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Abstract

We propose a topology optimization method that utilizes a levelsets and heightfields in order to generate geometry
that can be used to modela 3-axis CNC milling device.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Topology Optimization—
Heightmaps,Levelsets

1. Introduction

Despite the current additive manufacturing craze, traditional
manufacturing techniques are still the prevalent manufca-
turing method industrial applications. This is likely because
these traditional methods are able to produce artifacts from a
wider variety of materials, with more consistent quality, and
with significantly chaper cost. However, the modern trend
of topology optimization pays little attention to the manu-
facturability, to the degree that the geometries designed are
not manufacturable by any technique. We are interested in
looking at one traditional manufacturing technique, three-
axis CNC milling, which can only represent a fairly small
class of geometries.

Different manufacturing methods have distinctly different
costs and challenges associated with them. Additive manu-
facturing has become increasingly popular because the class
of geometries its artifacts can generate are probably the
largest among the manufacturing methods available. How-
ever, this comes at the cost of manufacturing speed and relia-
bility. We will look at the task of 3-axis CNC milling, though
there somewhat natural extensions that could be taken for
more general milling apparatuses. Although this class of ma-
chining problems has a significant limitations on the sorts of
geometry it can use, it is a relatively fast method for gener-
ating a fairly large class of geometries.

1.1. Design Through Optimization

Traditional design has required direct intervention from a
human to direct the geometry and constitutive material of

that geometry. As an alternative to this traditional perspec-
tive, by taking into account modern advances in computing
power, one may choose to pose design is a complex multi-
objective optimization task. The task of designing an artifact
can be seen as the balancing of various criteria such as aes-
thetic quality, monetary cost, manufacturing cost, and func-
tionality. Some criteria like costs or functional ability are
easier to represent with a computer, while aesthetic quality
can be ambiguous and challenging to represent programmat-
ically.

For now we will ignore the aesthetic qualities and work
on optimizing for quantities that are directly measurable.
We choose to focus exclusively on functionality and mate-
rial used. Because we are using homogeneous materials the
financial cost will be taken to be approximately the amount
of material so in a weak sense financial cost is also being
considered.

Although we will only look at these objectives we will de-
scribe and discuss a general framework theoretically capable
of handling multiple criteria simultaneously.

2. Heatsink Design

The problem we choose to tackle is the problem of design-
ing heatsinks that can be milled by a 3-axis CNC milling
device. These devices are made of materials with high ther-
mal conductivity and attached to hot objects to spread the
heat energy to a cool interface (such as air or water). The ef-
fectiveness of a heatsink is measured by its ability to transfer
heat heat away from the system.
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There’s two boundaries: one that interfaces with the hot
object and one that touches the cool interface. The objective
is to create an artifact with high thermal conductivity such
that heat can easily move from one interface to the other.
The performance of a heatsink can therefore be measured by
the amount of heat that can be transfered from one end to
another:

ET (Ω) =
∫

Γout

∂v
∂n

dσ =−
∫

Γin

∂v
∂n

dσ

where v is the heat in the heatsink of geometry Ω and the
cool interface is Γout .

A secondary objective is to create a light object by mini-
mizing the contained energy. This is of course implemented
by the integral

E`(Ω) =
∫

Ω

u2dx.

It would probably be better to minimize some other norm,
such as `∞, but for now we will use this as an easy relax-
ation.

2.1. Thermodynamic Model

We want to model an equilibrium solution for heat transfer
problem where one end has some hot temperature and the
other end is cooler. We could say the cool end is air that is
being replaced at some sufficient rate so its temperature can
be treated as constant. We model the heat transfer within Ω

as a standard Poisson problem, treat the hot component as
a Dirichlet-boundary constrained component and a Robin-
boundary constrained outer interface. The Robin boundary
constraint represents energy being constantly removed from
the system at some rate according to the temperature gradi-
ent. We choose a Dirichlet boundary constraint for simplicity
and to clamp one side. This turns into equations of the form

∆u = 0 in Ω

∂u
∂n

= α(u−Tout) on Γout

u = Tin on Γin

which can be rewritten as

∆v = 0 in Ω

∂v
∂n
−αv = 0 on Γout

v = Tin−Tout on Γin

by v = u−Tout .

3. Representation

For a 3-axis CNC mill, the natural representation of a con-
structible object seems to be a heightfield sitting in a build
volume. The intuition comes from the following:

When milling an artifact one usually starts with a solid
rectangle of material and with a 3-axis mill one has a drill
bit aimed in the −k̂ direction and freedom to move in any
axis. Because this drill bit cannot change its direction if it
reaches a point (x,y,z) one immediately knows that ∀z̄ > z,
material at (x,y, z̄) has been removed as well. Therefore the
geometry carved from this type of milling device can be seen
as a function from (x,y) to z where z is the highest point
where material remains.

Of course the paths made by a drill bit have some conti-
nuity as the bit is usually not infinitely thin. If one assumes
that the drill bit forms a cylinder with a spherical cap of the
same radius r when spun up, the geometry can be prescribed
exactly by looking at the r-offset surface of the set of points
the drill bit passes through. We do not incorporate this ex-
actness in our method at this time, but it would be a trivial
extension.

4. Topology Optimization

We utilize topology optimization via a methodology of com-
puting shape derivative. This allows for us to derive vector
fields that, when our geometry is advected by them, produces
new, more optimal geometry. The shape derivative is com-
puted by looking at the evaluation of a function through the
space of small perturbations of a geometry. Small perturba-
tions are generated by vector fields Θ∈T Ω

p (in the sense that
diffeomorphisms of the embedded space take vector fields as
their lie algebra). As with diffeomorphisms,Θ can be com-
puted by considering arbitrary transformations of the form

Tt = T (t,x) : [0,ε]×Ω→B

where Ω is the geometry and B is the embedding space. We
also have T0 = Id and ε as some small positive value. Θ is
therefore defined by

Θ(p) = lim
t→0

Tt − Id
t

(p).

This identifies vector fields with infinitessimal deformations
of our geometry.

4.1. Optimizing Variations

Our approach is to improve a given geometry by finding an
optimal variation of a given geometry, where each variation
is represented by vector fields. The first step is to compute
a function that expresses the sensitivity our objectives are
to small perturbations of a particular geometry. First note
that the behavior of the vector field on the interior does not
matter in the case of homogeneous materials because this is
simply replacing material with more of the same material.
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We therefore only care about a vector field on the bound-
ary of the surface. For a given perturbation/vector field we
therefore need to compute some function Q that gets applied
as

d
dε
E(Ωε)

∣∣∣∣
ε=0

= Θ(E(Ωε)) =
∫

∂Ω

QΘ ·Ndx.

Here Q called the speed function, and N the normal on ∂Ω

lets us know that only Θ in the normal direction matters for
the evolution of the geometry.

4.1.1. Some Necessary Conditions

First, we must find some necessary characteristics for opti-
mizing our system, which we write out individually for each
objective. To do this we will first describe an augmented La-
grangian for our problems that incorporates the geometry
iteslf (Ω), and some slack variables (λ,µ).

For our thermal problem we see the following La-
grangian: We write out our entire system as the following
Lagrangian:

LT (v,Ω,λ,µ) =−
∫

Γout

αvdσ

+
∫

Ω

〈∇v,∇λ〉dx−
∫

Γout

αvλdσ

−
∫

Γout

∂v
∂n

λdσ+
∫

Γin

(v−Tin +Tout)µdσ.

The first term is the negative of what we would like to max-
imize, flow outward ∂v

∂n , and the latter terms are the thermal
proble definition.

From looking at variations in v and some term re-
arrangement one obtains

δLT (v,Ω,λ,µ)
δv

δv =−
∫

Γout

α(1−λ)δvdσ

+
∫

Ω

∆λδvdx

−
∫

Γout

∂λ

∂n
δvdσ+

∫
Γin

µδvdσ.

these computations imply the following values for the ad-
joint state of our problem, λ and µ:

∆λ = 0 in Ω

∂λ

∂n
−αv =−α on Γout

∂λ

∂n
+µ = 0 on Γin

λ = 0 on Γin.

by using existing tools for computing shape derivatives
we obtain from these conditions

d
dε
ET (Ωε)

∣∣∣∣
ε=0

=
∫

Γout

(
α

2v(1−λ)+ v
∂

2
λ

∂n2

)
Θ ·Ndx.

Doing the same for the volume minimization results in

d
dε
E`(Ωε)

∣∣∣∣
ε=0

=
∫

Γout

(
u2− d p

dn
du
dn

)
Θ ·Ndx

where p is an adjoint state defined by

∆p = 2u in Ω

p = 0 on ∂Ω.

The repeated application of vector fields that minimize
these energies produces an evolution of some initial geome-
try Ω0 over a series of Ωt , which one hopes to converge to
a decent local minima. This convergence is defined by the
the strength of Θ, which should become the 0 vector at a
minima.

4.2. Optimizing Parameters

The behavior of the vector field on the interior does not mat-
ter because for a homogeneous material this is simply replac-
ing material with more of the same material. We therefore
only have to compute an objective function defined on, or
near, the boundary of a geometry. If we assume only a cer-
tain amount of energy to advect our shape Ωt , the optimal
vector field comes in the form:

argmaxΘ∈TpΩ,‖Θ‖=1

∫
∂Ω

QΘ ·Ndx

for a function Q called the speed function and N being the
normal on ∂Ω at the point of evaluation. We only care about
the normal direction because in an infinitessimal sense mov-
ing geometry in the tangential direction is just advecting ma-
terial along the surface of the geomtry.

When our geometry is free to deform in any way it wishes,
the optimal vector field is, up to a scaling, Θ = QN. For in-
stance, Θ is unconstrained when the geometry is represented
by an implicit function. In this case the levelset φ would
be advected by the vector field according to this Hamilton-
Jacobi type equation:

∇φ ·Θ+
∂φ

∂t
= 0.

However, in the constrained case this is not as obvious. In
the constrained case there is a pullback required to compute
a gradient with respect to the actual parameters. If we let γ

be our map from parameters to geometry, the chain rule, tells
us that

Θ(x) =
∂γ

∂p
θ

for some vector field θ over the parameters p. Under this
notation we see that ∂γ

∂p∫
∂Ω

QN ·
(

∂γ

∂p
θ

)
dx =

∫
∂Ω

Q
(

N · ∂γ

∂p

)
θdx.

Hence, we have a linear function that dictates how to our
objectives change due to perturbations of the parameters p.
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4.2.1. Optimizing a heightfield

Recall that we use a heightfield to parameterize our geom-
etry. If we look at the heightfield as piecwise-constant we
obtain a map from height values to geomtry as the union of
rectangular prisms:⋃

i, j
[xi−

dx
2
,xi +

dx
2
]× [y j−

dy
2
,y j +

dy
2
]× [0,h(i, j)].

At our “sample” locations (xi,y j,h(i, j)) we see that the nor-
mal is certainly only nonzero in the z axis. We therefore uti-
lize the following definition for Θ along the top of the height-
field:

∂γ

∂p
θ =

0
0
1

θ = Nzθ.

If we plug this into our optimization procedure the integral
turns into ∫

∂Ω

QNzθdx

which is mazimied by θ = Q.

We would choose piecewise linear, but we did not have
time to implement that much.

4.2.2. Splitting Parameters

Naively optimizing a heightfield is too restrictive. In regions
where the heightfield has value of 0, because nothing is sim-
ulated there, there is no gradient for material to grow. Fur-
thermore, as we saw above, the gradient it is only in the z
axis. This implies that without some additional trick the sup-
port of the heightfield could only contract over time, which
is undesirable (these methods tend to both shrink and grow
in the unconstrained case).

We therefore choose to add a second representation to al-
low for the geometry to extend itself in the xy plane. For this
we choose a levelset represntation for the boundary of the
geometry on the xy plane. We imagine that the heightfield is
only explicitly defined within the domain and use the z-axis
gradients from within that domain.

When this levelset contracts the behavior is quite clear as
material would simply disappear. When the levelset expands
though, it is ambiguous how new material should be added.
The easiest solution would be to, for a point (x,y) that is now
inside the levelset, to let h(x,y) be the value of h when (x,y)
are projected onto the boundary of levelset for the previous
iteration.

4.2.3. Optimizing the base

Due to time constraints this is unfinished. The concept was to
use the the speed function to compute a vector field along x,y
and use something like semilagrangian advection to advect

height values. This would presumably result in something
like

∂γ

∂p
=

1
2

h(xi+1,y j)−h(xi−1,y j) 0
0 h(xi,y j+1)−h(xi,y j−1)
0 0

 .
we didn’t have time to look into this further though.

5. Implementation

So far we have posed the equations that we must solve,
namely the pertinent speed functions and how to convert
those into vector fields from which to advect our geometry.
What remains is how to actually discretize and solve those
equations as well as how to actually deform the geometry.

We implemented our computation of the speed function
with piecewise-linear finite elements for simplicies (trian-
gles/tetrahedra) but apply triangulations on cubes (in 3D one
uses the Freudenthal subdivision of a cube into tetrahedra).
The choice to stick to simplicial finite elements is purely for
the simplicity of their shape functions. For the most part im-
plementation of the speed function was straightforward ex-
cept for the Robin boundary conditions.

In order to generate a voxelized representation of our
heightfield we mapped the heightfield to a signed distance
function and applied some of our existing infrastructure for
computing stiffness matrices from levelset data. This al-
lowed for us to first test our code on the “unconstrained” case
of levelset data before projecting it to the heightfield rep-
resentation. With this implementation we effectively treated
the heightfield as a wrapper around a standard levelset-based
method.

5.1. Robin Boundaries

The boundary required a bit of extra treament due to the
Robin boundary constraints, which of course only exist on
the boundary. We add a layer of ghost cells in order to satisfy
the Dirichlet-esque part of hte Robin boundary constraint.
This implies that we expanded our domain to being one cell
thicker everywhere, where we solved for the original Robin
boundary condition on the original boundary and applied a
Dirichlet boundary constraint to the outside. Applying this
allowed for us to weakly assert the external temperature Tout
from an ambient temperature field rather than as a single
value, though we never got to apply this.

We then added the use a smoothened boundary by the fol-
lowing smoothened dirac on a signed-distance function on
our domain:

1√
φ2 + ε2

− φ
2√

φ2 + ε23 .

The actual boundary constraint was computed from pre-
made stiffness matrices and then restricted to the boundary
using this dirac.
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5.1.1. Derivatives on the boundary

Numerically computing ∂
2
λ

∂n2 with finite differences was ini-
tially a noisy part of our solution. However, we realized that
we can directly incorporate our Robin boundary constraints
to replace derivatives in the normal direction:

d·
dn

= α(·+C)

for some C. This of course applies to multiple derivatives
in the normal direction, which appear as products by α. We
therefore never have to explicitly compute derivatives in the
normal direction due to our Robin boundary constraint..

5.2. Gradient Descent

We experimented with several different gradient descent-
based algorithms. We initially simply did gradient descent

ht = ht−1 +αθt ,

but due to the noisiness of the results we were getting from a
finite difference ∂·

∂N implementation we sought out methods
that could deal with noise. Our first attempt was to simply
do grdient descent with momentum, which is simply

ht = ht−1 +αE[θt ],

for E[xt ] = .9xt + .1E[xt−1] a weighted average operator (of
course .9 and .1 could be set to other values).

Furthermore we experimented with using an optimization
technique called ADAM from the machine learning com-
munity. It has recently shown some good results and has its
roots in proximal algorithms.

hi
t = hi

t−1 +α
E[θi

t ]√
E[
(
θi

t
)2
]+ ε

,

for some ε that prevents the denominator from being 0.
There’s some rescaling usually applied to remove bias, but
they are not too important.

ADAM certainly seemed to converge faster, but its results
were also notably different from SGD. It was also much
easier to control than SGD because, the fractional part of
ADAM naturally sticks to something near±1, so it was easy
to bound the change in h.

5.3. Issues

Piecewise-linear finite elements has issues with bound-
ary discontinuities such as notable corners in geometry or
changes in boundary conditions. We observed this issue at
the boundary of the heating element, so the shape deriva-
tives, and therefore velocity fields, had spuriously high val-
ues at the pertinent interfaces. The magnitude of these high
values increased with resolution in a nonconvergent fash-
ion and were difficult to automatically remove through dif-
ferent clamping schemes. We wound up zeroing the shape

derivative at locations such as at heating element bound-
aries or at thresholded values with an exponential decay at a
sufficient distance away from those thresholded boundaries.
Even though it was effective, training at different resolutions
always required a bit of tuning because we had to clamp at
different thresholds and change the evolution speed to com-
pensate for larger values.

These Interestingly though, ADAM was effective ontop
of hard clamping of the speed function because it applies
normalization in a coefficient-wise fashion.

6. Conclusion

We have presented a topology optimization method that
will only produce geometries manufacturable using a 3-
axis CNC mills. This is performed by applying the the-
ory of shape derivatives onto a novel parameterization,
heightfields. We test our framework by deriving and imple-
menting shape derivatives for our thermal problem through
piecewise-linear finite elements. Finally, we performed
some simple experimentation with different integrators that
seemed to find phenomonologically different results.
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