
Expand-Ahead: A Space-Filling Strategy for Browsing Trees

Michael J. McGuffin∗

Department of Computer Science
University of Toronto

http://www.dgp.toronto.edu

Gord Davison†

IBM Toronto Laboratory

Ravin Balakrishnan‡

Department of Computer Science
University of Toronto

http://www.dgp.toronto.edu

ABSTRACT

Many tree browsers allow subtrees under a node to be collapsed or
expanded, enabling the user to control screen space usage and se-
lectively drill-down. However, explicit expansion of nodes can be
tedious. Expand-ahead is a space-filling strategy by which some
nodes are automatically expanded to fill available screen space,
without expanding so far that nodes are shown at a reduced size
or outside the viewport. This often allows a user exploring the tree
to see further down the tree without the effort required in a tradi-
tional browser. It also means the user can sometimes drill-down a
path faster, by skipping over levels of the tree that are automatically
expanded for them. Expand-ahead differs from many detail-in-
context techniques in that there is no scaling or distortion involved.
We present 1D and 2D prototype implementations of expand-ahead,
and identify various design issues and possible enhancements to our
designs. Our prototypes support smooth, animated transitions be-
tween different views of a tree. We also present the results of a
controlled experiment which show that, under certain conditions,
users are able to drill-down faster with expand-ahead than without.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—interaction techniques; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—interaction styles

Keywords: tree browsing and navigation, focus+context, expand-
ahead, automatic expansion, space filling, adaptive user interfaces

1 INTRODUCTION

Large tree structures can be difficult to view, navigate, and manage.
To help mitigate this, users are often given the ability to view only
a subset of a tree at a time. The subset might be specified through
selective hiding (collapsing) and revealing (expansion) of subtrees
(e.g. Figure 1(top left,bottom left)) or might be limited to the “con-
tents” (i.e. children) of one node at a time (Figure 1(top right)).
Small subsets are more likely to fit on the user’s available screen
space, and thus have less need for scrolling- or zooming-based nav-
igation.

At the same time, working with subsets of a tree can be incon-
venient. Many subsets will only partially fill screen space. Al-
though the user may move from subset to subset during browsing
and exploration, showing the user small subsets can leave their vi-
sual system’s capacity underutilized and prolong navigation tasks.
For example, in the specific task of travelling down a path to a leaf,
the user is often required to explicitly expand, or “click through”,
each node along the way. If the user does not know or forgets what
is located under a node, they must explicitly expand, or travel into,
the node to find out, and then backtrack if they discover they took a

∗e-mail: mjmcguff@cs.toronto.edu
†e-mail: davisong@ca.ibm.com
‡e-mail: ravin@cs.toronto.edu

Figure 1: Top left and top right: an outline view, and 2D view,
respectively, of a node’s children, with much space left unused in both
cases. Bottom left and bottom right: concept sketches showing that
much of the available space can be filled by expanding some children.

wrong turn. Some interfaces show previews of node contents in the
form of summaries or thumbnails; however, these only help direct
the user’s navigation — the user must still explicitly expand each
node along a desired path.

Often, during navigation, a user may be momentarily viewing a
relatively small or narrow portion of the tree, with unused screen
space left over (Figure 1(top left,top right)). In these cases, we
suspect it might often be beneficial for the system to automatically
expand some nodes, to fill up the available screen space (perhaps
resulting in something like Figure 1(bottom left,bottom right)). If
the space consumed by such expansion does not exceed the limits
of the user’s viewport, then no scrolling or zooming will be required
as a result of the automatic expansion. The intention is that, of the
nodes revealed by such expansion, those that are not of interest to
the user can be safely ignored, and those that are of interest are now
visible to the user for free, with no extra input from the user.

We call this scheme expand-ahead, because the system automat-
ically expands pathways downward and in advance of explicit ex-
pansion by the user. Expand-ahead allows the user to see the con-
tents of more than one folder at a time. It is only performed when
there is unused screen space, and is only done to the extent allowed
by such space. The automatic expansion never proceeds so far that
it would exceed the available screen space, because this would im-
pose a penalty on the user due to the scrolling or zooming necessary
to see the resulting information. To make the fullest possible use of
screen space, expand-ahead is not, generally, carried out to the same
depth along all possible pathways. Instead, usually some nodes are
chosen for expansion over others at the same depth. To determine
which of the alternative nodes to expand, a heuristic or policy is
required, which is given as a parameter to the expand-ahead algo-

rithm. The heuristic can be designed to give preference to nodes
that are more likely to interest the user.

Because expand-ahead reveals more information without requir-
ing additional input, we suspect it may benefit general browsing
and navigation tasks. In particular, it may allow users to drill-down
a path faster, by allowing them to skip over nodes that are automat-
ically expanded. Users may also tend to take fewer wrong turns
down paths, because they can see further ahead. On the other hand,
in a more free-form browsing scenario, expand-ahead may benefit
users by allowing them to incidentally notice interesting nodes that
they had no intention of drilling down toward, and that would have
otherwise remained undiscovered without expand-ahead.

There are also potential drawbacks to using expand-ahead. Like
other adaptive user interface techniques, automatic reconfiguration
of interface elements can sometimes confuse users, or give them
an impression of not being in control. Inappropriately designed
adaptation can even hinder rather than help the user. In light of this,
we conducted an experiment to evaluate the performance of users
with expand-ahead under controlled conditions.

In the following sections, we review related background work,
present the expand-ahead algorithm, describe our prototype imple-
mentations, give experimental evidence that expand-ahead can af-
ford faster drill-down under certain conditions, and identify various
design issues and possible enhancements to our designs.

2 BACKGROUND

Many schemes exist for browsing large spaces in which a tree, or
other information, is embedded. Carpendale [4, chapter 2] surveys
these techniques, including scrolling, zooming, fisheye views, and
various other detail-in-context views. Conceptually, these schemes
can be thought of as changing the presentation [4, chapter 1] of the
space (e.g. by smoothly deforming it), without changing the infor-
mation’s representation or embedding in the space. The collapsing
and expanding of tree nodes, however, is probably more naturally
thought of as a change in the tree’s representation or embedding.
Despite this, the effect of expand-ahead is somewhat similar to that
of focus+context techniques, in that the automatic expansion of de-
scendants under a node of interest can be thought of as revealing
more of the neighbourhood around the user’s focus.

Some tree representations, like Treemaps [14], Pad++’s directory
browser [3], or Nguyen and Huang’s space-optimized trees [10],
pack nodes into the available screen space by scaling down the size
of nodes, allotting progressively less space for nodes further down
on the tree. Although this allows a large number of nodes to be fit
on the screen, any labels or information displayed with the nodes
becomes increasingly illegible in the lower levels of the tree. De-
pending on the user’s goals, it may be preferable to see fewer nodes,
but have labels and other information all equally legible. For exam-
ple, in the context of their work, Plaisant et al. [11] quote one user
saying “Make it readable or don’t bother showing the nodes”.

In expand-ahead, the size of text labels is held constant, so that
automatic expansion never reduces the legibility of text. Further-
more, and unlike Treemaps for example, the space allocated to a
given subtree is not based on the “size” of the subtree, but rather is
a function of whatever expansion heuristic has been chosen.

SpaceTrees [11] show preview icons of collapsed subtrees, and
also perform a form of intelligent, automatic expansion for the
user. From our perspective, SpaceTrees implement a special case of
expand-ahead which we will later call uniform expand-ahead (see
Section 7). When users select a focal node in a SpaceTree, the num-
ber of levels opened under that node is maximized, as allowed by
available screen space. Each level, however, is only expanded if all
the descendants on that level can be revealed. Our more general
notion of expand-ahead allows certain nodes on a given level to be
expanded, while their siblings may not be. This yields representa-

tions that are not as orderly and regular as SpaceTrees, but allows
us to fill space more aggressively than SpaceTrees do. Another dif-
ference is that SpaceTrees expand nodes based solely on available
space, whereas in expand-ahead, the decision of which nodes to ex-
pand is influenced by the expansion heuristic, making it somewhat
more flexible. A final, less critical difference, is that SpaceTrees
use a traditional node-link representation for the tree, whereas we
have explored automatic expansion within outline (Figure 2) and
nested containment (Figure 3(bottom,top right)) representations.

Many adaptive interfaces automatically reconfigure or rearrange
interface elements to try and help the user by reducing the effort or
amount of input required (see [12] for discussion of this in the con-
text of menus). Unfortunately, such adaptation can also confuse and
frustrate the user, especially if the actions taken automatically are
inappropriate and/or the user does not understand how the system
determines which actions to take. There is a danger that expand-
ahead could cause related problems, particularly if the expansion
heuristic is poorly chosen. Expanding nodes that don’t interest the
user would only increase the amount of noise on the display that
must be filtered out by the user, making it harder to find nodes that
do interest the user. To try and alleviate this problem, expand-ahead
never changes the ordering of nodes, as some adaptive menus do.
Although automatic expansion may introduce irregular spacing be-
tween siblings, the user may still be able to employ a subdivision
strategy when searching for a node, since the ordering of neighbour-
ing nodes does not change. Furthermore, when a node is expanded,
all its children are displayed, rather than, for example, just the most
frequently accessed subset, as is done in Microsoft Office’s adap-
tive menus.

In partial support of our design, browsers that display a 2D row-
column arrangement of icons, such as in Figure 1(top right), typi-
cally reflow the icons when the browser window is resized, chang-
ing the number of columns and rows. This behaviour is familiar to
users, and seems to be far less disturbing than a re-ordering of icons
would be.

In Section 7, we speculate on ways to make expand-ahead more
consistent in the way it presents information, to further reduce the
drawbacks of its adaptive behaviour.

3 THE EXPAND-AHEAD ALGORITHM

Let F be a node in the tree T that the user has selected as the node
of interest, or focal node. Our current implementation of expand-
ahead works as follows: (1) expand F , and allocate space on the
screen for F and its children; if there is any space left over, then
(2) try expanding each of the children of F in turn, such that the
available screen space is never exceeded; if any of them were suc-
cessfully expanded, and there is still space left over, then (3) try
expanding each of the children of the children of F that were suc-
cessfully expanded, such that the available screen space is never
exceeded; etc. Stop when there is no longer enough screen space to
allow any more expansion, or when we have reached the leaf nodes.

Notice that the order in which the algorithm attempts to expand
nodes is breadth first, or level-by-level.

Often, there may be sufficient space to expand one or another
child, but not both. In this case, some means is necessary to deter-
mine which child to expand, or in which order to attempt expansion
of children. Let w(n) be a weight associated with node n. The
expand-ahead algorithm prefers expansion of nodes with a greater
weight over those with less weight. Thus, the w(n) function can
encode various heuristics for node expansion, which may be based,
for example, on the likelihood that a given node will interest the
user.

More formally, the expand-ahead algorithm is given as Algo-
rithm 1. In the pseudocode, curly braces enclose comments.

Algorithm 1 ExpandAhead(T , F)
{initialize all nodes to be collapsed}
CollapseAllNodesInTree(T)
{expand F and all its ancestors}
n← F
while n 6= NIL do

n.isExpanded← true
n← n.parent

{check if there’s screen space left over}
ComputeLayout(T , F)
if there is unused screen space then

{expand as many nodes under F as possible}
d← 1
repeat

noNodesSuccessfullyExpanded← true
S← set of all visible nodes at depth d under F
sort S by weighting function w
{try expanding each node in S}
for all n in S, in decreasing order of w(n), do

if n has children then
n.isExpanded← true
ComputeLayout(T , F)
if available screen space is exceeded then

{backtrack}
n.isExpanded← false

else
noNodesSuccessfullyExpanded← false

d← d +1
until noNodesSuccessfullyExpanded
ComputeLayout(T , F)

The ComputeLayout subroutine called in the pseudocode is re-
sponsible for computing the embedding of the tree T , i.e. allocating
space for all visible nodes and positioning them on the screen with
respect to the focal node F . ComputeLayout can be chosen to gen-
erate any tree layout style that is desired, be it of a node-link style,
a nested containment layout, or otherwise.

The w(n) weighting function encodes the heuristic for choos-
ing which nodes to expand. For example, setting w(n) =
1/n.numChildren causes nodes with a small number of children
to be preferred over nodes with more children. Such a weighting
tends to maximize the number of nodes that are expanded automat-
ically, since more nodes can be expanded if each has few children.
Another possible weighting is w(n) = n. f requency, i.e. nodes that
were visited more frequently by the user in the past are given a
greater weight, since they are more likely to be visited again by the
user.

The ExpandAhead algorithm described by the pseudocode is in-
voked every time the user selects a new focal node F , which might
be done by simply clicking on a visible node, or travelling upward
to the current focal node’s parent, or selecting a previously visited
node from the browser’s history.

The foregoing description assumes the user is only interested in
one focal node at a time, as is supported by our current implemen-
tation. In Section 7, however, we describe how expand-ahead might
be extended to support multiple focal nodes.

4 1D PROTOTYPE

Our prototype expand-ahead browsers were implemented in C++
using the OpenGL and GLUT libraries, and run under Linux and
Microsoft Windows.

The tree browsed by our prototypes can be either read in lazily
from the file system, allowing the user to browse their directories

and files; or can be extracted as a breadth-first tree (BFT) of a di-
graph described in an input file. In the future, we plan to modify our
prototypes to allow dynamically changing the root of the BFT, and
investigate the use of our browsers for exploring graph structures.

The 1D prototype displays nodes in the form of an outline view
— it is 1-dimensional in the sense that nodes are arranged as a list,
with horizontal indentation showing the tree structure. Unlike many
other outline browsers, our 1D browser does not allow the user to
independently toggle the expansion of individual nodes as can be
done with the “+” and “-” icons in Figure 1(top left,bottom left).
Support for this might be added eventually (see Section 7), but we
chose a simpler design for our first prototype. Instead, expansion
is controlled only by selecting the focal node F . Clicking on a
node makes it the new focal node, which is moved to the top of the
viewport, with its descendants displayed below it, and expanded
according to the expand-ahead algorithm.

Figure 2 shows the 1D browser with two different focal nodes.
The expansion heuristic used here, as well as in our later prototype,
is w(n) = 1/n.numChildren.

Figure 2: Left: The user has selected “ng” as the focal node (indi-
cated with the arrow). This node contains too many children to fit in
the viewport — viewing all the children requires scrolling. Because
of this, the expand-ahead algorithm has not expanded any of the
children. Right: The user has selected “04.sceneEditor”, a child of
“ng”, as the new focal node. Since the children (“doc”, “samples”,
“src”, etc.) of the focal node consume only some of the vertical
space, the expand-ahead algorithm has filled the rest of this space
by expanding two of the children, namely “doc” and “src backups”.

4.1 A Rough Model of User Performance

One of the potential advantages of expand-ahead is that it may al-
low a user to drill-down a path faster, by skipping over levels that
are expanded automatically. If the tree is thought of as a hierar-
chical menu, then expand-ahead is one way of making the tree, or
menu, broader and more shallow: fewer levels need be explicitly
traversed by the user, and at each step, the user has more nodes to
choose from than without expand-ahead. The question of breadth
vs depth in menus has been studied before [13, chapter 3] [6] and it
has generally been found that reducing depth by increasing breadth
allows selection of leaf items to be made faster overall.

A quantitative estimate of the advantage, if any, of expand-ahead
would be valuable. In the particular case of a 1D outline tree view,
we can model the task of drilling down in terms of another well
understood model: Fitts’ law [5, 9]. Fitts’ law predicts that the
average time T to acquire, or click, an on-screen target of size W at
a distance D from the cursor is

T = a+b log2(D/W +1) (1)

where W is the target width measured along the direction of motion,
and a and b are experimentally determined constants that depend on
factors such as the particular input device used for pointing. From
equation 1, we see Fitts’ law predicts that decreasing the size W of

a target, or increasing the distance D to a target, both increase the
time required to acquire the target.

If drilling down a path involves clicking on each of a sequence
of nodes, this can be modelled as a sequence of Fitts’ target acqui-
sitions.

Consider an approximately balanced tree with N leaf nodes and
a constant branching factor B. Assume that the tree is displayed
as a 1D outline, such as in Figure 1(top left), and that the height
of each node in the outline view is W . If the user only sees one
expanded node at a time, the total height of the outline view is BW .
Furthermore, if the user’s cursor starts at a random vertical position,
and must travel to a random node, the average distance Daverage to
travel will be BW/3 (since the mean distance between two points
randomly selected on a unit segment is 1/3).

Without expand-ahead, travelling down a path from the root to
a leaf requires one click per level in the tree, or C = logB N =
log2 N/ log2 B clicks. The time required for each click can be bro-
ken down into a sum of the time TF to find the desired node to
click on (including any time to visually process information on the
screen), and the time T to acquire the target, as given by Fitts’ law.
The total time to drill-down is then

C(TF +T)

= C(TF +a+b log2(Daverage/W +1))

= (logB N)(TF +a+b log2(BW/3W +1))

≈ (logB N)(TF +a+b log2(B/3))

= (logB N)(b log2 B+a−b log2 3+TF)

= b log2 N +(logB N)(a−b log2 3)+
log2 N
log2 B

TF (2)

As stated earlier, the effect of expand-ahead in a 1D outline is to
visually flatten and broaden the tree being navigated. Although the
tree’s topological structure does not change, expand-ahead reveals
more nodes to the user, increasing the number of nodes the user may
click on at each step, and decreasing the number of levels the user
must explicitly click through. Thus, expand-ahead can be thought
of as increasing the “visual” branching factor B of the tree, which
reduces the necessary number C = logB N of clicks. However, be-
cause B is increased, so is the average distance Daverage = BW/3
the user must travel for each click, and so therefore is the time T
required for each click.

Interpreting B as the visual, or effective, branching factor allows
expression 2 to describe both the cases with and without expand-
ahead. Keeping in mind that our goal is to minimize the total time to
drill-down, we examine each of the terms in expression 2. The first
term b log2 N is the time required for the user to “express” (via their
pointing device) the log2 N bits of information associated with the
leaf node. This does not depend on B, and hence is not affected by
use of expand-ahead. The second term (logB N)(a−b log2 3) is the
number of clicks multiplied by a constant time penalty associated
with each click. Assuming this term is positive (a has been found
to be considerably larger than b in many Fitts tasks), the term is
minimized when B is maximized, which favours expand-ahead. It
is unclear how the last term (log2 N/ log2 B)TF may change as B
changes. This depends critically on the nature of the time TF to find
the next node to click on. TF most likely increases with B, because
an increased B means the user will have more nodes to visually
scan. If TF increases linearly with B, as would be expected in a
scan-and-match visual search, then the last term of expression 2
will also increase with B, which would argue against using expand-
ahead. However, if TF only increases logarithmically with B, as
may be expected if the nodes are ordered alphabetically and the user
employs a subdividing visual search strategy (see [6] for discussion
of this with respect to the Hick-Hyman law), then the last term of
expression 2 should remain approximately constant.

In summary, if TF is at most a logarithmic function of B, then
expand-ahead should decrease the total time to drill-down a path.
However, if TF increases faster than logarithmically, it is unclear
whether expand-ahead would yield a net increase or decrease of the
total time.

The above is only a first attempt to model performance with
expand-ahead. Although it suggests that a net advantage may be
possible with expand-ahead, experimental investigation is needed
to measure actual performance, and would also be required to even-
tually test and refine this or other models.

5 2D PROTOTYPE

As with all 1D outline tree browsers, our 1D prototype arranges
nodes along one direction (the vertical), and only uses the 2nd di-
rection for indentation, rather than for showing additional nodes of
the tree. Our 2D prototype1 attempts to make full use of both direc-
tions by tiling nodes along rows and columns (Figure 3). Expanded
nodes are represented using nested containment, and drawn as fold-
ers with a tab for their label. Unexpanded nodes can be optionally
shown as either simple text labels (Figure 3(top left,bottom)), or
with icons (Figure 3(top right)).

Figure 3: Top left: the children of the focal node are arranged in rows
and columns, but are too numerous to fit in the viewport. Hence,
scrollbars are provided to pan the view, and no automatic expansion
of nodes is performed. Bottom: a different focal node, with fewer
children, allows expand-ahead to be performed. Top Right: viewing
the same focal node as bottom, with icons enabled.

Recall the ComputeLayout subroutine, called in the Expand-
Ahead algorithm, which computes the layout or embedding of the
tree. In our 1D prototype, ComputeLayout is a simple and fast sub-
routine, because the layout of nodes is very regular. However, in our

1A video, and executable version, of which are available at
http://www.dgp.toronto.edu/˜mjmcguff/research/

2D prototype, the ComputeLayout subroutine involves a recursive,
bottom-up computation of the layout of the nodes, performed by
some 400 lines of C++ code, and done once for each node that the
ExpandAhead algorithm tries to expand. Thus, while the Expand-
Ahead algorithm proceeds down from the focal node in a breadth-
first manner, each invocation of the ComputeLayout subroutine tra-
verses the visible nodes from the deepest nodes upward, computing
the space required by each node as a function of the space required
by its children. Fortunately, on a 1.7 GHz laptop, all these computa-
tions only create a noticeable delay if the user is looking at over 500
nodes simultaneously. In addition, we have identified some possible
optimizations that could be made to our particular ComputeLayout
subroutine which remain to be implemented.

The layout done by the 2D ComputeLayout subroutine arranges
each set of children within rows and/or columns. The flow of the
layout can be optionally changed between either (a) filling each
column, from top-to-bottom, in an inner loop, and creating whole
columns left-to-right in an outer loop (this flow is used in Figure 3),
or (b) filling each row, from left-to-right, in an inner loop, and creat-
ing whole rows top-to-bottom in an outer loop (as per Figure 1(top
right)). A second independent option controls whether nodes are
centred within cells of a “grid” with rows and columns that cut
across the entire grid; or whether nodes are packed along one direc-
tion in the manner of a greedy line-breaking algorithm [1], resulting
in the brick-like arrangement of Figure 3(bottom,top right).

When computing the layout of children within an expanded
node, a choice must be made as to the number of rows or columns
to use. For example, 12 equally sized children could be arranged in
a grid of 3x4, or 4x3, or 2x6, etc. We use an approximate rule of
thumb that tries to arrange children such that the parent node has an
aspect ratio close to 1.

As with our 1D prototype, the focal node in the 2D prototype
is selected by clicking on the desired node. A change in the focal
node can cause a large change in the arrangement of nodes, which
is especially noticeable in our 2D prototype because it can display
many more nodes than the 1D prototype. Early testing of our ini-
tial 2D prototype quickly convinced us that some kind of animated
transition [2, 15] was critically needed, to help the user maintain
their mental model of the tree’s layout, and see which nodes are
hidden, revealed, or repositioned/resized during a change of focus.

Inspired by the design of the 3-stage animations in SpaceTrees
[11], we implemented animated transitions consisting of 5 distinct
phases: (1) fading out visible nodes that will be hidden after the
transition, (2) collapsing the outline of expanded nodes that must
be collapsed by the end of the transition, (3) moving and resizing
nodes using linear interpolation, (4) expanding the outline of nodes
that were initially collapsed but that must be expanded by the end
of the transition, (5) fading in nodes that are newly visible. We
adjusted the animation to last a maximum of 1 second in total, and
to skip over a stage if it does not involve any nodes in the given
transition.

Our prototype maintains a history of focal nodes visited. As in a
web browser, this history can be navigated using Back and Forward
buttons. Hitting either button invokes a reverse (or forward) anima-
tion to the previous (or next) focal node in the history. In addition,
the user may hold down the right mouse button to pop up a dial
widget (Figure 4) that can be rotated to scrub over the animations.
Rotating the widget clockwise or anticlockwise moves forward or
backward through the history, at a rate of one focal node per cycle.
The user may scrub at any speed, or stop and linger, allowing for
careful examination of complicated transitions if desired.

In addition to showing changes in focal nodes, animated transi-
tions are also used to show changes in layout resulting from user-
requested changes to the font size used for text labels. A decreased
font size means each unexpanded node requires less space, allow-
ing more nodes to be expanded, which sometimes changes the lay-

Figure 4: A popup dial widget. Dragging rotates the dial, which is
used to scrub back or forward over animated transitions.

out significantly. The user can incrementally decrease the font size
one pixel at a time, by hitting a hotkey repeatedly, invoking a se-
quence of animations showing the successive changes in layout.
Visually, this is comparable to zooming in, in that gradually more
detail (i.e. lower levels of the tree) is revealed. However, unlike
literal zooming, the focal node, and hence the surrounding context,
never changes. Decreasing the font size in effect allows the user
to drill-down everywhere in the tree simultaneously, yielding an in-
creasingly detailed “birds-eye” view of the tree (Figure 5). We call
this zooming down. Of course, sufficient reduction of the font size
eventually makes the text labels illegible. The reverse action, of
incrementally increasing the font size, is similarly a variation on
zooming out and rolling up, which we call zooming up.

Figure 5: Zooming down: a variation on zooming in and drilling
down. Left: the font size has been reduced so that 250 nodes are
visible. Right: the font size has been further reduced, so that now
2400 nodes are revealed. To make the tree structure more apparent,
nodes are filled with a shade of grey dependant on each node’s depth
(see Section 7).

Pros and Cons of Expand-Ahead

The intended benefits of expand-ahead include revealing more
information to the user by exploiting available screen space, and
enabling faster drill-down due to fewer clicks being required of the
user.

At the same time, there are various potential drawbacks to using
expand-ahead. Having more targets on the screen implies a higher
average distance to travel to acquire a target, which, by Fitts’ law
(equation 1), increases acquisition time. Having more information
on the screen also means the user will probably spend more time
visually scanning and parsing the information, and may be dis-
tracted by irrelevant information. These factors were modelled in
Section 4.1, without coming to a definite conclusion on their cost.
Other potential drawbacks of expand-ahead are that, by not expand-
ing nodes to the same depth uniformly, expand-ahead can give the
user a lopsided view of the tree, since nodes on the same level can
be treated differently — this can be either good or bad. Finally, the
arrangement and expansion of nodes shown to the user can change
not only when the focal node changes, but also if the font size or

window size changes, or if the tree’s structure changes (e.g. due to
insertion or deletion of nodes). Such rearrangement can cause con-
fusion, and if frequent enough, would inhibit habituation and make
it impossible for the user to memorize the spatial location of nodes.

Despite this, rearrangement may not be a severe problem in
many practical cases. Expand-ahead never changes the ordering
of nodes, so users may still learn to find nodes quickly by using
their neighbours as relative landmarks. The relocation and reflow-
ing of nodes in our 2D prototype is comparable to the reflow of
rows and columns in interfaces such as in Figure 1(top right), which
are already familiar to many users. Changes in font size might be
infrequent for many users, and changes in tree structure may not
be disturbing to the user if it is the user who performs, and is thus
aware of, any change to the tree. Animated transitions can also help
the user keep their mental map of nodes intact during changes.

Since it is unclear how the potential benefits and drawbacks of
expand-ahead compare, we performed a controlled experiment in-
volving a drill-down task, and measured user performance under
various conditions. Although we suspect expand-ahead may bene-
fit browsing and exploration of trees in general, we focused on the
task of drill-down for a first experiment, because we consider this
a fundamental task, and because an experiment involving a highly
constrained task yields more reliable results.

6 EXPERIMENT

Goals: To measure the net effect of expand-ahead on user perfor-
mance, a controlled experiment was performed in which users com-
pleted a task using expand-ahead and without using expand-ahead.
In particular, we wanted to determine if users are able to drill-down
(i.e. travel down from the root to a leaf) faster with expand-ahead
than with purely manual expansion.

Apparatus: The experiment was run on 3 computers (enabling
us to run 3 users in parallel), each located in an isolated, sound-
proofed room, and each running Microsoft Windows. The screens
were 15” in size, set to a resolution of 1024x768 pixels. The ex-
periment program was run in full screen mode, with a 16 pixel high
font used for text. The input device was a mouse held in the user’s
dominant hand, with the keyboard used only to start each trial by
hitting a key with the user’s non-dominant hand.

Participants: Users were solicited from a pool of external users
through the User Centred Design Department of the IBM Toronto
Software Development Lab. 12 users participated in our study, 8
women and 4 men, all right handed, whose usual computer use
ranges between 1 and 12 hours per day, 5 to 7 days per week. The
users were aged 23-57 years (mean 38.25, standard deviation 11.4).

Task: Users completed a number of trials, within each of which
the user had to drill-down a target path and select a leaf node of a
tree. Before the beginning of each trial, the screen first showed the
user the path of the target leaf for the next trial, as a slash-delimited
string of nodes, e.g. “abc/def/...”. To start the trial, the user had to
place the mouse cursor in a 10x10 pixel start box at the upper left
corner of the screen, and hit the spacebar with their non-dominant
hand. The screen then displayed the target path at the top of the
screen in red, the path of the user’s current focal node (initially
set to the root node at the start of each trial) immediately below
in black, and the tree representation in the remaining screen space,
using either expand-ahead or not (Figure 6). Users then clicked on
nodes to travel down the desired path until they reached the target
leaf, which ended the trial.

The reason the target path was shown to users before the start
of each trial was to give users a chance to read the path and better
retain it in short-term memory during the trial. This should reduce
whatever variance there might be in the recorded times due to re-
reading the target path during the trial. Forcing users to place their
cursor in the start box also reduced variance, ensuring that users

Figure 6: The information displayed during a trial, without expand-
ahead (Left) and with 2D expand-ahead (Right). The target path is
shown in red at the top of the screen, with the current path shown
immediately below.

always started in the same initial position.
Errors were not allowed during trials. If the user clicked on a

node not along the target path, the computer emitted an audible
beep without changing the focal node, and the user was forced to
continue the trial until successful completion. Thus, in some sense,
the total time for the trial incorporates the cost of errors. Forcing the
user to successfully complete each trial, even after an error, has the
advantage that there is no incentive (even subconsciously) for the
user to go faster by committing errors and terminating trials early.

Conditions: Trials were performed under 3 main conditions: no
expand-ahead, 1D expand-ahead, and 2D expand-ahead. Within
each main condition, two different trees were used during trials, to
test two different ranges of branching factors. Finally, within each
main condition, and within each of the two trees, users performed
3 different kinds of drill-down tasks. These were: traversing a dif-
ferent, random path for each trial; traversing the same path repeat-
edly over many trials; and traversing the same path repeatedly over
many trials, but perturbing the tree slightly before each trial. These
3 drill-down tasks were chosen to test performance with unprac-
ticed paths, practiced paths, and practiced paths with perturbation,
respectively.

The order of presentation of the 3 main conditions was counter-
balanced with a latin square design, and the order of presentation
of the two trees was also balanced over the 12 users.

Both trees were of depth 7, and were structured such that the path
of a leaf would spell out a coherent 7-word sentence of the form
quantifier colour animal verb possessive-pronoun colour noun,
such as “all yellow salamanders invent their blue chairs”. Struc-
turing the levels of the trees this way made it easy to generate the
trees offline, programmatically, with a given desired branching fac-
tor, and also with some random variety in the children of each node.
Although many of the paths form fanciful sounding sentences, these
are easier for users to remember during trials than a random string
of characters would be. Note that the children of each node were
always ordered alphabetically, to better enable users to use a subdi-
viding visual search strategy during trials.

The first tree had internal nodes whose branching factor varied
uniformly between 2 and 5. The second tree was bushier, with a
branching factor varying uniformly between 8 and 11. These val-
ues were chosen because they are close to the two extreme branch-
ing factors for our conditions, without being too extreme. A con-
stant branching factor of just 1 would give too great an advantage to
expand-ahead (which would be able to expand the tree all the way to
its single leaf), and a branching factor much greater than 10 would
mean that, for the font and screen size used, expand-ahead would
usually revert back to the status quo of no automatic expansion.

In the first drill-down task, users were given a different random
path for each of 10 trials. In the second drill-down task, users were
given the same path for 5 trials, and then a second path for an-
other 5 trials. In the third drill-down task, users were again given 2

paths for 5 trials each, however in this case the tree was perturbed
slightly before each trial, by swapping random subtrees at various
levels, causing a corresponding change in the computed layout of
the tree, and a change in which nodes would be expanded by the
ExpandAhead algorithm.

In summary, the whole experiment involved

12 participants ×
3 main conditions (no expand-ahead, 1D expand-ahead, 2D
expand-ahead) ×
2 trees ×
3 drill-down tasks ×
10 trials
= 2160 trials in total

Results and Discussion
We broke down the measured data into 3 subsets, corresponding

to each of the 3 drill-down tasks, and examined the effect of various
factors on the recorded times in each subset.

Analysis of variance (ANOVA) showed that the participant had a
significant (F > 30, p < 0.0001 for each of the 3 tasks) effect on the
time to complete each trial. The average time for each participant
varied roughly evenly between 10.1 seconds for the fastest user, and
19.8 seconds for the slowest user. This large variance could have
been in part due to the range of ages of users, and the apparently
different levels of fatigue under which each user performed the ex-
periment. For example, the slowest user reported feeling sleepy
during the experiment.

The two trees used also had an effect on performance. Within
each of the 3 tasks, the relatively skinny tree, with branching factor
2-5, afforded significantly (F > 70, p < 0.0001) faster performance
than did the bushier tree with branching factor 8-11. This makes
sense for the non-expand-ahead condition, since a larger branching
factor requires the user to travel farther on average for each click,
and also makes sense in the expand-ahead conditions, since expand-
ahead can expand skinny trees more deeply, on average.

Within each task, the main condition had a significant effect on
time (F = 7.5, p < 0.0006; F = 14.7, p < 0.0001; and F = 3.3,
p < 0.0362 for the 3 tasks, respectively). Following are the average
times for each of the tasks, broken down by main condition. Stars
appear beside times significantly different from the other times in
the same task, as determined by a multiple means comparison.

For unpracticed, random paths:
Main Condition Time (seconds)
no expand-ahead 14.541
1D expand-ahead 15.930 * (significantly worse)
2D expand-ahead 14.912

For practiced, repeated paths:
Main Condition Time (seconds)
no expand-ahead 13.006
1D expand-ahead 13.085
2D expand-ahead 11.361 * (significantly better)

For practiced, repeated paths, with perturbation:
Main Condition Time (seconds)
no expand-ahead 13.149 * (significantly better)
1D expand-ahead 13.883
2D expand-ahead 14.005

As seen by the above tables, in the 1st task, with unpracticed,
random paths, performance with 2D expand-ahead was not sig-
nificantly different from that with no expand-ahead. In the 2nd
task, with practiced paths and no perturbation, 2D expand-ahead
was significantly faster than having no expand-ahead, by approxi-
mately 12.7%. In the 3rd task, with perturbation, 2D expand-ahead

was significantly slower than having no expand-ahead, by approxi-
mately 6.5%.

These results suggest that, for practiced paths in absence of per-
turbation or rearrangement of nodes, users are able to quickly target
the desired nodes along the path, probably by memorizing their lo-
cation, and reach the leaf node faster with expand-ahead than with-
out, by skipping over the levels expanded for them. With pertur-
bation, however, users were slower in the 2D expand-ahead case
than without expand-ahead, implying that the time TF to find each
next node increased enough to outweigh the benefit of having fewer
clicks to perform.

These results are not so surprising in light of the expected trade-
offs that usually accompany adaptive user interfaces: they can help
performance in some situations, but also hinder it if the user does
not find items in their expected place. It is encouraging to note,
however, that although 2D expand-ahead was 6.5% slower than no
expand-ahead in the perturbed tree case, it was faster by 12.7%, or
about twice as much, in the un-perturbed case.

Furthermore, a few aspects of our experiment may have artifi-
cially biased the results against expand-ahead. In real situations,
changes made to the tree’s structure are often made by the user
themself, e.g. adding or deleting portions of their own file structure,
rather than imposed by the system through a randomized perturba-
tion. At least one user remarked after the experiment that she felt
expand-ahead would have been easier to use if she had built up the
tree herself and been familiar with its contents, rather than brows-
ing a tree never seen before. Also, in practice, changes to a tree
such as a user’s file system are not as frequent as the perturbations
in our experiment were. Infrequent changes to the tree’s structure
would be more conducive to habituation by the user.

Finally, our experiment only tested performance at drilling-down
a path, and leaves open the question of whether expand-ahead ben-
efits more general browsing tasks. For example, expand-ahead not
only allows a user to skip over levels that have been automatically
expanded, it also allows the user to see deeper down a tree. This
means the user may notice more information and discover nodes
that they would not have otherwise travelled down to.

7 DESIGN ISSUES AND POTENTIAL ENHANCEMENTS

This section describes various enhancements that could be explored
in future design work.

Sticky or Hard Expansion, vs Soft Expansion: In our proto-
types, the user only selects the current focal node F , and the Ex-
pandAhead algorithm determines which nodes to expand under F .
This behaviour could be made more general by instead allowing for
two types of expansion: sticky, or hard expansion, that is controlled
by the user; and soft expansion, that is set by the ExpandAhead al-
gorithm. The user would be able to explicitly expand one or more
nodes, leaving them in a forced expanded state. The ExpandAhead
algorithm would then allocate screen space for these nodes, and
only expand other nodes if there remains more screen space. Such
behaviour would allow the user to effectively create multiple points
of focus, by hard-expanding each node of interest, after which the
ExpandAhead algorithm would fill up any remaining screen space
with automatic, soft expansion.

Locking Node Positions for Persistent Layout: One of the par-
ticipants in our experiment said she would like the ability to cus-
tomize which levels of the tree she sees expanded together, and to
always see the levels that way. Features that allow the user to manu-
ally position or “lock down” the relative placement of nodes would
help alleviate the detrimental effects of rearrangement and allow for
better landmarking and more consistent displays, thus reducing the
time necessary to visually scan for nodes. The system could, for
example, allow the user to lock down certain nodes of particular
interest, while other nodes are free to flow around them.

Uniform Expand-Ahead and Partial Expansion: As men-
tioned in Section 2, SpaceTrees [11] implement a kind of expand-
ahead, but where levels are only expanded if they can be expanded
completely. This has the disadvantage that screen space cannot be
filled as completely, but also means that node expansion occurs in a
much more regular and uniform way. Such uniform expand-ahead,
which only expands entire levels under the focal node, reveals each
possible path down from the focal node to the same depth. This
may result in displays that are easier for the user to understand.

Another possibility not yet explored in our prototypes is that of
partial expansion of nodes, whereby a node might be expanded to
show some of its children, giving the user a partial preview of its
contents, but also show some indication of elision (perhaps similar
to Lee and Bederson’s ellipsis nodes [8, 7]) if there are other chil-
dren not shown. If f is the fraction of children that are shown in
a partial expansion, f could be chosen to be proportional to w(n),
again allowing for heuristics to guide the expansion.

Combining uniform expand-ahead with partial expansion (i.e.
whereby all nodes on a level would be each partially expanded)
might enable more efficient filling of screen space without sacrific-
ing the regular and uniform treatment of nodes on the same level.

Improvements in Graphic Design: We are also currently ex-
perimenting with various changes to the graphic design of our tree
representations, in an attempt to make them easier to visually inter-
pret (Figure 7).

Figure 7: Experimental enhancements to the graphic design of our
2D browser. To make information easier to parse quickly, nodes are
filled with a shade of grey indicating depth, and labels of expanded
nodes are shown in bold.

8 CONCLUSION AND FUTURE DIRECTIONS

We have presented a general model for automatically expanding
nodes to fill screen space. The expand-ahead model can be applied
to many different representations of trees, including node-link rep-
resentations and nested containment representations. A pseudocode
algorithm for implementing this model was given, which takes a
heuristic weighting function w(n) as a parameter to guide the ex-
pansion according to a client-chosen policy. We have also given an
approximate model of user performance with expand-ahead, pre-
sented two prototype implementations, and reported experimen-
tal evidence that expand-ahead can improve performance during a
drill-down task under appropriate conditions.

The ideas described in Section 7 would be interesting to ex-
plore further. In addition, more controlled experiments could be
conducted to confirm and/or refine our model of user performance.

Tasks other than drill-down could also be tested, to see if expand-
ahead can facilitate more general navigation and browsing tasks. It
would also be interesting to apply expand-ahead to other tree rep-
resentations, such as various node-link style layouts.

9 ACKNOWLEDGEMENTS

Many thanks to Paul W. Smith, Rebecca Wong, David Budreau,
Susan Hamilton, Shengdong Zhao, Bowen Hui, Joe Laszlo, Ronald
M. Baecker, Gord Kurtenbach, Aaron Hertzmann, Wilmot Li, Gon-
zalo Ramos, Daniel Vogel, Maciej Kalisiak, Derrick Moser, Eu-
gene Kim, and Alicia Servera, for valuable support, suggestions,
and help during this research. Thanks also to the participants in our
experiment for their time. This research was funded by IBM CAS
Toronto and CITO.

REFERENCES

[1] James O. Achugbue. On the line breaking problem in text format-
ting. In Proceedings of ACM SIGPLAN SIGOA Symposium on Text
Manipulation, pages 117–122, 1981.

[2] Lyn Bartram. Can motion increase user interface bandwidth? In
Proceedings of IEEE Conference on Systems, Man and Cybernetics,
pages 1686–1692, 1997.

[3] Benjamin B. Bederson and James D. Hollan. Pad++: A zooming
graphical interface for exploring alternate interface physics. In Pro-
ceedings of ACM Symposium on User Interface Software and Technol-
ogy (UIST), pages 17–26, 1994.

[4] Marianne Sheelagh Therese Carpendale. A Framework for Elastic
Presentation Space. PhD thesis, School of Computing Science, Simon
Fraser University, Burnaby, Canada, March 1999.

[5] Paul M. Fitts. The information capacity of the human motor system
in controlling the amplitude of movement. Journal of Experimental
Psychology, 47(6):381–391, June 1954. (Reprinted in Journal of Ex-
perimental Psychology: General, 121(3):262–269, 1992).

[6] T. K. Landauer and D. W. Nachbar. Selection from alphabetic and
numeric menu trees using a touch screen: Breadth, depth, and width.
In Proceedings of ACM CHI 1985 Conference on Human Factors in
Computing Systems, pages 73–78, 1985.

[7] Bongshin Lee and Benjamin B. Bederson. Favorite folders: A con-
figurable, scalable file browser. Technical Report HCIL-2003-12, CS-
TR-4468, UMIACS-TR-2003-38, University of Maryland, Computer
Science Department, College Park, MD, 2003. 10 pages.

[8] Bongshin Lee and Benjamin B. Bederson. Favorite folders: A con-
figurable, scalable file browser (demo paper). In ACM Symposium on
User Interface Software and Technology (UIST) Conference Supple-
ment, pages 45–46, 2003.

[9] I. Scott MacKenzie. Fitts’ law as a research and design tool in human-
computer interaction. Human-Computer Interaction, 7:91–139, 1992.

[10] Quang Vinh Nguyen and Mao Lin Huang. A space-optimized tree
visualization. In Proceedings of IEEE Symposium on Information Vi-
sualization (InfoVis), pages 85–92, 2002.

[11] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. Space-
Tree: Supporting exploration in large node link tree, design evolution
and empirical evaluation. In Proceedings of IEEE Symposium on In-
formation Visualization (InfoVis), pages 57–64, 2002.

[12] Andrew Sears and Ben Shneiderman. Split menus: Effectively us-
ing selection frequency to organize menus. ACM Transactions on
Computer-Human Interaction (TOCHI), 1(1):27–51, March 1994.

[13] Ben Shneiderman. Designing the User Interface: Strategies for Ef-
fective Human-Computer Interaction. Addison-Wesley, 2nd edition,
1992.

[14] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Transactions on Graphics (TOG), 11(1):92–99, Jan-
uary 1992.

[15] David D. Woods. Visual momentum: a concept to improve the cogni-
tive coupling of person and computer. International Journal of Man-
Machine Studies, 21:229–244, 1984.

