
Eurographics Workshop on Sketch-Based Interfaces and Modeling (2005)
Takeo Igarashi, Joaquim A. Jorge (Editors)

Sketch-Based Design for Bargello Quilts

M. Coahran† and E. Fiume

Department of Computer Science, University of Toronto

Abstract
Quilting is an art form in which amateur craftspeople explore geometry and color to create stunning designs.
Bargello is a specific quilt style defined by a clever construction method that imposes constraints on the designs
and gives them a characteristic appearance. Currently, Bargello patterns are typically designed manually, in a
process that is laborious and time-consuming. We have developed a prototype system in which users can design
Bargello quilts quickly and easily by sketching curves with a mouse. As a curve is drawn, the system transforms it
into a graceful Bargello curve, composed of corner-connected axis-aligned rectangles, that respects both physical
constraints and design constraints intrinsic to the Bargello style. We also provide a design setting that supports
design variations typical of Bargello quilts and a set of tools to extend simple designs into complex ones. We
conducted an informal evaluation of the system in a series of focus group sessions with potential users from the
quilting community. Quilters were enthusiastic about the system and also provided suggestions for improvement.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Applications—Bargello
quilt design I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques I.3.3 [Computer
Graphics]: Picture/Image Generation—Line and curve generation J.5 [Arts and Humanities]: Fine arts—Bargello
quilts

1. Introduction

Quilting today is an art form in which amateur craftspeople
explore compositions in geometry and color to create stun-
ning designs. Bargello is a specific style within the world
of art quilts defined by a clever construction method and
characterized by parallel rows of gracefully flowing curves
composed solely of rectangular pieces (Figure 1). Bargello
patterns are typically designed via a laborious manual pro-
cess. We have developed a prototype computer-assisted de-
sign system in which users can create Bargello quilt designs
quickly and easily by sketching curves with a mouse.

1.1. Bargello quilts

The method quilters use to construct Bargello quilts is ex-
tremely efficient: a quilt may consist of hundreds of individ-
ual pieces, yet be produced with relatively few seams. Fur-
ther, the method results in seams that are straighter, and a
finished appearance that is crisper, than would be possible

† mcoahran,elf@dgp.toronto.edu

Figure 1: Traditional Bargello design, from [Edi94] page
40, used with permission of the author and publisher.

with a naïve construction method. However, the process im-
poses several constraints on Bargello designs. Therefore, it
is necessary to understand the construction process in order
to understand the Bargello design constraints.

To construct a Bargello quilt, one begins by cutting long

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

[a] [b] [c]

Figure 2: Bargello construction process, from [Edi94]
pages 5,7, used with permission of the author and publisher.

narrow strips, called color strips from each of several fabrics
[Edi94, Wil01]. The color strips are then stitched together
lengthwise, into color runs or color strata (Figure 2[a]). Fre-
quently, three or four color runs are stitched together to cre-
ate a repeating pattern, and then the bottom color strip is
stitched to the top color strip to form a tube (Figure 2[b]).
Next, patchwork loops of various widths are created by cut-
ting perpendicular slices off the tube. Finally, each loop is
opened out into a linear strip, called a vertical strip, by re-
moving the stitching in one seam or by cutting one fabric
piece in two (Figure 2[c]). Consecutive loops are opened
at consecutive fabric positions to create vertical strips that
exhibit different phases of the same repeating pattern. The
vertical strips may now be sewn together lengthwise to com-
plete a quilt top that consists of a single set of parallel curves.
Alternatively, the design can be embellished by modifying
the vertical strips before stitching them together. For exam-
ple, fabric sequences within a vertical strip can be reversed
or replaced by other sequences to create more complex de-
signs.

The design constraints imposed by this construction
method are: all fabric pieces are rectangular, all are aligned
in vertical columns, and the pieces that comprise a given
color strip all have the same height. In addition, although
not required for construction, it is common that all pieces in
the entire design have the same height and that the pieces
in adjacent vertical strips are either aligned horizontally to
form rows, as in Figure 3, or offset by one half the height
of a color strip, as in Figure 1. (These conditions are known
as matched seams and staggered seams, respectively.) As a
result, there is frequently only one geometric degree of free-
dom in a Bargello design: the width of the vertical strips.

Despite these constraints, Bargello designs can become
extremely complex (Figure 3). Each color strip forms a curve
through the design. The curve tangent as it passes through a
given fabric piece is defined by the height and width of the
piece. Since all pieces have the same height and the pieces
in a given vertical strip have the same width, each curve as it
passes through a vertical strip is either parallel or symmetric
to every other curve that passes through the same strip. This
can result in designs that consist entirely of parallel curves
or in vertically symmetric designs. However, the curves need
only be locally parallel or symmetric. If the extrema in two
curves are not aligned horizontally, then the curves will be
neither globally parallel nor globally symmetric. This allows

Figure 3: Contemporary Bargello design, from [Edi94]
page 72, used with permission of the author and publisher.

Bargello designs to become arbitrarily complex with color
strips that run parallel to one another in some regions and
symmetric to one another in others.

Typically, Bargello curves are designed manually. First,
the desired curve is sketched on graph paper, and then in
another location an appropriate set of grid squares is pen-
ciled in to represent the curve [Edi94]. This is more difficult
than it sounds. Graph paper is much lower resolution than
the sketch, so a naïve “scan conversion” of the curve to the
grid can result in an unattractive rasterization. If the apex of
a curve does not fall at an optimal phase of the grid, an un-
modified scan-conversion algorithm can result in an overly
wide or an overly narrow tile at the apex. Further, the sketch
may include a segment that is too steep to be represented by
a set of corner-connected tiles. Therefore, an accomplished
designer will create a stylistic abstraction of the sketch, not
a mechanical scan conversion.

We are aware of two commercial software packages for
creating Bargello designs [Bar,Ele], but the support they pro-
vide for the design process is rudimentary. In our experience,
it is simplest to design a curve on paper and enter the com-
pleted geometry into the program.

1.2. Sketch-based design

Sketch-based design systems allow users to create designs
via freeform sketches, bypassing the laborious manipulation
of individual control points required by traditional CAD sys-
tems. The resulting designs lose the high precision offered
by CAD, but in many settings high precision is not required
and the artistic beneift can be substantial. Designs can be
created quickly, and designers can focus on the creative as-
pects of the design process. Further, sketch-based design

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

systems are easy to learn and accessible to beginning design-
ers. However, the less information the designer articulates,
the more the system needs to infer. Research in this field has
explored various kinds of inferences that can be drawn in
various contexts.

Some sketch-based systems have focused on recogniz-
ing low-level primitives and the relationships between them.
These systems do not presume particular application do-
mains, but they do make assumptions about attributes that
are desirable in drawings. Pavlidis and Van Wyk [PW85]
developed a system that “beautified” line drawings by ad-
justing the lines to make approximate relationships between
them precise. Pegasus [IMKT97] expanded on this by rec-
ognizing an extended set of relationships and by suggest-
ing multiple beautified line placements when conflicting re-
lationships were discovered. Fluid Sketches [AN00] contin-
uously examined strokes as they were being drawn, classify-
ing them as lines, circles, or boxes, and morphing the sketch
toward the best-fit instance each time an input point was re-
ceived.

Other sketch-based systems have explored the creation of
3D objects based on 2D input strokes. To manage the in-
herent ambiguities in the problem, these systems must limit
the domain of shapes they can create. SKETCH [ZHH96] al-
lowed users to create and manipulate geometric solids with
gestural commands. Teddy [IMT99] created 3D characters
from freeform sketches by interpreting closed strokes as sil-
houettes and inferring 3D geometry from them. To make
this possible, Teddy made a strong assumption about the ob-
jects in its domain, and with those assumptions all objects
acquired a similar “rotund” morphology.

Still other systems have focused on domain-specific
early-stage design. These systems intentionally retain the
“sketchy” appearance of the original input strokes to reflect
the amorphous nature of early-stage designs. The domain
specificity of SILK [LM95], a user interface design sys-
tem, allowed it to recognize high-level objects such as scroll
bars and buttons. The Electronic Cocktail Napkin [GD96]
extended this by allowing users to specify new application
domains and teach the system stroke configurations relevant
to each domain.

Our system applies a sketch-based design approach to a
new application domain. Similar to [IMT99], all input curves
are known a priori to belong to the specialized class of
Bargello curves, and our task is to create a 2D Bargello vir-
tual fabric tiling from the best-fit instance. Like [AN00], we
continuously update the resulting tiling as the sketch is being
drawn. Like [LM95], our focus is on creating real designs in
a specific application domain, and we encounter and respect
the constraints of that domain.

1.3. Contributions

We present an algorithm that transforms sketched input
data into graceful Bargello curves, consisting of a set of

corner-connected axis-aligned rectangle primitives, that re-
spect both the physical and the design constraints of the
Bargello style. The algorithm incorporates novel curve fit-
ting, rasterization, and beautification schemes specific to
Bargello curves. Further, the algorithm is extended to the
case of multiple independent curves that share the same
columnar region within a Bargello design; this problem is
more difficult since the independent curves must be coordi-
nated to create a single set of design columns.

In addition, we present a sketch-based Bargello quilt de-
sign system in which users can create Bargello designs
quickly and easily. The system addresses an authentic need,
given that the current manual design process for Bargello
quilts is laborious and time-consuming.

2. Bargello curve generation

We define a Bargello curve as a connected path of rectangu-
lar tiles, all rendered with the same fabric texture, within
a Bargello design. Our objective is to generate a “grace-
ful” Bargello curve that approximates a sketch drawn with
a mouse or stylus, while respecting the constraints of the do-
main. Our approach is to generate a piecewise Hermite cubic
curve that approximates the input data, rasterize the Hermite
curve to produce an initial tile path, and then beautify the tile
path.

2.1. Curve fitting

Bargello designs are typically composed of twenty to sixty
rows of fabric tiles, so they are inherently low resolution.
Thus, Bargello curves tend to be large sweeping curves (with
respect to the design space) with various local extrema in
wide arcs and narrow peaks. We have found that if an arc
between inflection points in the Bargello curve is spanned
by multiple Hermite segments, the resulting rasterization
tends to look ragged. In such a case, the underlying Her-
mite segments model high-frequency noise with respect to
the Bargello curve. Therefore, we generate piecewise Her-
mite curves that match the frequency of the Bargello curve
by placing knots at each of the local extrema and inflection
points of the Bargello curve. Thus, each Hermite segment is
monotonic in both x and y.

First, the input data, which are originally sampled at ap-
proximately 24-40 Hz, are thinned such that each remain-
ing point is at least 3h

4 from its neighbors, where h is the
row height in the current Bargello grid. This reduces the
amount of subsequent computation and retains sufficiently
many points to specify the curve at the desired resolution.

Next, the data are scanned to find points that represent
local extrema and inflection points of the curve. We seek ex-
trema in x and y because the peaks and valleys characteristic
of Bargello curves are of necessity aligned with the vertical
columns of the Bargello design, and Bargello curves may

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

contain switchbacks that create horizontal extrema. How-
ever, they cannot contain cusps at other angles without rotat-
ing the entire design. The data is scanned in three passes, one
each to detect x-extrema, y-extrema, and inflection points be-
tween them. The separate passes allow “false extrema” to be
detected and discarded immediately.

The first pass seeks local x-extrema. Let Pxi be the x coor-
dinate of data point Pi. Let σi be defined as

σi = (Pxi+1 −Pxi)(Pxi −Pxi−1). (1)

For each Pi, if σi is negative, Pi is recorded as an x extremum.
However, if the distance in x between Pi and the previously
recorded x extremum is below a threshold (e.g., 3h

4 ), Pi is not
accepted as an extremum, and the previously recorded ex-
tremum is discarded. This ensures that the accepted extrema
represent sustained direction changes, rather than noise with
respect to the low resolution Bargello design. The second
pass scans the data between adjacent x-extrema, seeking lo-
cal extrema in y. It is analogous to the first pass, with x’s
replaced by y’s in Eq. 1.

The third pass seeks inflection points between any of the
discovered extrema. For each Pi between adjacent extrema,
a bounded proxy bi for the slope of line segment PiPi+1 is
computed according to Eq. 2, where K is either +1 or −1.
A proxy bi−1 for line segment Pi−1Pi is computed analo-
gously:

bi = K
(Pyi+1 −Pyi)

2

(Pxi+1 −Pxi)
2 +(Pyi+1 −Pyi)

2 . (2)

Then a measure of the discrete curvature ci is given by
ci = bi − bi−1. The resulting ci are passed through a three-
point moving average filter since noise in the input data is
exaggerated by discrete curvatures. Finally, the filtered ci are
scanned for sign changes. When a sign change is detected,
the associated data point is recorded as an inflection point
of the curve, with a similar caveat to that used for extrema.
If the new inflection point is too close to the previous one,
both are discarded. For this test, we have found that a dis-
tance threshold of approximately h works well.

Finally, cubic Hermite curve segments are generated be-
tween adjacent knots via least-squares approximation. In this
calculation, the position of each knot is constrained, and
we solve for the associated tangents. C1 continuity is not
enforced because Bargello curves frequently contain cusps
where tangent discontinuities should be retained. Further,
the Hermite curve is never displayed, and the fabric tiles of
the Bargello curve obscure minor tangent discontinuities at
non-cusp knots.

2.2. Rasterization and beautification

The next task is to convert the piecewise Hermite into a con-
nected path of rectangular tiles. In addition to reflecting the
shape of the Hermite curve, the Bargello curve should con-
form to the physical and design constraints of the domain.

Specifically, a minimum tile width should be imposed, and
only discrete tile width increments should be allowed. These
requirements arise because fabric pieces will be cut with dis-
cretely marked rulers and must be large enough to be manip-
ulated by hand. To conform to the Bargello construction pro-
cess, all tiles in the design should be aligned in columns, and
the tiles within a given Bargello curve should be the same
height. Further, consecutive tiles should occupy different de-
sign columns, i.e., there should be no vertically adjacent tiles
in a Bargello curve. The latter constraint implies that the ras-
terization should not contain any “elbows.”

Finally, the Bargello curve should be “graceful.” The re-
quirements for a graceful curve are less clear, but we have
defined the following soft constraints in pursuit of this goal.
First, on each arc between inflection points, the constituent
tiles should exhibit either a monotonically increasing or a
monotonically decreasing sequence of tile widths, allowing
repeated widths. Second, no tile should be more than double
the width of adjacent tiles, except when an adjacent tile is
the minimum allowed width. The neighbors of a minimum
width tile may be as much as three times the minimum tile
width. Third, in a design that includes multiple independent
Bargello curves, tiles in one curve may need to be subdivided
into multiple design columns to accommodate the tangent
requirements of another curve. In this case, subdivisions that
result in narrow tiles should be avoided.

DATA STRUCTURES. A Bargello design is stored in a
“bitmap” of non-square cells. We refer to the geometry un-
derlying the bitmap as the Bargello grid and reserve the
term bitmap to refer to the data structure itself. A fabric tile
will occupy either one or two rows, for “matched seams”
or “staggered seams” designs, respectively. However, a tile
may occupy several columns in the bitmap since each grid
column represents the finest allowable tile width increment.
The minimum tile width can be set to any positive integer
multiple of the minimum width increment.

The output of a scan-conversion algorithm, described
next, is stored in a data structure called a tile path. This tile
path is used to initialize a beautification process that gener-
ates a second tile path, and the second tile path is painted
into the bitmap with a z-buffer algorithm. Both tile paths are
stored in a data structure called a Bargello curve. Storing the
beautified tile path allows it to be written into the bitmap
repeatedly, without repeated beautification. However, some-
times re-beautification is necessary, so the original tile path
is retained for subsequent initializations.

ALGORITHMS. Bargello curves suffer from some of the
same scan-conversion hazards text characters do. If an ex-
tremum of the piecewise Hermite lies close to a row bound-
ary in the Bargello grid, the resulting rasterization will con-
tain either a long flat tile or an isolated thin tile at that
point. Neither outcome reflects the shape of the underlying
curve well. A uniform translation of the curve does not re-
pair the problem since various extrema fall at various phases

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

of the grid. Therefore, following an approach used in the
rasterization of text characters [Her87], the Hermite curve is
stretched to place each y-maximum and y-minimum at the
nearest point that lies 3

10 h and 7
10 h, respectively, from the

bottom of a grid row, where h is the grid row height. Al-
though extrema may be moved to adjacent rows, all moves
are “subpixel” with respect to the Bargello grid. Further,
there is no danger of moving a local maximum to a posi-
tion below an adjacent local minimum because such a pair
would have been discarded as “false extrema” during the
curve-fitting process.

Next, a rasterization of the stretched curve is computed
and stored in a tile path. To ensure that the tile path is con-
nected, each Hermite segment is traversed with a uniform
step size δt that ensures no grid cell is missed. The step size
is defined as

δt = min

(

w
max0≤t≤1 |

dx
dt |

,
h

max0≤t≤1 |
dy
dt |

)

, (3)

where each of the maxima are taken over the curve segment,
and w and h are the width and height of each grid cell, re-
spectively. This choice of step size is based on a result by
Kaufman [Kau87] but has been adapted to accommodate
rectangular grid cells.

After computing the initial tile path, a copy is made, and
the copy undergoes beautification. Two beautification algo-
rithms are used: a greedy algorithm that runs while the curve
is being drawn, and a dynamic programming algorithm that
runs when the pen is lifted.

Greedy beautification is performed as the curve is drawn
because each new data point can influence the entire pre-
vious curve segment. However, only a subset of the design
constraints are enforced at this time. First “elbows” are re-
moved, and then the tile path is massaged until it meets the
monotonicity constraint. The tiles on each arc must exhibit
either a monotonically increasing or decreasing sequence of
widths. Because each arc is monotonic in both x and y, the
appropriate sequence direction can be determined by the tan-
gents at the endpoints of the underlying Hermite segment.
The tile path is traversed and grid cells are “pushed” from
one tile to the next if they do not meet the constraint.

The second beautification algorithm seeks a globally op-
timal solution via dynamic programming and considers all
the constraints. The recursive cost definition is given by

Ei, j = min[Ei−1,k + ek, j], over all feasible k, (4)

where Ei, j is the minimum cost for any tile path up to and
including tile i such that tile i has width j, and ek, j is the cost
of a tile having width j given that the previous tile had width
k. Details of ek, j will be given presently.

The algorithm computes a sequence of tile widths, stated
as the number of grid cells occupied, but the number of tiles
and their vertical positions are taken directly from the ref-
erence tile path. The solution includes an invisible tile that

extends from the left edge of the design space to the leading
edge of the first tile, and this tile is allowed to have zero,
positive, or negative width. (The latter case can occur if the
tile path is dragged partially off the design space after the
curve is drawn.)

The first grid cell occupied by a given tile is always hor-
izontally adjacent to the last cell occupied by the previous
tile, so the tile path does not contain rasterization “elbows.”
In addition, several constraints are enforced by disallowing
infeasible options. First, tiles that fall short of the minimum
width are disallowed, and except for the last tile in the tile
path, tiles that end less than the minimum width away from
the edge of the design space are also disallowed since they
render the subsequent tile infeasible. Second, while a user
may drag a tile path partially off the design space, no tile is
allowed to straddle the edge. This ensures that every tile is
either completely visible or completely invisible, and there-
fore also ensures that the computed cost ek, j is correct for
the visible portion of the tile. Finally, if a tile in the refer-
ence tile path abuts the edge of the design space, some tile in
the beautified tile path must as well. This ensures that a tile
path intended to cover the design space does so.

Four remaining soft constraints give the tile path a grace-
ful appearance and retain the shape of the underlying Her-
mite curve. These objectives are blended together as follows:

ek, j = wdcd +wmcm +wrcr +wscs . (5)

We now motivate and define cd , cm, cr and cs.

As tile i is placed in the tile path, the position of its lead-
ing edge has already been determined, and we seek the best
position for its trailing edge. The algorithm works equally
well for curves drawn right to left or left to right. The dis-
tance cost, which keeps the tile path close to the underlying
Hermite curve, is defined as

cd =
∣

∣xri − xbi

∣

∣ . (6)

Here, xri and xbi indicate the horizontal position of the trail-
ing edge of tile i in the reference and beautified tile paths,
respectively.

The monotonicity cost, cm, encourages the tile path to
exhibit monotonic tile width sequences between inflection
points:

cm =

∣

∣

∣

∣

j− k
j + k

∣

∣

∣

∣

. (7)

This cost is imposed if tile i is wider than tile i− 1 when
it should be narrower, or vice-versa; otherwise, cm = 0. In
this equation, j and k are the widths of tiles i and i− 1, re-
spectively. The cost cm is greater in steep regions of the tile
path than in shallow regions because a lack of monotonicity
is more apparent between narrow tiles.

The width ratio cost, cr, encourages the tile path to exhibit

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

smooth width transitions between adjacent tiles:

cr = max
{

j
k
,

k
j

}

. (8)

Here, j and k retain their previous definitions, and cr in-
creases as the difference between them increases. The cost
is imposed if max

[

j
k ,

k
j

]

> 2; otherwise, cr = 0. An excep-
tion is made when either j or k is a minimum width tile. To
keep the curve from losing flexibility in steep regions, tiles
adjacent to minimum width tiles are allowed three times the
minimum width without penalty.

These three cost terms relate to the current Bargello curve
alone. If it is the only curve in the design space, they are suf-
ficient, but when multiple Bargello curves share the design
space a subdivision cost, cs, is introduced, which we now
discuss.

After beautification, a Bargello curve is “painted” into
the bitmap. Since all tiles in the design must be aligned in
columns, the vertical edges between adjacent tiles in the tile
path imply boundaries between vertical columns that run the
full height of the design space. If a Bargello curve is drawn
when the design space already contains a curve, the space
has already been partitioned into columns. In all likelihood,
the tangents of the new curve will differ from those of the
pre-existing one, and the tiles in the new tile path will not be
aligned with pre-existing column boundaries. Then new col-
umn boundaries are inserted into the design space, subdivid-
ing the pre-existing columns. The data structure of the pre-
existing curve is not modified, but the corresponding tiles
are subdivided de facto in the design, and they will be con-
structed from separate fabric pieces in the physical quilt.

This mechanism allows multiple independent curves to
co-exist in a design. However, arbitrary subdivisions are
unattractive and unnecessarily complicate quilt construction.
Optimally, we would like narrow tiles from one tile path to
fit snugly within a wider tile from the other tile path. In con-
trast, when tiles from two tile paths interlock like brickwork
the subdivisions are unnecessary, especially if the resulting
design columns are narrow. It would be preferable to col-
lapse the columns and bring the curves into alignment.

Therefore, we impose a subdivision cost on tile paths that
subdivide existing columns in the design space. This cost
discourages brickwork-style subdivisions, especially when
the resulting columns are narrow, but it does not discour-
age subdivisions that are completely internal to an existing
column since these may contribute to a snug-fit set of subdi-
visions.

Let x0 and x1 be the horizontal positions of the left and
right edges of tile i, respectively. Let xa through xd be the
horizontal positions of column boundaries that already exist
in the design space, where xa indicates the rightmost bound-
ary such that xa ≤ x0, xb indicates the leftmost boundary
such that x0 < xb, xc indicates the rightmost boundary such

Figure 4: Design column subdivisions.

that xc ≤ x1, and xd indicates the leftmost boundary such that
x1 < xd . Then, by definition, xa ≤ x0 < x1 < xd . However,
there are several scenarios for the placement of xb and xc,
some of which are shown in Figure 4.

If x0 lands inside the design column delimited by xa and
xb, and x1 lands outside it (i.e., xa < x0 < xb < x1), then tile
i straddles the right edge of the column, and cost cs0 in Eq.
9 imposes a penalty inversely proportional to the distance
between x0 and xb. In contrast, if x1 lands within the same
design column (i.e., x1 < xb), then the column is partitioned
in at least three pieces, and no cost is imposed on tile i. If a
subsequent tile straddles the boundary, cost cs0 will be im-
posed on the subsequent tile.

cs0 =

{ 1
xb−x0

for xa 6= x0 and xb ≤ x1.

0 otherwise.
(9)

Similarly, if x1 lands within an existing design column and
x0 lands outside it (i.e., x0 < xc < x1 < xd), then tile i strad-
dles the left edge of the design column, and cost cs1 in Eq.
10 imposes a penalty inversely proportional to the distance
between xc and x1. Again, if x0 lands within the same design
column (i.e., xc < x0), no cost is imposed on tile i.

cs1 =

{ 1
x1−xc

for x0 < xc < x1.

0 otherwise.
(10)

Finally, the subdivision cost cs is given by cs = cs0 + cs1 .

The weights in Eq. 5 can be varied to modify the balance
between the objectives. We use wd = 0.5, wm = 30, wr = 5,
and vary ws from 0 to 4, as will be explained next. These
settings result in monotonicity and width ratio costs that are
typically approximately equal, while the subdivision cost is
somewhat less, and the distance cost is less still. This re-
flects our preference for Bargello curves that are graceful
over ones that follow the sketch exactly, given that sketches
are likely to be intended as evocative of the desired result.
Similarly, while we strive to reduce the number of tile sub-
divisions, we do not do so at the expense of gracefulness.

In this algorithm, the current tile path adjusts itself to

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

align with pre-existing columns in the design space, but pre-
existing tile paths do not reciprocate. It would be preferable
if all the tile paths adjusted themselves to one another simul-
taneously. However, a dynamic programming algorithm to
find a globally optimal fit among an arbitrary number of tile
paths would require a matrix of arbitrary dimensions! Thus,
we take a different approach. A high-level multi-pass algo-
rithm cycles through the tile paths and invokes the dynamic
programming algorithm to fit each tile path in turn to the
design columns defined by the others. On the first cycle, the
subdivision weight ws is set to zero, so each tile path finds its
own ideal shape. Thereafter, on each cycle ws is increased,
and the tile paths move into alignment with one another.

There is one more case to consider. A Bargello curve that
is not single-valued in x presents a challenge similar to that
presented by multiple independent curves. Various segments
of the curve share columnar regions within the design space,
and assuming their tangents differ, they each insert column
boundaries that subdivide one another’s tiles. However, the
algorithm as described so far has no knowledge of design
columns defined by other segments of the same curve. To
rectify this, curves that are not single-valued in x are parsed
into segments between x-extrema. On each pass of the high-
level algorithm, each segment is fit to the design columns
defined by the others. Tiles in each segment are aligned with
tiles in the others, but the segment endpoints may move with
respect to one another, disconnecting the tile path. There-
fore, after each segment has been fit individually, the full
curve is fit to the design columns established by the indi-
vidual segments, so the final beautified tile path follows the
beautified segment templates to the extent possible while
maintaining connectivity.

The beautification algorithm produces graceful Bargello
curves that approximate the input sketches well in many
cases. However, it is possible to draw a curve that is too steep
to follow with discrete corner-connected tiles. In response,
the algorithm produces a linear segment of minimum width
tiles. If the segment is not long, the resulting curve still looks
graceful, but long linear segments can be unattractive and
may not approximate the underlying sketch well. Possible
solutions include displaying guidelines while users draw that
indicate whether a given curve can be followed, and allow-
ing tile path connectivity to be broken in order to retain the
curvature of the sketch. This may also surprise users, but it
could offer a visual explanation of the underlying difficulty.

3. Computer-assisted Bargello design

We have developed a prototype computer-assisted design
system for Bargello quilts. It consists of two modules:
one for selecting fabric images, and the other for creating
Bargello quilt designs. The problems addressed by the sys-
tem include some specific to Bargello and others endemic to
quilting in general. For one, the current design process for
Bargello quilt patterns is tedious. For another, finished quilts

frequently look different than the designer had imagined,
which can be disappointing given the amount of time and
money expended. This typically results from using fabrics
that appear differently in combination than they do individ-
ually, given that colors are perceived differently depending
on the context in which they are viewed. Our goal is to help
alleviate these problems by allowing quilters to create and
experiment with designs quickly and to visualize the designs
with real fabric textures so that disappointing designs can be
discarded painlessly, and only the most promising will be
brought to fruition in fabric.

3.1. Fabric selection module

The fabric selection module provides access to a database
of real fabric images and contains various widgets that al-
low users to experiment with color combinations and fabric
orderings in Bargello designs (Figure 5 and Color Plate).

Figure 5: Fabric selection module.

The main color wheel, in the upper left corner, is used
to drive color selection. Black outlines around some color
tiles indicate the presence of fabrics that contain those colors
and are not currently displayed. Clicking on a color tile adds
that color to the current “color scheme.” In response, the se-
lected tile is outlined in white, a larger tile in the same color
is added to the color scheme palette just right of the main
color wheel, and fabrics containing that color are added to
the fabric browser at the bottom of the screen.

The fabric browser includes two windows: fabrics dis-
played in the right, or left, window contain significant
amounts of one, or more than one, of the color scheme col-
ors, respectively. Clicking on a fabric texture in either win-
dow selects it for a Bargello design and adds it to one of the
three fabric palettes along the right edge of the screen.

At any given time one of the fabric palettes is “active,”
and one of the fabric tiles within that palette is also active.
The active tile can be removed or dragged to a new position
within the palette. When fabrics are selected they are added
to the active palette, and when Bargello curves are drawn

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

Figure 6: Traditional, with staggered seams.

they are associated with the active palette. Thereafter, mod-
ifying the fabrics or the fabric ordering within the palette
causes a corresponding modification in the Bargello design.
Three palettes accommodate designs with up to three sepa-
rate color strata. An unlimited number of palettes could be
provided, but in practice we have found three to be sufficient.

Finally, the color composition wheel, left of the fabric
palettes at the top of the screen, provides information about
the colors and the amounts of each color in the currently ac-
tive fabric. In addition, pop-up windows associated with in-
dividual color tiles allow users to browse and select fabrics
containing colors that match those in the active fabric.

3.2. Bargello design module

A traditional design (Figure 6) can be created in the Bargello
design module by drawing a curve with a mouse, starting
near one margin and proceeding to the other while tracing
out the desired inflections. As the user draws, the system
transforms the input sketch into a graceful Bargello curve
and spawns parallel curves to fill the vertical extent of the
design space. If the stroke begins or ends sufficiently near
the edge of the design space, the resulting Bargello curve
snaps to the edge; however, if the stoke endpoints are well
inside the design space, the Bargello curve is placed as in-
dicated. Symmetrical designs (Figure 7 and Color Plate) can
be created similarly by drawing in one of four pre-defined
reflection templates.

Preferences can be set that affect system behavior in re-
sponse to sketched input. For example, by default if a user
reverses the horizontal direction of an input stroke, the latter
portion of the Bargello curve is erased as the stroke back-
tracks over it. However, another setting allows users to draw
curves with “switchbacks” (Figure 11). Similarly, by default
the full vertical extent of the design space is filled as the
Bargello curve is drawn, but another setting allows users to
draw curves that consist of a single color strata (Figures 10,
11, 12). In addition, users can select a set of color strips

Figure 7: Symmetrical, with matched seams.

within an existing design, keep those strips, and discard the
rest. Thus, an arbitrary number of color strips can be associ-
ated with a given Bargello curve.

Once an initial curve has been drawn, additional curves
can be added to a design in three ways. First, multiple in-
dependent curves can be drawn with the mouse or stylus
(Figure 12 and Color Plate). Second, existing curves can be
selected, and exact or reflected copies of them can be cre-
ated (Figure 10). Third, horizontal stripes can be added to
fill background regions of a design (Figure 9).

Users can also experiment with their designs in several
ways. Curves can be reflected vertically or dragged. The
fabrics or the fabric ordering in a color strata can be mod-
ified, and the fabric tiles can be arranged with matched or
staggered seams. Further, the system supports a set of low-
level design operations for creating complex contemporary
designs. Users can delete a curve or tiles within a curve, al-
ter the apparent depth of a curve or tiles within a curve with
respect to other curves in the design, and substitute different
fabrics into a set of tiles without modifying the default fab-
rics associated with the curve. To facilitate these operations,
support is provided for selecting an entire curve or a set of
tiles within a curve for subsequent modification.

At present, the various design operations and preference
settings are invoked via keystroke commands. However, we
envision a multi-modal interface in which curve geometry is
specified by sketching, fabrics are selected via the custom
widgets presented, and other operations are invoked with
WIMP-style widgets. In our view, such an interface would
serve the intended audience well. We anticipate that most
quilters will be familiar with the WIMP paradigm, and they
may prefer to focus on quilt design rather than on mastering
new interface modalities.

4. Results

Figures 6 through 12 were created in our system.

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

Figure 8: Arches.

Figure 9: Jewel.

5. Feedback from quilters

Modern-day quilting guilds are social organizations of am-
ateur quilting enthusiasts. A web search was conducted to
identify guilds in the area, and electronic mail was sent to
ten guilds describing the project and inviting members to
participate in an evaluation of the system. Three meetings
were arranged, and each meeting was attended by a small
group of self-selected guild members. Twenty-one quilters

Figure 10: Weave

Figure 11: Heart.

Figure 12: Soaring.

participated in total. Each focus group session included time
devoted to focus group style questions, a software demon-
stration, and an opportunity for participants to experiment
with the system. In each group, participants asked questions
and made helpful suggestions throughout the meeting.

Quilters were enthusiastic about the system. In particular,
they were impressed with how quickly and easily Bargello
curves could be designed. When the first curve was drawn in
each demonstration, participants responded with exclama-
tions of surprise: “I want your program! Wow!” and “What
a feeling of power! Think how long that would take to design
on graph paper.” In addition, they thought the ability to ex-
periment with fabrics and to view designs rendered with real
fabric textures would be helpful to quilters, and they told us
the system was entertaining and fun to use.

Participants also offered suggestions for improvement.
For example, they unanimously requested support for edit-
ing curves and for practical operations such as computing
yardage requirements and printing instructions for quilt con-
struction. In addition, they requested the ability to erase a
portion of a curve by backtracking over it with the mouse
while drawing. Some of their suggestions have been imple-
mented, and others remain as future work.

c© The Eurographics Association 2005.



M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

6. Conclusion

We have developed a prototype system in which users can
create Bargello quilt designs by sketching curves with a
mouse. As the user draws, the system transforms the input
sketch into a graceful Bargello curve consisting of corner-
connected tiles that respect both physical and design con-
straints of the Bargello style. Support is provided for multi-
ple independent curves and curves that are not single-valued
to co-exist within a design. The system provides features that
support a variety of design styles. Simple designs can be cre-
ated with a single sweep of the mouse, reflection templates
support designs with various symmetries, and a set of low-
level operations is provided to extend simple designs into
complex ones. The system also provides a module for mak-
ing fabric selections and experimenting with color combina-
tions and fabric orderings in a design. Thus, users can visu-
alize their designs rendered in real fabric textures, reducing
the possibility of disappointment in the completed physical
quilt. We sought feedback on the system from user groups in
the community. Quilters were enthusiastic about the system,
especially how quickly and easily Bargello curves can be de-
signed, and they also provided suggestions for improvement.

However, the system is a first-generation prototype, and
there are many ways it could be improved and extended. For
example, it currently does not provide support for editing ex-
isting Bargello curves. To refine the shape of a curve, users
must clear the design and re-draw it. Given that sketching a
new curve is quite easy, we have found this method work-
able in the short term: a curve can be drawn repeatedly and
improved over time. However, the ability to modify existing
curves would be a marked improvement.

In addition, although it is possible to create non-
traditional Bargello designs in our system (e.g., Figures 9
through 12), it is not as easy as we would like. The sys-
tem supports several operations intended for this purpose,
but they fall short of providing the intuitive interface we had
hoped for. More investigation is needed to determine the set
of operations and features that could provide an intuitive way
to create complex contemporary designs. Collaboration with
experienced Bargello designers will be essential to the solu-
tion of this problem.

There are also several practical issues to address. For ex-
ample, users should be able to compute yardage require-
ments and print detailed instructions for quilt construction.
Focus group participants also requested the ability to scale
existing designs to various standard sizes.

Finally, we envision extending this work to include other
quilting styles. For example, to our knowledge no quilt de-
sign software supports the design of landscape quilts. Such
a system could allow users to “paint” scenes using input
strokes that are rendered with real fabric textures. Subse-
quently, the system could produce sewing patterns based
on stroke geometry. Alternatively, the software could detect
strokes in existing images and allow users to substitute fabric

textures into each stroke in the scene. Conceivably, the sys-
tem could solve for an optimal set of fabric textures without
user intervention; however, this may not be desirable. We are
wary of removing the artistic aspects of quilt design from the
hands of human artists. Our goal is to provide computational
tools that support human creativity, not to supplant it.

7. Acknowledgments

We thank the quilters who participated in our focus groups
for sharing their time and their insights with us. We thank
the Simcoe County Quilt Shoppe for allowing us to photo-
graph fabrics from their inventory. Finally, we thank John
Hancock, Michael Neff, and Gonzalo Ramos for their assis-
tance with video production.

References

[AN00] ARVO J., NOVINS K.: Fluid sketches: Contin-
uous recognition and morphing of simple hand-drawn
sketches. UIST ’00 (2000), 73–80.

[Bar] Bargello designer.
http://www.sheilawilliams.com/bargo/Bargello.html.

[Edi94] EDIE M.: Bargello Quilts. Martingale and Com-
pany, Woodinville, WA, 1994.

[Ele] Electric quilt 5. http://www.electricquilt.com.

[GD96] GROSS M., DO E. Y.-L.: Ambiguous inten-
tions: A paper-like interface for creative design. UIST ’96
(1996), 183–192.

[Her87] HERSCH R.: Character generation under grid
contraints. Computer Graphics 21, 4 (1987), 243–252.

[IMKT97] IGARASHI T., MATSUOKA S., KAWACHIYA

S., TANAKA H.: Interactive beautification: A technique
for rapid geometric design. UIST ’97 (1997), 105–114.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: A sketching interface for 3D freeform design.
SIGGRAPH ’99 Conference Proceedings (1999), 409–
416.

[Kau87] KAUFMAN A.: Efficient algorithms for 3d scan-
conversion of parametric curves, surfaces, and volumes.
Computer Graphics 21, 4 (1987), 171–179.

[LM95] LANDAY J., MYERS B.: Interactive sketching for
the early stages of user interface design. CHI ’95 ACM
Press (1995), 43–50.

[PW85] PAVLIDIS T., WYK C. V.: An automatic beau-
tifier for drawings and illustrations. Computer Graphics
19, 3 (1985), 225–234.

[Wil01] WILLIAMS B.: Colorwash Bargello Quilts. Mar-
tingale and Company, Woodinville, WA, 2001.

[ZHH96] ZELEZNIK R., HERNDON K., HUGHES J.:
Sketch: An interface for sketching 3D scenes. Computer
Graphics 30, 4 (1996), 163–170.

c© The Eurographics Association 2005.

http://www.sheilawilliams.com/bargo/Bargello.html
http://www.electricquilt.com


M. Coahran & E. Fiume / Sketch-Based Design for Bargello Quilts

Figure 13: Fabric selection module.

Figure 14: Symmetrical, with matched seams.

Figure 15: Soaring.

c© The Eurographics Association 2005.


