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ABSTRACT

Although there are clear benefits to automatic image
capture services by wearable devices, image capture
sometimes happens in sensitive spaces where camera use is
not appropriate. In this paper, we tackle this problem by
focusing on detecting when the user of a wearable device is
located in a specific type of private space—the public
restroom—so that the image capture can be disabled. We
present an infrastructure-independent method that uses just
the microphone and the speaker on a commodity mobile
phone. Our method actively probes the environment by
playing a 0.1 seconds sine wave sweep sound and then
analyzes the impulse response (IR) by extracting MFCCs
features. These features are then used to train an SVM
model. Our evaluation results show that we can train a
general restroom model which is able to recognize new
restrooms. We demonstrate that this approach works on
different phone hardware. Furthermore, the volume levels,
occupancy and presence of other sounds do not affect
recognition in significant ways. We discuss three types of
errors that the prediction model has and evaluate two
proposed smoothing algorithms for improving recognition.
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INTRODUCTION

Wearable cameras produce personal image-based records
which can be used in a variety of ways. For example,
researchers have used such records to investigate health
behaviors (such as exercise and diet [9, 10]), help people
with memory loss recall past events [8], increase parental
understanding of the needs of children with autism [15, 18],
and improve everyday memory and social skills for children
with disabilities [1]. Although there are demonstrated
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benefits to wearing an always-on and automatically
recording personal camera, there are also documented
concerns of recording others, particularly in sensitive
spaces [1, 3,4, 9, 10, 11]. As a result, many researchers and
users have expressed a need for a mechanism to temporarily
disable capture. However, even when manual “privacy
buttons exist and wearable cameras can be removed, it is
not uncommon for participants to report that they forgot
they were wearing the unit. Therefore, the participant
inadvertently might collect inappropriate images, such as
going to the bathroom” [11]. “With thousands of images
automatically recorded every day, ... [the user] only deletes
unwanted images if he comes across them, as searching for
them would take too much time” [4]. Therefore, how to turn
off wearable cameras automatically in sensitive or private
spaces is an important research problem.

We tackle this problem by exploring how to detect a
specific type of private space where image recording is
socially inappropriate—the public restroom. Many
researchers have identified the restroom as a specific type
of space where they want to suspend capture (e.g., [1, 3, 4,
11]). We focus on public restrooms, in particular, because
of the potential for others to be recorded in the captured
images there. This problem is challenging for two reasons.
First, infrastructure-dependent  indoor localization
approaches (e.g., cellular, WiFi, and visible light) depend
on the infrastructure coverage and floor maps to identify a
restroom’s location. Infrastructure-independent indoor
localization approaches (e.g., inertial sensors on phone)
would still require floor maps in order to reason and
determine if the user’s location is inside a restroom.
However, such localization methods fail when the user is
outside of an infrastructure’s coverage or at a location
where floor maps have not yet been developed.
Alternatively, video or image based approaches can be
employed to detect restrooms [17, 19, 20, 25, 26].
Unfortunately, vision based techniques can sometimes miss
signage located immediately outside the space [26]. These
methods still can be used inside the space to detect the
presence of objects, construction material, and fixtures
commonly found in restrooms to reason that must be where
the user is located (e.g., [19]); however, this violates the
original motivation of not wanting recording to happen
there in the first place. Furthermore, recording must still be
on to determine when the user has left the space in order to
resume the archiving of captured images.
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Figure 1. (Left) Wearable phone attachment for performing and anay21g impulse response and image capture; (Right) 8 sample restrooms
used in our study.

In this paper, we present an infrastructure-independent
approach, which uses the hardware already found on
commodity mobile phones to emit a probing sound and
analyze the impulse response (IR) of a space. Our work
uses active probing to detect restrooms (a fype of space)
rather than a specific space amongst a defined set of
locations from which a room type classifier has been
trained. We demonstrate that our model can predict new
spaces and that the approach works on different phones. We
discuss how the volume level does not affect the model in
significant ways. Therefore we can minimize the
obtrusiveness of the sweep by outputting it at a lower
volume. We also show that our model maintains its
prediction performance despite of the occupancy and the
presence of other sounds in restrooms. We discuss three
types of errors that our SVM model has and propose two
smoothing algorithms to improve the prediction accuracy.

THEORY OF OPERATION

An important and commonly used measurement to analyze
and characterize the acoustic properties of different
environments and materials is the Impulse Response (IR)
[24]. IRs contain time-domain acoustic properties, one of
which is the reverberation and its components (i.e., direct
sound, decay time, early reflection, and echoes). A common
method for capturing the IR of a room is to use a sine wave
sweep over a predetermined frequency range to excite the
acoustics of a room [14]. The sine wave sweep and a
specified amount of time afterwards is recorded and then
analyzed to understand the behavior of each audible
frequency over time in an environment. IR analysis is
commonly used by audio engineers to help them design and
tune their systems in order to enhance the sound and avoid
any undesired feedback or noise. Acousticians use this
technique as an analysis tool to aid them when designing a
space. IRs are also used in convolution reverb processing to
create a digital representation of the acoustics of different
environments.

The acoustic characteristics of an environment are
contingent on its dimensions and ability to absorb sound
(absorption coefficient). This is a function of several
constant factors including the shape, size, construction
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materials, and objects inside of the construct (e.g., chairs,
desks). There are also many variables, such as humidity,
and percentage of occupancy, that can change the acoustics
continuously over time. These characteristics not only
affect reverberation time, but they also affect other
parameters of sound such as diffraction, refraction, and
reflection [23].

Because no two environments are exactly the same, they all
have wunique acoustic characteristics or fingerprints.
However, many constructs have very similar fingerprints
due to its purpose. One particular environment that has
unique qualities from other types of environments, yet also
has strong correlations between similar environments that
serve the same purpose, is the restroom.

In both the public and private space, restrooms have similar
affordances that greatly impact the acoustic fingerprint.
These affordances include water resistant floors and walls,
toilets, and sinks. While public restrooms have stalls and
private restrooms have showers/tubs, they both demonstrate
similar acoustic responses and can be identified as
restrooms from that response (even to the human ear over
the phone). This is partially due to the common layout of
restrooms but can also be attributed to the materials used on
the surfaces and the items found in a restroom (which all
have similar absorption coefficients [14]).

Our system leverages the natural acoustic traits of different
spaces (in particular the restroom) by exciting the natural
acoustics via IR. The IR of different spaces can then be
processed to extract acoustic features which are then used
to train a classifier to identify the type of space where the
user is located. This active probing approach differs from
existing computational auditory scene recognition (CASR)
methods which extract features and trains classifiers on
environment or human generated sounds (such as traffic
noise or sink usage) collected from the target scenes [2, 16,
21]. An active probing approach allows for the
classification of restrooms to happen even before the user
begins to use the space (e.g., urinating, defecating, flushing,
and hand washing).
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(b)
Figure 2. (a) Impulse response of a restroom; (b) Impulse response
of an office.

Active probing has been explored as a localization approach
[13,22]. Kunze and Lukowicz [13] showed how to detect a
mobile phone’s symbolic location from a set of pre-defined
ones by using vibration and short narrow frequency ‘beeps’.
By emitting a sound and analyzing the impulse response,
Rossi et al. [22] were able to classify a user’s room-level
location among 20 rooms at 98% accuracy. In our work, we
use a Sine Wave Sweep instead of Maximum Length
Sequence (MLS) for active probing, because a sine wave
sweep exhibits better tolerance to nonlinearity and time-
variance of the probed spaces [6]. This allows us to tackle
the goal of recognizing space type.

SYSTEM IMPLEMENTATION

Impulse Response Measurement

To perform the IR measurement, we use the microphone
and the speaker already available on commodity mobile
phones (see Figure 1). We developed a measurement
application that first starts recording with the built-in
microphone, and then it outputs a sine wave sweep from
20Hz — 20kHz from the built-in speaker. After the sine
wave sweep stops, the application continues to record for
one second, allowing it to capture fully the reverberation of
the measured space. The measurement application records
the IR at 44.1 KHz with 16 bit depth. Figure 2 shows how
spectrograms of IRs collected on a Nexus 4 phone differ for
a restroom and a non-restroom space.
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Stans et al. previously compared different impulse response
measurements (MLS, Inverse Repeated Sequence (IRS),
Time-Stretched Pulses, and Sine Wave Sweep). In this
comparison, they found that the sine wave sweep is an ideal
choice for non-occupied spaces. It also has the benefit of
not requiring any tedious calibrations (which is important in
creating a robust mobile system) [24]. Restrooms generally
have very few people coming and going, and are often
unoccupied. This enables the sine wave sweep to perform
optimally, making it the best option to use for IR analysis.
Furthermore, a commodity mobile phone’s hardware is
typically optimized for the range of human hearing, which
matches the ideal frequency range for using a sine wave
sweep to capture IRs. Because the sweep is audible to
humans, we want it to be as short as possible yet still be
able to produce a noticeable probing effect. We tested
sweeps of 0.01, 0.1 and 1s in duration and found that the
0.1s duration provides the best balance for capturing the
acoustics of a space and minimizing the intrusiveness.

Feature Extraction

The measurement application intentionally starts recording
before it outputs the sweep and stops recording one second
after the sweep has completed to fully capture the effect of
an IR. The IR is present in the recording after the
measurement application begins to output the sweep. There
is a variable latency between when the measurement
application requests the OS to output the sine wave sweep
and when it actually plays. Due to this delay, the sweep
starts at an unknown time point. To estimate the start of the
sweep: 1) Divide the IR into frames using a sliding window
size W = 1024 samples (23 milliseconds). Each adjacent
two windows have 50% overlap with each other. 2) Smooth
each window using the Hanning function. 3) Calculate the
FFT magnitudes for each window. FFT;, represents the
Kth (K = 0,...,W-1) FFT magnitude of the window j (j =
1...N, N:# of frames in a sweep record). The number of
frames S inside the sweep itself is calculated as: S =

44100291 4) Estimate the index to the window at the start

W *50%

of the sweep wusing the following optimization:
min{i+S,N _

arg maXieq ..ny iji{ 1Dyt FFTj.

Processing the rest of the recording after the start of the
sweep guarantees that the complete IR is analyzed.
However, it may also process extrancous information
because the IRs captured in different types of spaces decay
at different rates. We have found experimentally that the
optimal amount of the recording after the sweep starts to
perform feature extraction on is 0.4 s (0.1 s of the sweep
itself + 0.3 s after the sweep stops). In the evaluation
section, we describe the process for determining this value
through tests of different durations after the start of sweep.

For the identified optimal amount of the recording to use
for feature extraction, we extract the mel-frequency cepstral
coefficients (MFCCs) from each window. MFCCs are
commonly used as features in the speech recognition and



computational auditory scene recognition [2, 16, 21]. In our
implementation, we calculate the first 13 MFCCs by
applying 23 Mel filters, remove the first MFCC, and then
use the rest to form a feature vector: (Fy;, ..., F15;). In the
final step, we aggregate all the MFCCs of all the frames by
calculating the mean values of each one of the MFCCs

— N :
using the following equation: Fj, = % (k=1...12, N: #
of frames in the optimal amount of the recording).

Classification

Classifying restrooms vs. non-restrooms falls under what is
generally referred in machine learning as One Class
Classification, because restroom is the target class that we
are interested in identifying among all the possible spaces.
However, one-class classifiers tend to be conservative in
their predictions. We have tried two one-class classification
algorithms (Hempstalk ef al [7] and the one-class
classification in LibSVM [5]), and found that they often
predict a new sample as “unknown” and therefore yield low
recalls for the restroom class.

Because restrooms are built to serve the same functionality,
conform to building codes, use similar construction
materials, and have similar materials inside of the construct
(e.g., toilets, wash basins), there should be high inner
consistency in the restroom class, which at the same time
might be highly distinguishable from the “non-restroom”
class. Furthermore, because people spend much more time
outside of restrooms, we can easily collect a variety of non-
restroom data to help the classifier learn the classification
boundary. Thus, we decided to treat restroom detection as a
binary-class classification, which predicts current room
type as either restroom or non-restroom. We leverage
LibSVM [5] for classification in our evaluation.

PERFORMANCE EVALUATION

Using a Galaxy Nexus, we collected IR data for 103 public
restrooms from 49 different buildings (built between the
1960s — 2006). To help the model learn the classification
boundary, we also collected non-restroom data. We
attempted to sample as diverse a set of non-restroom spaces
as possible (e.g., hallway, elevator, locker room, outdoor,
classroom, shop, and bus station). However, we note that it
is hardly possible to cover all different types of non-
restroom spaces that a user can potentially visit in our
evaluation. Information about our collected dataset is
shown in the first row of Table 1. Figure 3 shows the types
of places where we collected the restroom and non-
restroom data.

For each space, we collected 30 samples at different spots
perceived to support circulation. Circulation is a term in
building architecture to refer to the way that people move
through and interact with the space. For instance, in a men’s
restroom, the typical circulation would be from the door to
urinals / toilet stalls, the washstand, the paper towel racks,
and then back to the door. While collecting the data, we
held the phone still in one hand in front of the chest to
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Figure 3. Different types of places where data was collected

simulate wearing the device around the neck. The phone
remained stationary while recording the impulse response.
We took care to hold the phone such that both the speaker
and the microphone were not covered or blocked in
anyway.

Optimal Amount of Recording for Feature Extraction

As previously described, the application begins recording
slightly before the sweep and continues for a full second.
This guarantees that the full IR is captured within the
recording. We can remove extraneous information between
the start of the recording and the start of the sweep by
extracting features from the start of the sweep instead of the
start of the recording. To identify the optimal amount of
recording after the start of the sweep to use for feature
extraction, we selected 10 different durations at 0.1 s
interval after the sweep has stopped after the sweep stops
(0.1~1 s). For each duration (D = 0.1,...,1.0), we extracted
features based on all 7474 recordings by the Galaxy Nexus,
and performed a 10-fold cross validation with SVM as
classifier. The results are shown in Figure 4. All the five
performance measurements indicate that 0.3 seconds
duration after the sweep has stopped is the optimal amount
of the recording to use for feature extraction. It also shows
that models trained with longer durations than 0.3 seconds
are less accurate. Therefore, in all following evaluations,
we used this finding and performed feature extraction only
on the 0.4 seconds portion of the recording after the start of
the sweep (0.1 s sweep itself + 0.3 s duration after the
sweep has stopped).

Efficacy of Model in Classifying New Restroom Spaces

To assess the model’s efficacy in classifying new restroom
spaces, we evaluated how the model converged as the
number of restrooms used for training (training set size).
Using the Galaxy Nexus dataset (103 restrooms), we

4— Accuracy

i Precision (Restroom)

Recall (Restroom) Precision (Non-Restroom) —%— Recall(Non-Restroom)

Figure 4. Five measurements of the model using 10 different
durations from the start of the sweep for the feature extraction.
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gradually increased the number of restrooms (N=1,...,103)
used for training. For each number N, the evaluation
procedure worked in this manner. First, we randomly chose
N restrooms from the 103 restrooms. Second, we randomly
chose the same percentage of non-restroom IRs from all
non-restroom IRs. Thus, if the total number of restroom and
non-restroom are Ty, Tprm > then the number of IR in these
N restroom is Ry. Therefore, the number of non-restroom

IRs chosen was: NRy = Tppm * TR—N. Third, we used SVM
™m

as the classifier and performed a 10-fold cross validation on
these Ry + NRy IRs. Fourth, to remove variations caused
by the strategy of choosing N spaces for training at random,
we repeated the procedure for 10 rounds by choosing N
different restrooms each round. Finally, we averaged the
performances from the 10 rounds for each N training set
size. The final results are shown in Figure 5.

As the number of training set size increases, the
performance became more stable and gradually converged.
The weighted F-Measure, which incorporates the precision
and recall of both the restroom and non-restroom classes,
converged at ~0.93. The weighted F-Measure fluctuated
between 0.91 and 0.93 while the model was trained on less
than 40 restrooms. This suggests that the model had not
seen enough variations of restrooms at that point yet.

Generalizability of the Approach across Phones
Different phones may use different hardware. Furthermore,
the microphone and the speaker can be placed at different
distances and in different positions from one another. Thus,
we must also validate that our approach generalizes to work
on different phones. In addition to the Galaxy Nexus, we
also collected additional restroom and non-restroom
samples on a Nexus 4, an HTC One, and a Galaxy S. The
data collected on these devices were not as extensive as the
one collected on the Galaxy Nexus, but they helped to
confirm the results obtained from analyzing the Galaxy
Nexus data. Table 1 summarizes the amount of data
collected on the four phones.

We performed a 10-fold cross validation using SVM as the
classifier for each phone’s data separately. The results are

0 10 20 30 40 50

—o— Precision(Restroom) ~ —#— Recall(R

Recall(Non-Restroom) ~ —%— F-Meast

Figure 5. Measurements of the model’s convergence with different
number of restrooms used for training

Table 1. Sample data collected on the four phones
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Phone Name # of | #of restroom | # of non-restroom
restrooms data samples data samples
Galaxy Nexus (GN) 103 4258 3216
Nexus 4 52 2230 1296
HTC One 20 600 523
Galaxy S 20 600 573
1
0.98
0.96
0.94
0.92
09
0.88
A P ) 4

Figure 6. Model Generalization across phones: 10-fold Cross-
validation Results on four phones separately (R: Restroom; N: non-
restroom)

shown in Figure 6. It highlights that the classification
models for the four different phones perform similarly well
at between 0.92 and 0.98 (weighted F-Measure).

Unfortunately, different hardware settings along with
software optimizations for the microphone and the speaker
on different phones mean that the impulse responses
captured by each phone are drastically different from each
other. We applied the model trained on the Galaxy Nexus
dataset and tested on the other three phones’ dataset. The
10-fold cross validation results, shown in Figure 7, reveal
that the extracted MFCCs features do not generalize across
phones. Phone-independent classification does not perform
as well as phone-dependent classification (weighted F-
Measure between 0.43 and 0.63).

Effect of Occupancy & Sounds on the Model

We tested the model’s robustness against the occupancy of a
restroom and sound generated by the occupants in a
restroom (e.g. urinating, flushing, and hand washing). Using
the Galaxy Nexus, we collected new data from a restroom
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Figure 7. Model trained on Galaxy Nexus dataset and tested on the
other three phones’ dataset (R: restroom; N: non-restroom).




with two urinals, two toilet stalls, and three basins (seven
functional spots in total) for the evaluation. We defined the
occupancy rate as the percentage of functional spots
occupied by people. Therefore, we had 14%, 29%, 43%,
57%, 71%, 86% and 100% occupancy rates. We collected
30 additional IR samples using the same method described
earlier in the paper for each of the seven occupancy rates. In
all seven cases, people simulated using the restroom in
normal manners. We used the SVM classifier trained on the
large Galaxy Nexus data corpus (described in the first row
of Table 1) to test the new collected data. For the 14%, 29%
and 86% occupancy rates, the model misclassified one
sample each (accuracy: 97%), and correctly classified all
samples for the remaining four occupancy rates.

Effect of Sweep Volume on the Model

We evaluated the influence of the sweep volume on the
model to explore if the obtrusiveness of the sweep can be
minimized by outputting the sweep at lower volumes. We
collected 30 samples at 4 volume levels (0.1, 0.2, 0.5 and
0.75 of the max volume) from 13 additional restrooms
using the Galaxy Nexus.

For comparison, we also extracted MFCCs using only the
environment sound without outputting a sweep; this acted as
the IR for the sweep at volume 0. We used the portion of the
recording between the start of the recording and the start of
the sweep (see Figure 2) as each space’s environment sound.
We note that a limitation and potential threat to validity in
using this approach exists because the extracted data is
~0.15s in length each, in comparison to the 0.4 s recordings
at other volumes. In this instance, because there is no sine
wave sweep, we did not need to include an additional 0.3 s
normally used to capture the IR after the sweep plays.

We performed a 10-fold cross validation on the data
collected at each volume level. The results shown in Figure
8 demonstrates that models trained on recordings of IRs
after an output sweep outputted at any of the four volume
levels performed better than the model trained on
recordings without a sweep; there was a 10% or more
improvement in accuracy. Additionally, models trained on
data captured when the application outputted sweeps at
higher volumes generally performed better than those at

Precision

e— Accuracy

Precision (Non-Restroom)—e— Recall(Noi

Figure 8. Measurements of the model using 5 different volume
levels. Volume 0 uses only the portion without a sweep.
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Table 2. Sample data collected in-the-wild using Galaxy Nexus.

Day # of restrooms | #of restroom | # of non-restroom
data samples data samples
1 9 378 788
2 4 171 485
3 3 141 390
4 4 109 413
11 704 2093

lower volumes. Although models trained on IRs captured
after lower volume sweeps lose some performances, they
are still comparable in performance to those after higher
volume sweeps. This suggested that it is possible to output
the sweep at a lower volume in real practice so that the
active probing is less perceivable and thus less obtrusive.

Continuous In-the-Wild Sampling and Evaluation

In this section, we performed continuous in-the-wild data
collection to evaluate how well our classification approach
works for realistic scenarios, such as when the user wears a
Galaxy Nexus around the neck (see Figure 1). The data
collection application plays a 0.1 second sine wave sweep
sound at 0.3 of the max volume. The application
automatically repeated this procedure in 5 seconds interval.

We collected data for about 2 hours per day on 5 different
days. We collected data in different places each day and as
a result the restrooms were all different. This approach
enabled us to test the model’s ability to classify new spaces.
The temporal continuity of each day’s data allowed us to
apply the temporal optimization to the SVM classifier’s
predictions later. We followed the procedure described in
the Feature Extraction section and again used SVM as the
classifier. Table 2 summarizes the collected data (4169 non-
restroom data and 1503 restroom data).

Classifying Spaces

We evaluated the model’s ability to classify new restroom
spaces in-the-wild. Because we collected data over 5
different days, the model could be trained on 1, 2, 3, 4, or 5
days’ worth of data. For each number of days, we evaluated
all the possible combinations of different days that could be
grouped together. We had 5, 10, 10, 5 and 1 possible
combinations for 1, 2, 3, 4 and 5 days’ worth of data
respectively. We used a 10-fold cross validation method to
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Figure 9. Measurements of the model trained on different number
of days’ data.
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evaluate each combination. This tested the model’s ability
to accurately classify previously seen spaces as well as new
ones, taking into consideration the fact that a person would
likely to revisit some places and restrooms. Then, we
averaged the 10-fold cross validation results of all
combinations for a given number of days’ worth of data to
get the mean average values. The results, shown in Figure
9, illustrate that our model can predict new spaces with
balanced precision and recall (weighted F-Measure > 0.92).

Improving Prediction Errors

In this section, we describe the prediction errors that affect
the model’s performance in classifying the continuous in-
the-wild data that we collected and discuss how to correct
them. The first type of error is a “spark,” which is an
isolated prediction of one class instead of the other. The
second type of error is a “boundary” error, which happens
when the user enters or leaves the restroom, but the
prediction does not reflect that transition immediately. The
third type of error is when the SVM predictions are
“sporadic” and multiple wrong results are returned over a
period of time.

Spark and sporadic prediction errors potentially can be
eliminated to some extent by a smoothing algorithm,
because it can be assumed that people normally do not jump
in or out of the restroom for only 5 seconds (the sampling
interval). However, boundary errors cannot be addressed by
a smoothing algorithm.
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Figure 10. Evaluation results of the two smoothing algorithms with
different window size (top: alg. 1; bottom: alg. 2)
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Smoothing Algorithm I. The first algorithm keeps track of
the current space type predicted by the SVM model. When
a different space type is predicted by the model, then the
algorithm will hold this new prediction and keep receiving
further predictions from the model for a pre-set window size
buffer N. If the majority of the predictions in the buffer
match this different space type, then our algorithm will
correct all buffered predictions as the new space type and
also change the current space type that the user is in to this
new one. If the majority of the buffered predictions still
match the current space type, then all the buffered
predictions will be classified as the current space type and
the current space type remains unchanged.

Smoothing Algorithm II. Smoothing algorithm II is almost
the same as the first one, except that it treats the transitions
from restroom (non-restroom) to non-restroom (restroom)
differently. People typically spend a small amount of their
time in a restroom (people have reported spending
approximately only 5 minutes in public restrooms [12]).
Thus, to minimize potential misclassifications of actual
transitions into a restroom space, algorithm I/ reduces the
number of restroom predictions (> 1/3 * N instead of > 5 *
N) that must be in the buffer window to correct an error.

We tested the two smoothing algorithms using window
sizes from 3 to 30. Smoothing algorithms require the
temporal continuity in the test data. Therefore, we used a
leave one day’s data out strategy for evaluation. For each
one of the five combinations, we first trained the SVM
model using four days’ worth of data, and tested on the
remaining day’s data. Then, we applied our smoothing
algorithms to the SVM prediction results. Finally we
averaged the evaluation results of the five combinations for
each window size. The performance results are reported in
Figure 10. Window size zero means no smoothing
algorithm was used. The difference in the performance
compared to the one shown in Figure 9 is due to the fact
that the cross-validation strategy allows the classifier to
“see” a portion of each day’s data during training phase
while “leaving one day’s data out” does not. We expect that
performance will increase when trained with more days to
increase the variations of restrooms. As the window size
increases, the overall performance improves at first. Large
window sizes, however, hurt the performance. One possible
reason is that larger window sizes might cause more
boundary errors during room type transition due to the
majority voting strategy used in smoothing algorithms.
Compared to the algorithm /7, algorithm // improves the
recall of restroom but sacrificed the precision of restroom.

CONCLUSION

In this paper, we described an infrastructure-independent
method of detecting restrooms by actively probing the
acoustics of an environment with the built in speaker and
microphone on mobile phones. Our evaluations
demonstrate that IRs captured after a sine wave sweep is
outputted improve the accuracy of prediction compared



against only using the environment sound without a sweep.
Models can be developed on different phones to classify
new restrooms with a weighted F-Measure of 0.92~0.98.
Occupancy, the presence of sounds, and the volume levels
of the sweep do not affect the model’s performance in
significant ways. We discuss three types of errors that affect
the prediction model and propose temporal smoothing
algorithms to improve the prediction accuracy.
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