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1 Introduction

Representing natural language semantics through
vector based techniques has become a common prac-
tice, but most of these methods come with heavy
limitations. Few of these vector based methods con-
tain enough structure to naturally allow operations
such as the composition of phrases to be passed into
the representation in any consistent way. Such issues
can be seen in the example of a “red ball”. Even if
we have vectors representing “red”, “ball”, and “red
ball” in general there are few representations that
can naturally combine the vectors for“red” and “ball”
to reproduce the vector for “red ball”. Additionally
these models cannot extrapolate from the represen-
tation of a “red ball” that we are dealing with a ball
or that this ball is red. Another issue that frequently
occurs is data scarsity, the longer a phrase is the less
frequently we expect to see it. The application of
such vector space representations is therefore limited
to shorter terms, as data sparsity quickly comes into
play when we try to represent the meaning of longer
tokens such as phrases or sentences. Thus, it would
be convenient to have a method that naturally allows
for composing our vector representations of phrases.
Such methods would allow for us to represent the
composition of the phrases themselves, rather than
to try to create a new vector for the composition of
phrases directly from corpora and have to deal with
sparsity.

One particularly promising method is context-
theoretic semantics, which use the philosophy of
meaning as context [1]. This philosophy states that
the meaning of a phrase is precisely the way in which
it is used. Within this framework there already exists
approaches for data-driven taxonomy generation[3] ,
but these techniques do not take advantage of prex-

isting taxonomies. This paper discusses how one
may approach taking advantage of pre-existing on-
tologies to create and apply context theories that rep-
resent taxonomies through the generation of a con-
text theory for synsets, the elements found in Word-
Net. Through these synsets we are able to not only
estimate vectors for terms that we don’t see in the
corpora used to define but also disambiguate the var-
ious senses of terms that, though spelled similarly,
have differences in their definitions, like homonyms.

2 Context Theories

Context theories provide the structure necessary to
develop theories of meaning from a mathemaical per-
spective. Their primary objective is to take struc-
tures discerned from natural language and represent
them within the structure of abstract Hilbert spaces.
By utilizing intuitive connections between the struc-
ture of Hilbert spaces such as addition, multiplica-
tion, and measures with certain structures found in
natural language, they can be used to represent struc-
ture such as such the probability distributions of
terms or semigroup structures in syntax[2]. From this
connection between structures we are able to extract
deeper meaning from our vector representations, such
as the ability to derive meaning of previously unseen
phrases with the composition of smaller phrases we
already have vectors for.

Formally we define our context theory for a set of
words A as a tuple 〈A,S, ,̂ ·〉. The ˆ : A∗ 7→ L1(S)
operator gives us a means to connect between the
structure that we’re trying to represent from natural
language and the mathematical structure that we’re
using to represent it. L1(S) is a lattice-ordered al-
gebra in which we set the multiplication operator be
·. This means that L1(S) is the family of real valued
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functions from the set S such that they have finite
L1 norms:

L1(S) = {u : S → R|‖u‖L1 <∞}

where we have that

‖u‖L1 =
∑
s∈S
|u(s)|.

In our case we view this as a probabilistic space by
using an abstract Lebesgue space: a vector space with
the L1 norm and as well as operators ∨ and ∧ that
correspond to the union and intersection of objects
respectively. This gives us that for u, v, w ∈ L1(S)+

and α ∈ R the operators behave as follows:

(αu)(s) = αu(s)

(u+ v)(s) = u(s) + v(s)

(u ∨ v)(s) = min(u(s), v(s))

(u ∧ v)(s) = max(u(s), v(s))

and

u ≤ v ⇒ αu ≤ αv
u ≤ v ⇒ u+ w ≤ v + w

The choice of multiplication operator is chosen
such that for x, y ∈ A∗ we have x̂ · ŷ = x̂y. This
is so that we can maintain the structure of phrase
composition through the mapping into our mathe-
matical representation. To give this representation
the ability to combat the data scarcity found in longer
phrases we can simply take representations of shorter
words and apply the · operator to represent the longer
phrases.

2.1 Taxonomies

Ontologies like WordNet are governed by is-a rela-
tionships, which we will assume is a partial ordering.
That is, A is a B implies that A ≤ B. This assump-
tion is not a very steep one as WordNet does not
contain cycles and the is-a relationship naturally has
an ordering: if A is a B and B is a A then they are

intuitively the same thing. Our objective is create a
vector representation of our terms through some ˆ op-
erator such that the partial order prescribed by pre-
existing ontologies. However to begin the discussion
there is some notation that must first be discussed to
describe the underlying structure that must be held
in a context theory for taxonomies.

An ideal I of a partially ordered set S is a subset
I ⊂ S such that ∀x ∈ I, y ≤ x ⇒ y ∈ I. A principal
ideal generated by x is the set ↓ (x) = {y ∈ S : y ≤
x}. Ideals give us a tool for looking at terms that are
subsumed by the is-a relationship, for we see that
↓ (x) signifies all of the words that are instances of x.
For example, if we are given any term (like “animal”)
we see that

↓ (“animal”) = {“dog”, “cat”...}

and we intuitively know that dogs and cats are in-
stances of animals.

The primary issue is how to develop a context the-
ory representing the probability of words occurring
in different contexts. To do this we define the prob-
ability of our terms with a Real Valued Taxonomy
- a set of concepts S with a partial order ≤ and a
positive real function p. We set

∑
s∈S p(s) = 1 to

make this probabilistic. If we let p signify the prob-
ability of a term x occurring in a particular context,
the probability of the concept behind x, x̄, will be
the sum of the probability of any concept ȳ such that
ȳ ≤ x̄. Thus we define the operator p̂ that represents
the probability of a concept x̄ given the probability
of all of the terms that appear under it in the partial
ordering:

p̂(x̄) =
∑
ȳ∈↓(x̄)

p(ȳ).

Now if we take our real valued taxonomy we then
have a Ideal Vector Completion for our term x, we
can define the elements of our vector space as ψ(x),
which takes the form

ψ(x) =
∑
ȳ∈↓(x̄)

p(ȳ)eȳ

where we let {ey : y ∈ S} be a set of independent
basis vectors. This gives us a vector for the probabil-
ity of a concept, the sum of the probabilities of the
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vectors for any term below it. It’s immediately true
that ‖ψ(x)‖1 = p̂(x̄), so we see that the measure of a
concept is identical to the probability of it occurring.

2.2 Example Context Theory

For our purposes, we will assume that the context
theory being used is similar to the context theory
developed by Clarke [3]. Thus we provide a brief
overview of Clarke’s Quotient Algebra context theory
to sketch how one might approach actually develop-
ing a context theory. For a more detailed description
please refer [3].

The context theory in question represents each pos-
sible context as a dimension. This is the type of rep-
resentation we will assume for the rest of this article.
Essentially, we let S be the set of contexts in this con-
text theory. In this particular case we first consider
the vector space RA and utilize tensor products as
the multiplication operation for composition to ob-
tain representation for higher dimensions. From this
we get dimensions representing the form

w1 ⊗ ...⊗ wh−1 ⊗ ei ⊗ wh+1 ⊗ ...⊗ wr.

The wi are the words that exist at their respec-
tive slots in that context and ei corresponds with
an empty slot. For a given term the coefficient for
the above dimension is the probability of that term
appearing in a context at the empty slot. The dimen-
sions from above are then stitched together using the
direct sum making this something called a tensor al-
gebra.

From the above construction we easily see that
we have a representation that allows for dimensions
representing the probability of seeing “x”, “red x”,
“red x block” etc. However, the dimensionality of
the representation increases in size exponentially and
ends up covering redundant terms like “square flat
x” and “flat square x” which have the same defini-
tion. Another flaw can be seen in“x” and “the x”
where “the” adds almost no semantic information to
the phrase. Therefore the dimensionality and redun-
dancy are both reduced by declaring certain relation-
ships between dimensions to be equivalent to each
other through ideals. Mathematically the ideal men-
tioned here is the same as the one already mentioned

but the way that it presents itself here is significantly
different. In this ideal we consider the set of things
that don’t add to a representation and set their dif-
ference to be zero. After picking out some situations
where we know we have equivalences we can write

them as “̂x” − ̂“the x” = 0 and compress the repre-
sentation of both of these to a single dimension.

3 Ontology-driven Taxonomy
Generation

3.1 Ontologies

Our primary task is to deal with how one might for-
mulate a context theory in which the ≤ operator pre-
serves the is-a partial ordering defined by an ontol-
ogy. However, the ontologies we are looking at don’t
use words as their elements, but rather use the senses
that words can take. These senses are implicit to
individual contexts and not immediately discernible
from instances of words by themselves. In the case
of WordNet these are called synonym sets (synsets).
Synsets discern various equivalence classes of words
by words that are interchangeable for one another in
contexts. They form a “many to many” correspon-
dence between the space of words and meanings: syn-
onyms all map to one synset but one word can have
multiple distinct definitions. For our purposes we are
interested in discerning the probabilities of the vari-
ous contexts that individual synsets exist in. There-
fore, ideally one would like to be able to discern the
various senses of each word in our taxonomy to di-
rectly extract frequencies from a corpus. However
that would require the ability to detect the sense of a
term from its context, which is an open problem. In
order to avoid this issue we will have to take a more
indirect approach.

3.2 Synsets

From within an ontology such as WordNet we see
that a word is precisely its synsets. The synsets de-
fine the various meanings that the word can take.
Our philosophy therefore states that the synsets are
the various contexts for which a word may exist in.
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This tells us that for any particular word each of the
synsets associated with it should exist in a set of con-
texts distinct from any other synset associated with
that word. If two synsets were to have similar or
even identical distributions of contexts, they would
both represent the same concept and therefore be re-
dundant. For any particular word we see that the
contexts that the word occurs in corresponds to the
totality of the contexts for which its synsets occur
in. That is, the probability of a word occurring in a
particular context is the sum of the probabilities of
any of its synsets occurring.

Let us assume that we have a mapping ¯ from the
terms in a corpus and the synsets in the ontology.
The first step in trying to define a context theory
for our synsets is to try to associate the is-a par-
tial ordering ≺ for synsets with the partial ordering
of our existing context theory. However for any pair
of words a, b they may contain multiple synsets, say
ā1, ā2 for a and b1 for b. If we happen to have par-
tial ordering of synsest ā1 ≤ b̄1 we cannot guarantee
that a ≤ b because the probability of a existing in
any particular context is the sum of the probability
of any of its senses occurring in that context. Also,
if a is a b we cannot determine anything about the
relationship of individual senses of words as the com-
bination of two senses for b can subsume one sense of
a. All we can really discuss is the connection between
terms and the combination of their synsets. The word
“combination” is a bit vague, but in our discussion
we are dealing with probabilities of words and con-
cepts occurring in different contexts. We can let the
result of “combining” two objects be the probability
of either object occuring - which is the summation of
their probabilities. Therefore we know that

a ≤ b⇔
∑
i

āi ≺
∑
i

b̄i.

We don’t have any direct information on the con-
texts for which synsets exist in so we cannot straight-
forwardly compute an ideal vector completion for
synsets. The ordering we are given gives us a partial
ordering on the contexts themselves. Since we our
goal is to discern the probabilities of synsets existing
in certain contexts through the terms that represent
them, what we’d look at the probabilities of various

synsets is through a corpus. However, this would
force us to look at terms and discern their senses
which would require us to disambiguate word senses,
which is an open and difficult problem. If we could
discern some word senses we would immediately have
the context vectors for the synsets that we could dis-
ambiguate in terms, but beyond that there is still
a need to estimate the probability of our synsets in
order to create a valid context theory for the synsets.

3.3 Deriving the Synset Context The-
ory

We’d like to define context vectors for the various
synsets, but there is no direct way to derive them
from the term probabilities as discussed previously.
We do, however, have a large number of constraints
on the probabilities of the contexts in which synsets
occur in. These constraints are governed by by the
relationships between words and the synsets that be-
long to them and constraints given to us by the ontol-
ogy. These constraints present themselves as inequal-
ities of linear equations and since all of the variables
we are dealing with are probabilistic every variable
must be non-negative. This gives us, with the ex-
ception of an objective function, an instance of linear
programming. The choice for an objective function is
not obvious, but our constraints make it so that any
choice will produce a valid estimate given our knowl-
edge of the synsets without attempting to actively
disambiguate word senses.

3.3.1 Synset to Term Constraints

First let us consider the constraints that we must en-
force between the synsets and terms. For each term
let us recall that the probability of it occurring in
any context is the sum of the probability of any of its
senses occurring. Thus we explicitly have the con-
straint t̄i =

∑
j∈Si

s̄j where ti and sj are context
vectors for terms and synsets respectively and Si is
the set of synsets associated with term ti. We have
a constraint of this form for each of the terms in our
original ontology so we must compose these vectors
T, S and a matrix A from which we can derive linear
constraints:
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First off let us define dim(ti) = N to be the dimen-
sionality of our context vectors for terms. Each ti is
from the same space so dim(ti) = N for any i. Since
we are trying to develop the vectors sj from the vec-
tors ti we see that we can at most let dim(sj) = N .
Also, let us denote the total number of terms that we
have by cT and the total number of synsets that we
have by cS.

T = [ti]

is vector representing the concatentation of all of the
column vectors we have for representing terms. This
gives us a vector of size (N ∗ cT )× 1.

Let us create a vector of the same nature as T
except for the the synset vectors through the con-
catenation of synset column vectors. This gives us a
vector of dimensionality N ∗ cS × 1

S = [sj ]

Finally, in order to represent the connection be-
tween the terms and synsets, in particular the addi-
tive property between the synsets of a term and the
term itself we define a matrix A such that we can
relate the terms and synsets through the equation

T = AS.

We can obtain the above equation by setting A to be
defined by the block matrix

A = [δSi,j ],

where δSi,j is a function that takes the value IN , the
N×N identity matrix, if j is in Si and 0N , the N×N
zero matrix, otherwise. This is used to represent that
that sj is a synset for ti. The meaning behind this
representation is easily realized when we view T,A, S
all as block matrices where the entries in T and S are
the original vectors. Each block-row i in A becomes
an indicator for the synsets associated with the ith
vector in T . This gives us a matrix of dimension
N ∗ cS ×N ∗ cS.

Within the formalism of linear programming this
constraint must be represented as inequalities, which
we can easily do by rewriting this as, T ≥ AS and

−T ≥ −AS to get the following matrices[
T
−T

]
=

[
A
−A

]
S.

3.3.2 Given Ontology Constraints

The ontology that the synsets come from has a set of
constraints built into it, in particular the partial or-
dering that is-a implies. The is-a relationship implies
that for any given synset the probability of it occur-
ring any context must be greater than the probability
of any of the elements below it existing in the same
contexts. Thus we see that for any synset vector s
and any s′ ∈↓ (s) we have s ≥ s′. Also, since we are
dealing with a probabilistic context theory, the top
level synset, if it exists, must have probability 1. In
WordNet’s case such a root exists and is called “en-
tity”. In such a case we see that1N = sentity where
1 is a vector of size N that has 1 for every entry. If
there is no root node, but rather a forest of them we
need only say that their sum must be 1.

Now that we have all of the constraints implied by
both the ontology and the context theory described
we can deliver a final form of the constraint portion in
the linear programming formulation of this problem:

T
−T
1N
−1N

 =


A
−A
eTentity
−eTentity

S
where we let eentity be the column vector which is 1
for the entity matrix if it occurs and 0 otherwise.

By solving this linear programming application we
have a context theory that represents the meaning
of synsets. This context theory is our best estimate
of the meaning of synsets through the probability of
valid contexts.

4 Applications

4.1 Word Sense Disambiguation

Word sense disambiguation is the determination of
the appropriate sense of a word given a context.
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So far we have been carefully trying to avoid deal-
ing with this issue, as if we could disambiguate the
senses of words with some φ we could have directly
calculated the synset probabilities. To do that we
would have calculated the probability distribution of
a synset x̄i existing in a context by looking at the fre-
quency of the term x given the prior that x̄i = φ(x)
within a corpus. However, now that we have a model
for the distribution of the synsets we can decide on
an appropriate sense for terms in a corpus.

In theory we should be able to look at the docu-
ment and immediately see it that the context around
a term in question determines one particular sense
for that term. However, in a practical implementa-
tion this will not happen. We cannot store every
configuration and usually end up having to deal with
truncation issues. Not only must we truncate the size
of the contexts that we look at, but it is additionally
not realistic to expect to see every context that exists
in any corpus at any scale to appear at all. In order
to compensate for these issues we try to overcome
the technical limitations in our context theories by
broadening the size of the contexts we consider.

Suppose we have a token of a term x that we want
to disambiguate in document d, within an appropri-
ately sized contiguous window around x in d. Then it
should be safe to assume that most if not all instances
of the term are associated with the same tense. This
window could be a paragraph, a couple of paragraphs,
or even the whole document. If the term exists with a
sufficiently high frequency within such a window we
may then use the contexts derived within the win-
dow to sketch the distribution under which the term
exists. From this experimental distribution we may
compare it to the distributions of the various synsets
of the term in question and choose a sense that fits the
experimental distribution. The size of the window is
important and difficult to choose. If we decide upon
a window that is too large we may see more than one
sense of a term frequently enough that the distribu-
tion we extract may be too noisy. Hence, we may
fail to correctly choose the sense that the term takes
on within the context in question. If the window is
too small we may fail to sample the distribution of
the term in question and be unable to determine a
proper sense for the term.

First let us assume that we already have a good
choice of window size chosen for us around a term
x, which gives us a distribution of its contexts ψ(x).
Before we can directly compare x to the set of possi-
ble disambiguations, the synsets x̄i, we must account
for the fact that ψ(x) will not achieve a distribution
similar to any of the synsets. Given a window of
text we can’t expect to see more than a incredibly
small portion of the contexts for which the term can
exist in to actually occur in the window. This am-
biguity of which contexts the term occurs in means
that among the dimensions we have in our context
theory, only a fraction of the entries will be nonzero
in ψ(x). Also, ψ(x) will respresent the relative ap-
pearance of terms with each other, so we will almost
certainly have to renormalize ψ(x) if we want to com-
pare it to ψ(x̄i). The choice of renormalization is
also not nontrivial as there’s no real way of knowing
how much bias our window has toward certain con-
texts. Therefore, we must give an educated guess for
a proper normalization of the context, the most obvi-
ous one being through a minimization of the distance
between λψ(x) and each of the ψ(x̄i). Now when we
compare our term distribution with the distribution
of the synsets we are giving each synset the great-
est opportunity to show that it is appropriate for a
term. All that remains in our disambiguation is now
is to compare the distances between x and the various
senses it can take x̄i to find the minimum distance,
which gives us the following equation:

Sense = argmini min
λ
‖ψ(x̄i)− λψ(x)‖L1

.

Choosing an appropriate window size is a tricky
issue but there are a few simple ways to pick one.
The most obvious is to choose a standard window
size for all cases: the number of words away from the
target term, one or many paragraphs, a chapter, etc.
We can also choose a more dynamic approach such
as picking a default window size and falling back to
increased the window size by some prescribed amount
until the window size is sufficiently large. A sufficient
size can be determined by something like a threshold
on how similar the distance of difference senses are
to the target term are to one another.
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Threshold ≥ maxi,j (minλ ‖ψ(x̄i)− λψ(x)‖L1)

−(minλ ‖ψ(x̄j)− λψ(x)‖L1).

4.2 Connecting Terms and Synsets

As a direct result of the probability of a term being
the sum of the probabilities of its synsets, we see that
the vector the term is then the sum of the vectors of
its synsets. Therefore if we have a context theory
for the synsets we can produce a new context theory
for terms that extends a pre-existing one to words
that include terms for which we don’t have vectors to
represent for which its synsets exist can be discerned.

One of the main difficulties in maintaining an on-
tology is that the

5 Conclusion

We have developed a methodology for using a pre-
existing context theory and ontology to generate a
context theory for the elements of the ontology. Al-
though ontologies such as WordNet take on a philos-
ophy similar to context-as-meaning they only provide
a relative framework for describing the probabilities
of their objects in various contexts. Because of the
similarity in philosophy our approach extends such
ontologies in a natural way. We have proposed a
method for estimating those probabilities to estimate
a valid context theory, but without the ability to dis-
ambiguate senses or a properly driven objective func-
tion there is no way of knowing precisely determining
vectors that correspond to the various senses of terms
through linear programming. We have also discussed
the utility of a context theory of synsets through two
applications: to do word sense disambiguation and to
discern the relationship between words and the con-
cepts underlying them. In the generation of synset
vectors we have not determined an appropriate opti-
mization function for our problem and resolving an
appropriate function would be a worthwhile direction
to continue work in.
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