\documentstyle{slides} % paper is 8.5 inches wide % \textwidth 8.0in % margin dimensions are 1 inch less than true value % \oddsidemargin -0.75in \evensidemargin\oddsidemargin % example code % %\topmargin -0.5cm %\setlength{\topmargin}{0pt} %\setlength{\topmargin}{-0.8in} %\setlength{\topskip}{0.3in} % between header and text %\setlength{\textheight}{9.5in} % height of main text \begin{document} \begin{titlepage} \begin{center} {\large Nested Radicals} \vspace{1cm} \\ And Other Infinitely Recursive Expressions \vspace{3cm} \\ Michael M$^C$Guffin \vspace{3cm} \\ % Michael McGuffin {\small {\em prepared} } \\ % \today \vspace{2cm} \\ July 17, 1998 \vspace{2cm} \\ {\small {\em for} } \\ The Pure Math Club \\ University of Waterloo \\ \end{center} \end{titlepage} \begin{center}Outline\end{center} \vspace{1.30cm} 1. Introduction \vspace{0.60cm} \\ 2. Derivation of Identities \vspace{-0.60cm} \begin{list}{}{} \item 2.1 Constant Term Expansions \vspace{-0.60cm} \item 2.2 Identity Transformations \vspace{-0.60cm} \item 2.3 Generation of Identities Using Recurrences \vspace{-0.60cm} \end{list} 3. General Forms \vspace{0.60cm} \\ 4. Selected Results from Literature \pagebreak {\large 1. Introduction} \\ Examples of Infinitely Recursive Expressions \linebreak[2] Series \[ e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \ldots \] Infinite Products % Wallis % \[ \pi/2 = \frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \cdots \] Continued Fractions % Euler % \[ e-1 = 1+\frac{2}{2+\frac{3}{3+\frac{4}{4+\frac{5}{5+\ldots}}}} \] % \[ e = 2 + \frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+ % \ldots % % \frac{1}{1+\frac{1}{1+\frac{1}{6+\ldots}}} % }}}}} \] % Lord Brouncker % \[ 4/\pi = 1+\frac{1}{2+\frac{3^2}{2+\frac{5^2}{2+\frac{7^2}{2+\ldots}}}} \] % \[ \pi/2 = 1-\frac{1}{3-\frac{2*3}{1-\frac{1*2}{3-\frac{4*5}{1- % \frac{3*4}{3-\ldots} % }}}} \] Infinitely Nested Radicals (or Continued Roots) % Kasner number % \[ K = \sqrt{1+\sqrt{2+\sqrt{3+\ldots}}} \] Exponential Ladders (or Towers) \[ 2 = {(\sqrt{2})}^{{(\sqrt{2})}^{{(\sqrt{2})}^{\cdots}}} \] Hybrid Forms % Can be trivially transformed into an exponential ladder. % \[ 4 = 2^{\sqrt{2^{\sqrt{2^{\sqrt{2^{\cdots}}}}}}} \] % This is actually a continued fraction in disguise. % \[ \frac{1}{2} = \frac{1}{ \frac{1}{\frac{1}{\ldots}+1+\frac{1}{\ldots}} +1+ \frac{1}{\frac{1}{\ldots}+1+\frac{1}{\ldots}} } \] \pagebreak Questions: \vspace{-1.25cm} \begin{itemize} \item Does the expression converge ? Are there {\em tests}, or necessary/sufficient conditions for convergence ? Examples: \vspace{-0.65cm} \begin{itemize} \item For series, \vspace{-0.65cm} \begin{itemize} \item Terms must go to zero \vspace{-0.65cm} \item d'Alembert-Cauchy Ratio Test, Cauchy {\em n}th Root Test, Integral Test, ... \end{itemize} \item For infinite products, \vspace{-0.65cm} \begin{itemize} \item Terms must go to a value in (-1,1] \end{itemize} \item For infinitely nested radicals, \vspace{-0.65cm} \begin{itemize} \item Terms can grow ! (But how fast ?) \end{itemize} \end{itemize} \item What does the expression converge to ? Are there formulae or identities we can use to evaluate the limit\nolinebreak ? Example: when $-1 < r < 1$, \[ \frac{a}{1-r} = a + ar + ar^2 + ar^3 + \ldots \] \end{itemize} \pagebreak {\large 2.1 Constant Term Expansions} \\ Assume that \[ \sqrt{a+b\sqrt{a+b\sqrt{a+\ldots}}} \] converges when $a \geq 0$ and $b \geq 0$, and let $L$ be the limit. Then \[ L = \sqrt{a+b\sqrt{a+b\sqrt{a+\ldots}}} \] \[ L = \sqrt{a+b L} \] \[ L^2 - b L - a = 0 \] \[ L = \frac{b+\sqrt{b^2+4 a}}{2} \] Hence \[ \sqrt{a+b\sqrt{a+b\sqrt{a+\ldots}}} = \frac{b+\sqrt{b^2+4 a}}{2} \] \pagebreak Observation: when $a = 0$, we get \[ \sqrt{0+b\sqrt{0+b\sqrt{0+\ldots}}} = \frac{b+\sqrt{b^2+4(0)}}{2} \] \[ \sqrt{b \sqrt{b \sqrt{b \sqrt{\ldots}}}} = b \] This makes sense since \begin{eqnarray} \nonumber \sqrt{b \sqrt{b \sqrt{b \sqrt{\ldots}}}} & = & \sqrt{b} \sqrt{\sqrt{b}} \sqrt{\sqrt{\sqrt{b}}} \ldots \\ \nonumber & = & b^{\frac{1}{2}} b^{\frac{1}{4}} b^{\frac{1}{8}} \ldots \\ \nonumber & = & b^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots} \\ \nonumber & = & b^1 \end{eqnarray} \pagebreak Similarly, assume that \[ a + \frac{b}{a + \frac{b}{a + \frac{b}{a + \ldots}}} \] converges when $a > 0$ and $b \geq 0$, and let $L$ be the limit. Then \[ L = a + \frac{b}{a + \frac{b}{a + \frac{b}{a + \ldots}}} \] \[ L = a + \frac{b}{L} \] \[ L^2 - a L - b = 0 \] \[ L = \frac{a+\sqrt{a^2+4 b}}{2} \] Hence \[a+\frac{b}{a+\frac{b}{a+\frac{b}{a+\ldots}}}=\frac{a+\sqrt{a^2+4 b}}{2}\] But as we saw earlier, \[ \sqrt{a+b\sqrt{a+b\sqrt{a+\ldots}}} = \frac{b+\sqrt{b^2+4 a}}{2} \] Therefore, \[ \sqrt{a+b\sqrt{a+b\sqrt{a+\ldots}}} = b+\frac{a}{b+\frac{a}{b+\frac{a}{b+\ldots}}} = \frac{b+\sqrt{b^2+4 a}}{2} \] In addition, setting $a = b = 1$, we get \[ \sqrt{1+\sqrt{1+\sqrt{1+\ldots}}} = 1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} = \frac{1+\sqrt{5}}{2} \] which is equal to the golden ratio $\phi$. \pagebreak Now assume that \[ \sqrt[n]{a+b\sqrt[n]{a+b\sqrt[n]{a+\ldots}}} \] converges when $a \geq 0$ and $b \geq 0$, and let $L$ be the limit. Then \[ L = \sqrt[n]{a+b\sqrt[n]{a+b\sqrt[n]{a+\ldots}}} \] \[ L = \sqrt[n]{a+b L} \] \[ L^n - b L - a = 0 \] Let $\alpha = a/L^n$ and $\beta = b/L^{n-1}$. Then $a = \alpha L^n$, $b = \beta L^{n-1}$ and \[ L^n - \beta L^n - \alpha L^n = 0 \] \[ 1 - \beta - \alpha = 0 \] \[ \beta = 1 - \alpha \] yielding \[ L = \sqrt[n]{\alpha L^n+\beta L^{n-1}\sqrt[n]{ \alpha L^n+\beta L^{n-1}\sqrt[n]{\alpha L^n+\ldots} }} \] \pagebreak {\large 2.2 Identity Transformations} \\ Pushing terms through radicals, {\small \begin{eqnarray} \nonumber \frac{b+\sqrt{b^2+4 a}}{2} & = & \sqrt{ a+b\sqrt{ a+b\sqrt{ a+b\sqrt{ a+\ldots } } } } \\ \nonumber & = & \sqrt{ a+\sqrt{ a b^2+b^3\sqrt{ a+b\sqrt{ a+\ldots } } } } \\ \nonumber & = & \sqrt{ a+\sqrt{ a b^2+\sqrt{ a b^6+b^7\sqrt{ a+\ldots } } } } \\ \nonumber & = & \sqrt{ a+\sqrt{ a b^2+\sqrt{ a b^6+\sqrt{ a b^{14}+\ldots } } } } \\ \nonumber & = & \sqrt{ \left(\frac{a}{b^2}\right)b^2+\sqrt{ \left(\frac{a}{b^2}\right)b^4+\sqrt{ \left(\frac{a}{b^2}\right)b^8+\sqrt{ \left(\frac{a}{b^2}\right) b^{16} +\ldots } } } } \end{eqnarray} } Set $\alpha = a/b^2$. Then {\small \begin{eqnarray} \nonumber \sqrt{ \alpha b^2+\sqrt{ \alpha b^4+\sqrt{ \alpha b^8+\sqrt{ \alpha b^{16} +\ldots } } } } & = & \frac{b+\sqrt{b^2+4 a}}{2} \\ \nonumber & = & \frac{b+\sqrt{b^2+4 \alpha b^2}}{2} \\ \nonumber & = & \frac{b}{2}\left(1+\sqrt{1+4 \alpha}\right) \end{eqnarray} } \pagebreak Setting $\alpha = 2$, $b = 1/2$, \[ \sqrt{\frac{2}{2^2}+\sqrt{ \frac{2}{2^4}+\sqrt{\frac{2}{2^8}+\sqrt{\frac{2}{2^{16}}+\ldots}} }} = 1\] \[ \sqrt{\frac{2}{2^1}+\sqrt{ \frac{2}{2^2}+\sqrt{\frac{2}{2^4}+\sqrt{\frac{2}{2^8}+\ldots}} }} = \sqrt{2} \] This can be rewritten as \[ 2^{1-2^{-1}} = \sqrt{2^{1-2^0} + \sqrt{2^{1-2^1} + \sqrt{2^{1-2^2} + \ldots } } } \] And generalized to \[ 2^{1-2^k} = \sqrt{2^{1-2^{k+1}} + \sqrt{2^{1-2^{k+2}} + \sqrt{2^{1-2^{k+3}} + \ldots } } } \] Letting $k \rightarrow -\infty$, \[ 2 = \sqrt{\ldots+ \sqrt{2^{1-2^{-1}} + \sqrt{2^{1-2^0} + \sqrt{2^{1-2^1} + \ldots } } } } \] \pagebreak Transformations for "pushing" terms through radicals: \[ \sqrt{a_0+b_0\sqrt{a_1+b_1\sqrt{a_2+b_2\sqrt{a_3+\ldots}}}} \] \[ = \sqrt{a_0+\sqrt{a_1 b_0^2+\sqrt{a_2 b_1^2 b_0^4+\sqrt{ a_3 b_2^2 b_1^4 b_0^8+\ldots }}}} \] \vspace{2cm} \[\sqrt[n]{a_0+b_0\sqrt[n]{a_1+b_1\sqrt[n]{a_2+b_2\sqrt[n]{a_3+\ldots}}}}\] \[ = \sqrt[n]{a_0+\sqrt[n]{a_1 b_0^n+\sqrt[n]{a_2 b_1^n b_0^{n^2}+\sqrt[n]{ a_3 b_2^n b_1^{n^2} b_0^{n^3}+\ldots }}}} \] \pagebreak {\large 2.3 Generation of Identities Using Recurrences} \\ Srinivasa Ramanujan (1887-1920) % % pronounced Shrinivasa Rah-MAH-na-jun % ^ % % Amazing intuition, self-taught, often unable to % explain his results or reasoning, was known to % awaken in the middle of the night after dreaming % up equations. His notebooks are filled with % thousands of theorems, corollaries, and examples. % After 25 years of steady work, the task of cataloging % and proving all his results is still not complete. % Rediscovered by Ramanujan, originally due to Bauer % \[ 1 - 5\left(\frac{1}{2}\right)^3 + 9\left(\frac{1 \times 3}{2 \times 4}\right)^3 -13\left(\frac{1\times 3\times 5}{2\times 4\times 6}\right)^3 + \ldots = 2/\pi \] \[ \frac{1}{1+\frac{e^{-2\pi}}{1+\frac{e^{-4\pi}}{1+ \frac{e^{-6\pi}}{1+\ldots} }}} = \left(\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{\sqrt{5}+1}{2}\right)e^{(2\pi/3)} \] \[ \left(1+\frac{1}{1 \times 3}+\frac{1}{1\times 3\times 5}+\ldots\right) + \frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{1+\ldots}}}} = \sqrt{\frac{\pi e}{2}} \] \pagebreak Problem: \[ ? = \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\ldots}}}} \] Ramanujan claimed: \[ x+n = \sqrt{n^2+x\sqrt{n^2+(x+n) \sqrt{n^2+(x+2n)\sqrt{\ldots}} }} \] Setting {\em n}=1 and {\em x}=2 we find \[ 3 = \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\ldots}}}} \] \pagebreak Notice \[ [a+b] = \sqrt{b^2+a^2+2ab} = \sqrt{b^2+a[a+b+b]} \] Expanding the square-bracketed portions, {\small \begin{eqnarray} \nonumber [x+n] & = & \sqrt{n^2+x[x+n+n]} \\ \nonumber & = & \sqrt{n^2+x\sqrt{n^2+(x+n)[x+2n+n]}} \\ \nonumber & = & \sqrt{n^2+x\sqrt{n^2+(x+n)\sqrt{n^2+(x+2n)[x+3n+n]}}} \\ \nonumber & . & \\ \nonumber & . & \\ \nonumber & . & \\ \nonumber & = & \sqrt{n^2+x\sqrt{n^2+(x+n)\sqrt{n^2+(x+2n)\sqrt{\ldots}}}} \end{eqnarray} } Basic Idea: \vspace{-1.5cm} \begin{itemize} \item Find a "telescoping" recurrence relation \vspace{-1.5cm} \item Use it to generate an infinitely recursive expression \vspace{-1.5cm} \item Hope that it converges (!) \end{itemize} \pagebreak Consider a more familiar recurrence relation \[ \left[\frac{1}{k}\right] = \frac{1}{k(k+1)}+\left[\frac{1}{k+1}\right] \] Expanding the square-bracketed portions, {\small \begin{eqnarray} \nonumber \left[ \frac{1}{n} \right] & = & \frac{1}{n(n+1)} + \left[ \frac{1}{n+1} \right] \\ \nonumber & = & \frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\left[ \frac{1}{n+2} \right] \\ \nonumber & . & \\ \nonumber & . & \\ \nonumber & . & \\ \nonumber & = & \frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+\ldots \end{eqnarray} } In this case, the infinite expansion is valid. \pagebreak Consider the recurrence \[ \left[2^{1-2^k}\right] = \sqrt{2^{1-2^{k+1}} + \left[2^{1-2^{k+1}}\right]} \] which expands into \[ \left[2^{1-2^k}\right] = \sqrt{2^{1-2^{k+1}} + \sqrt{2^{1-2^{k+2}} + \sqrt{2^{1-2^{k+3}} + \ldots } } } \] Next, consider the recurrence \[ \left[1+2^{-2^{k+1}}\right] = \sqrt{2^{1-2^{k+1}} + \left[1+2^{-2^{k+2}}\right]} \] which expands into \[ \left[1+2^{-2^{k+1}}\right] = \sqrt{2^{1-2^{k+1}} + \sqrt{2^{1-2^{k+2}} + \sqrt{2^{1-2^{k+3}} + \ldots } } } \] How can two identities have the same right hand side but different left hand sides ? Answer: in the second identity, the infinite expansion is not valid. \pagebreak Another example (this time of a valid expansion). The recurrence \[ \left[n! + (n+1)!\right] = \sqrt{n!^2 + n!\left[(n+1)!+(n+2)!\right]} \] expands into {\small \[ \left[n! + (n+1)!\right] = \sqrt{n!^2 + n!\sqrt{(n+1)!^2 + (n+1)!\sqrt{(n+2)!^2 + \ldots } } } \] } Recalling that $ \Gamma(k+1) = k! $ for natural $k$, we can generalize to {\small \[ \left[\Gamma(x) + \Gamma(x+1)\right] = \sqrt{\Gamma^2(x) + \Gamma(x)\sqrt{\Gamma^2(x+1) + \Gamma(x+1)\sqrt{\ldots } } } \] } \pagebreak {\large 3. General Forms} \\ Consider a "continued power" of the form \[ a_0+b_0(a_1+b_1(a_2+b_2(a_3+\ldots)^{p_2})^{p_1})^{p_0} \] Setting $p_j = 1$ and $b_j = 1$, we get a series \[ a_0+a_1+a_2+a_3+\ldots \] Setting $p_j = 1$ and $a_j = 0$, we get an infinite product \[ b_0 b_1 b_2 b_3 \ldots \] Setting $p_j = -1$, we get a continued fraction \[ a_0 + \frac{b_0}{a_1 + \frac{b_1}{a_2 + \frac{b_2}{a_3 + \ldots}}} \] Setting $p_j = 1$ and $b_j = 1/c_j$, we get an ascending continued fraction \[ a_0+\frac{a_1+\frac{a_2+\frac{a_3+\ldots}{c_2}}{c_1}}{c_0} \] Setting $p_j = 1/n$, we get a nested radical \[ a_0+b_0\sqrt[n]{a_1+b_1\sqrt[n]{a_2+b_2\sqrt[n]{a_3+\ldots}}} \] Setting $p_j = -1/n$, we get a hybrid form \[ a_0 + \frac{b_0}{ \sqrt[n]{a_1 + \frac{b_1}{ \sqrt[n]{a_2 + \frac{b_2}{ \sqrt[n]{a_3 + \ldots} }} }} } \] Observation: series, infinite products, continued fractions and nested radicals are all special cases of this generalized "continued power" form ! \linebreak[2] Question: can another general form be found for which exponential ladders are also a special case ? \linebreak[2] \pagebreak We can imagine constructing the expression \[ a_0+b_0(a_1+b_1(a_2+b_2(a_3+\ldots)^{p_2})^{p_1})^{p_0} \] by starting with a "seed" term and repeating the following steps: \vspace{-1.5cm} \begin{itemize} \item Raise to the exponent $p_j$ \vspace{-1.5cm} \item Multiply by $b_j$ \vspace{-1.5cm} \item Add $a_j$ \vspace{-0.75cm} \end{itemize} Of these 3 operations, only the first is non-commutative. What if we change the ordering of the operands in the first step ? Then we would constuct an expression like \[ a_0+b_0 p_0^{a_1+b_1 p_1^{a_2+b_2 p_2^{a_3+\ldots}}} \] Setting $a_j = 0$ and $b_j = 1$, we get an exponential ladder \[ p_0^{p_1^{p_2^{p_3^{\cdots}}}} \] \pagebreak What other things can we generalize ? \begin{itemize} \item Identities. Example (constant term expansion): \[ L = \sqrt[n]{\alpha L^n+\beta L^{n-1}\sqrt[n]{ \alpha L^n+\beta L^{n-1}\sqrt[n]{\alpha L^n+\ldots} }} \] becomes \[ L = (\alpha L^{1/p}+\beta L^{1/p-1}( \alpha L^{1/p}+\beta L^{1/p-1}(\alpha L^{1/p}+\ldots)^p )^p)^p \] where $\beta = 1 - \alpha$. \item Recurrences. Example: \[ \left[2^{1-2^k}\right] = \sqrt{2^{1-2^{k+1}} + \left[2^{1-2^{k+1}}\right]} \] becomes \[ \left[2^{\frac{p^k-1}{p^{k-1}-p^k}}\right] = \left( 2^{\frac{p^{k+1}-1}{p^k-p^{k+1}}} + \left[ 2^{\frac{p^{k+1}-1}{p^k-p^{k+1}}} \right] \right)^p \] \pagebreak \item Transformations. Example: \[\sqrt[n]{a_0+b_0\sqrt[n]{a_1+b_1\sqrt[n]{a_2+b_2\sqrt[n]{a_3+\ldots}}}}\] \[ = \sqrt[n]{a_0+\sqrt[n]{a_1 b_0^n+\sqrt[n]{a_2 b_1^n b_0^{n^2}+\sqrt[n]{ a_3 b_2^n b_1^{n^2} b_0^{n^3}+\ldots }}}} \] becomes {\small \[(a_0+b_0(a_1+b_1(a_2+b_2(a_3+\ldots)^p)^p)^p)^p\] \[ = (a_0+(a_1 b_0^{p^-1}+(a_2 b_1^{p^-1}b_0^{p^-2}+( a_3 b_2^{p^-1} b_1^{p^-2} b_0^{p^-3}+\ldots )^p)^p)^p)^p \] } \item Convergence Tests. Example: Is there a generalized ratio test like the one used with series ? \end{itemize} \pagebreak {\large 4. Selected Results from Literature} \\ Infinite Products \\ A) If $-1 < x < 1$, then \[ \prod_{j=0}^\infty\left(1+x^{2^j}\right) = \frac{1}{1-x} \] Incidentally, this identity can be generated with the recurrence \[ \left[\frac{1}{1-x}\right] = (1+x)\left[\frac{1}{1-x^2}\right] \] B) If $F_n = 2^{2^n}+1 =$ the $n$th Fermat number, then \[ \prod_{n=0}^\infty\left(1-\frac{1}{F_n}\right) = \frac{1}{2} \] C) If the factors of an infinite product all exceed unity by small amounts that form a convergent series, then the infinite product also conveges. \pagebreak Exponential Ladders \\ If 0.06599 $\approx e^{-e} \leq x \leq e^{1/e} \approx$ 1.44467, then \[ x^{x^{x^{x^{\cdots}}}} \] converges to a limit $L$ such that $L^{1/L} = x$. \\ \pagebreak Herschfeld's Convergence Theorem (restricted), published 1935. When $x_n > 0$ and $0 < p < 1$, the expression \[ \lim_{k\rightarrow\infty}x_0+(x_1+(\ldots+(x_k)^p\ldots)^p)^p \] converges if {\em and only if} $\{x_n^{p^n}\}$ is bounded. \\ Special case: $p = 1/2$. Then \[ \lim_{k\rightarrow\infty}x_0+\sqrt{x_1+\sqrt{\ldots+\sqrt{x_k}}} \] converges if and only if $\{x_n^{2^{-n}}\}$ is bounded. \\ \pagebreak "Souped-up" ratio test (due to Dixon Jones, 1988). When $x_n > 0$ and $p > 1$, the continued power \[ \lim_{k\rightarrow\infty}x_0+(x_1+(\ldots+(x_k)^p\ldots)^p)^p \] converges if \[ \frac{x_{n+1}^p}{x_n} \leq \frac{(p-1)^{p-1}}{p^p} \] for all sufficiently large $n$. \\ Observation: as $p \rightarrow 1$, we {\em almost} get back d'Alembert's ratio test for series. \end{document}