2009.

John E Lloyd. Fast implementation of lemke’s algorithm for rigid body contact simulation.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pages 4538-4543. IEEE, 2005.

Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C Lin. Aggregate dynamics for dense
crowd simulation. In ACM Transactions on Graphics (TOG), volume 28, page 122. ACM,
2009.

Rahul Narain, Abhinav Golas, and Ming C Lin. Free-flowing granular materials with two-
way solid coupling. In ACM Transactions on Graphics (TOG), volume 29, page 173. ACM,
2010.

BIBLIOGRAPHY 59

[RSKNOS|

[RWT11]

[SKV+12]

[SOHY9]

[SP0Y]

[SSC+13]

[Sta99]

[WMFB11]

[YHKOS]

[YT13]

[ZB05]

[ZOF01]

[ZY10]

Witawat Rungjiratananon, Zoltan Szego, Yoshihiro Kanamori, and Tomoyuki Nishita. Real-
time animation of sand-water interaction. In Computer Graphics Forum, volume 27, pages
1887-1893. Wiley Online Library, 2008.

Karthik Raveendran, Chris Wojtan, and Greg Turk. Hybrid smoothed particle hydrody-
namics. In Proceedings of the 2011 ACM SIGGRAPH/FEurographics symposium on computer
animation, pages 33-42. ACM, 2011.

Breannan Smith, Danny M Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grin-
spun. Reflections on simultaneous impact. ACM Transactions on Graphics (TOG),
31(4):106, 2012.

Robert W Sumner, James F O’Brien, and Jessica K Hodgins. Animating sand, mud, and

snow. In Computer Graphics Forum, volume 18, pages 17-26. Wiley Online Library, 1999.

Barbara Solenthaler and Renato Pajarola. Predictive-corrective incompressible sph. In ACM
transactions on graphics (TOG), volume 28, page 40. ACM, 2009.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A ma-
terial point method for snow simulation. ACM Transactions on Graphics (TOG), 32(4):102,
2013.

Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Computer graph-
ics and interactive techniques, pages 121-128. ACM Press/Addison-Wesley Publishing Co.,
1999.

Chris Wojtan, Matthias Miiller-Fischer, and Tyson Brochu. Liquid simulation with mesh-
based surface tracking. In ACM SIGGRAPH 2011 Courses, page 8. ACM, 2011.

Ren Yasuda, Takahiro Harada, and Yoichiro Kawaguchi. Real-time simulation of granular
materials using graphics hardware. In Computer Graphics, Imaging and Visualisation, 2008.
CGIV’08. Fifth International Conference on, pages 28-31. IEEE, 2008.

Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based fluids using anisotropic
kernels. ACM Transactions on Graphics (TOG), 32(1):5, 2013.

Yongning Zhu and Robert Bridson. Animating sand as a fluid. In ACM Transactions on
Graphics (TOG), volume 24, pages 965-972. ACM, 2005.

Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. Fast surface reconstruction using the
level set method. In Variational and Level Set Methods in Computer Vision, 2001. Proceed-
ings. IEEE Workshop on, pages 194-201. IEEE, 2001.

Bo Zhu and Xubo Yang. Animating sand as a surface flow. FEurographics 2010, Short Papers,
2010.

	Introduction
	Outline

	Preliminaries
	Constitutive Equations for Newtonian Fluids
	Conservation of Mass
	Conservation of Momentum
	Lagrangian and Eulerian Perspectives

	Forces
	Pressure
	Free Surface Conditions
	Viscosity

	Darcy Flow
	Constitutive Equations for Non-Newtonian Fluids
	Continuum Behavior of Sand
	Unilateral Incompressibility
	Friction

	Summary

	Relevant Work
	Fluid Simulation Techniques
	Eulerian Grid Fluid Simulation
	Particle Fluid Representations
	Semi-Lagrangian Fluids

	Granular Simulation Techniques
	Particle Granular Materials
	Continuum Granular Materials

	Porous Flow

	Overview of Simulation Methods
	Operator Choice
	Cubical Complexes

	Levelset Based Hodge Star
	Length of edges
	General Volumes
	Dealing with Degeneracies

	Pressure Projection
	Free Surface Boundaries

	Darcy Flow
	Porosity
	Porosity Based Hodge Star
	Capillary Forces
	Maintaining Particle Density

	Cohesive Granular Materials
	Isotropic Strain
	Deviatoric Strain
	Discretization

	Using Levelset Hodge Star for UIC

	Wet Granular Materials
	Ordering Operations
	Advecting quantities

	Summary

	Technical Details
	Introduction
	Modified MPRGP Quadratic Programming Solver
	Convergence Criterion
	Projection Methods
	Notation
	Steps
	Performance

	Results
	Implementation Details
	Porous Results
	2D Rendering Artifacts

	Combined Fluid and Granular Results

	Concluding Remarks
	Future Work
	Stability Issues

	Conclusion

	Calculus of Differential Forms
	Ordinary Integration
	Tangent Bundles on Manifolds
	Differential Forms
	Differentiating Differential Forms
	The Hodge Star
	Closed and Exact Forms
	Hodge-Helmholtz Decomposition

	Integrating Differential Forms
	Cube Complexes
	Chains
	Laplace-de Rham Operator

	Integration

	Discrete Calculus on Differential Forms
	Exterior Derivative and Boundary Operators
	Hodge Star

	Pressure Projection

	Discrete Differential Forms on Cubical Complexes
	Level-set based Hodge Star
	Connection to Staggered Grid Methods
	Boundary Operator
	Hodge Star
	Hodge Star on Uniform Grids
	Differential and Codifferential Operator
	Constructing the Laplace-deRham

	Numerical Optimization
	Constrained Optimization
	Linear Complementary Problems
	LCP and Karush-Kuhn-Tucker Conditions
	Complimentary and Minimization Duality

