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Abstract
We present a novel approach to sketching 2D curves with minimally varying curvature as piecewise clothoids.
A stable and efficient algorithm fits a sketched piecewise linear curve using a number of clothoid segments with
G2 continuity based on a specified error tolerance. Further, adjacent clothoid segments can be locally blended to
result in a G3 curve with curvature that predominantly varies linearly with arc length. We also handle intended
sharp corners or G1 discontinuities, as independent rotations of clothoid pieces. Our formulation is ideally suited
to conceptual design applications where aesthetic fairness of the sketched curve takes precedence over the precise
interpolation of geometric constraints. We show the effectiveness of our results within a system for sketch-based
road and robot-vehicle path design, where clothoids are already widely used.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Curves are ubiquitous in Computer Graphics, as primitives
to construct shape or define shape features, as strokes for
sketch-based interaction and rendering or as paths for navi-
gation and animation. Motivated originally by curve and sur-
face design for engineering applications, complex shapes are
typically represented in a piecewise manner, by smoothly
joining primitive shapes (see Figure 1). Traditionally, re-
search on curve primitives has focused on parametric poly-
nomial representations defined using a set of geometric con-
straints, such as Bezier or NURBS curves [Far90]. Such
curves have a compact, analytically smooth representation
and possess many attractive properties for curve and surface
design. Increased computing power, however, has made less
efficient curve primitives like the clothoid a feasible alter-
native for interactive design. Dense piecewise linear repre-
sentations of continuous curves have also become increas-
ingly popular. Desirable geometric properties, however, are
not intrinsically captured by these polylines but need to be
imposed by the curve creation and editing techniques used
[GBS03, TBSR04, CS04].

An important curve design property is fairness [FRSW87,
qSzL89, MS92], which attempts to capture the visual aes-
thetic of a curve. Fairness is closely related to how lit-
tle and how smoothly a curve bends [MS92] and for pla-
nar curves, described as curvature continuous curves with a
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arc-length
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Figure 1: A curve composed of clothoids, line and circular-
arc segments.

small number of segments of almost piecewise linear curva-
ture [FRSW87].

The family of curves whose curvature varies linearly with
arc-length were described by Euler in 1774 in connection
with a coiled spring held taut horizontally with a weight at
its extremity. Studied in various contexts in science and en-
gineering, such a curve is also referred to as an Euler spi-
ral, Cornu spiral, linarc, lince or clothoid (see Figure 2).
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Clothoids are especially useful in transportation engineer-
ing, since they can be navigated at constant speed by linear
steering and a constant rate of angular acceleration. Roller-
coasters are frequently composed of sequences of clothoid
loops. While intrinsic geometric splines like clothoids were
introduced in computer aided design in 1972 [NMK72] and
subsequently developed as transition curves for road de-
sign [MW92,WM05], they have had little recent exposure in
mainstream Computer Graphics. In this paper, we exploit the
fairness properties of clothoids to fit 2D strokes for sketch-
based applications.

Figure 2: Clothoid: a curve whose curvature varies lin-
early with arc-length, also known as an Euler spiral,
Cornu spiral or linarc. The above clothoid has a cur-
vature range [−1.15,1.15] and arc-length 100 (or t ∈
[−5.362,5.362],B = 3.72).

1.1. Problem statement

Polyline stroke data often needs to be denoised and pro-
cessed into fair 2D curves for further use in many sketch-
based applications. This is usually done using smoothing
filters [TBSR04] or by cubic or high-order spline fitting
[Pav83, Pra87]. Iterative smoothing is best suited to remov-
ing high-frequency sketching noise and tends to produce
low-frequency wiggles in the curve (local pockets of smooth
curvature based on filter size). Spline fitting results, though
visually smooth, frequently exhibit poor quality curvature
plots (see Figure 3). We present a new approach to process-
ing sketch strokes using clothoids, that intrinsically favour
line and circular arc segments and result in holistically fair
G2 curves.

1.2. Overview of our approach

Our algorithm for fitting a sequence of G2 clothoid seg-
ments to polyline stroke data is a two-step process (see Fig-
ure 4). We first fit a piecewise linear approximation to the
discrete curvature of the stroke as a function of arc-length,
with control over the tradeoff between fitting error and the
number of linear pieces. The start and end curvature val-
ues of each linear piece uniquely determine a line, circular

(a) (b) (c) (d) (e)

Figure 3: Stroke fairing: (a) A sketched stroke. (b) Clothoid
fitting the stroke (a). (c) Cubic spline fitting the clothoid
curves in (b). (d) Cubic spline fitting the stroke (a). (e) Lapla-
cian smoothing (4 iterations at 10%) the stroke (a). Curva-
tures are plotted uncolored along the length of processed
strokes (b-d) to evaluate smoothness.

arc or clothoid curve segment. These segments further as-
semble together uniquely with G2 continuity into a single
composite curve. The next step involves determining a sin-
gle 2D rigid transform that aligns this composite curve with
the sketched stroke to minimize the error of the stroke from
the transformed curve. We are able to solve for this trans-
form efficiently by formulating the error as a weighted least
squares optimization problem. While many sketch-based ap-
plications do not require precise interpolation of points and
tangents, we show how this can be achieved by inserting
or appending short spline segments to enforce interpolation
(see Figure 12), if necessary. The resulting curve can also be
made G3 by linearly blending the adjacent clothoid segments
locally (see Figure 11). Alternatively, sharp corners can be
allowed by thresholding spikes in curvature to be segment
boundaries and independently rotating these segments (see
Figure 10).

1.3. Contributions

We develop a new formulation for efficiently fitting intrinsic
spline primitives such as clothoids, to dense polyline data.
While we focus on clothoids our algorithmic framework is
applicable to any curve primitive with a characteristic cur-
vature profile. The resulting curves are robust to sketching
noise and are particularly well suited to sketch-based appli-
cations. We show a number of enhancements to the basic
approach, including sharp corners, blended G3 curves and
point interpolation. Finally, we have implemented our re-
sults within a sketch-based application for track design (see
Figure 5), where the clothoid segments provide not only aes-
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thetically pleasing curves but are also required downstream,
from an engineering standpoint.

sketched stroke piecewise linear curvature fit

κ
arc-length

assembled clothoid segments

(a)

(b)

curve alignment: translation curve alignment: rotation

Figure 4: Clothoid fitting: (a) Discrete stroke curvature is
approximated as a piecewise linear function uniquely defin-
ing clothoid segments. (b) A rigid 2D transform minimizes
the weighted least squares error between the composite
clothoid and the sketched stroke.

2. Related work

We now survey prior work specifically relating to curve and
surface fairing in general and on clothoids in particular. A
popular feature of cubic splines is that they provide a lin-
ear approximation to the minimum strain energy configu-
ration of a thin-beam interpolating a set of points. While
least squares spline fitting is robust and efficient [Pra87],
the curvature plot of the resulting spline can be highly vari-
able (see Figure 3). Computing the actual minimum energy
curve minimizes the overall bending of the curve [Mel74].
Moreton and Sequin [MS92] show, however, that minimum
variation curves provide a better fairness characteristic by
minimizing the overall variation of curvature along the curve
allowing natural shapes like circular arcs. These curves are
typically computed by nonlinear optimization techniques.
In contrast, we attempt to minimize overall variation in
curvature along the curve by robustly approximating it us-
ing a number of piecewise linear segments. Our composite
clothoid curve is thus an appealing alternative to minimum
variation curves, particularly when precise interpolation of
points is traded for precise curvature control.

A more common, easy to implement, approach is to itera-
tively smooth the points of piecewise linear curves and sur-
faces directly [TBSR04]. Discrete filtering approaches vary
from simple neighbour averaging to approaches that use a
discrete curvature estimation to help guide the fairing pro-
cess [MR07]. We similarly compute a discrete curvature esti-
mate at points of the input polyline, but instead use these val-
ues to determine the segmentation of the curve into clothoid
pieces. An additional advantage of fitting analytic curve seg-
ments like splines or clothoids over discrete methods is that
the curve can be regenerated at arbitrary resolution.

Clothoids have been the subject of prior research in

computer aided design. Motivated by transportation design,
Meek and Walton have looked at conditions under which one
or more clothoid segments can form a transition curve be-
tween two given curve segments [MW92]. They have also
proposed a clothoid spline [WM05], where two clothoid
pieces are used to form a parabola-like segment between ev-
ery three consecutive points of a control polygon. While the
resulting clothoid spline is G2, the curve is forced through
a point of zero curvature on every edge of the control poly-
gon. A discrete formulation of clothoid using nonlinear sub-
division has also been proposed [GXH01]. Clothoids have
also been used as a transition curve segment for computer
vision applications of occluded contour completion and in-
painting [KFP03].

Originally motivated by a system for quickly sketching
track layouts for game environments and road layout con-
ceptualization by landscape architects, we find clothoids to
be attractive curve primitives that qualitatively capture the
natural curvature variations of human sketching well.

3. Clothoid Terminology

The clothoid spiral can be parameterized using the Fresnel
integrals

C(t) =
∫ t

0
cos

π

2
u2du, (1)

S(t) =
∫ t

0
sin

π

2
u2du, (2)

as

πB
(

C(t)
S(t)

)
, (3)

where t is the arc length parameter, and πB is a positive scal-
ing parameter that defines the slope of linear curvature vari-
ation of a family of spirals as seen in Figure 6.

Figure 6: Fixing arc length and an initial curvature param-
eter, a family of clothoid segments is formed by decreasing
parameter B near infinity (left) toward zero (right).

Clothoids can be expressed in a computationally efficient
manner, using rational approximations for C(t) and S(t)
given in [Hea85]:

C(t)≈ 1
2
−R(t)sin

(
1
2

π(A(t)− t2)
)

, (4)

S(t)≈ 1
2
−R(t)cos

(
1
2

π(A(t)− t2)
)

, (5)
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Figure 5: Sketching clothoid splines within Drive, a sketch-based track modeling system.

where

R(t) =
0.506t +1

1.79t2 +2.054t +
√

2
,

A(t) =
1

0.803t3 +1.886t2 +2.524t +2
.

The maximum error of this approximation is 1.7× 10−3.
Higher order approximations are also defined, with maxi-
mum error up to 4×10−8, but we found the above sufficient.

4. Curve fitting using clothoids

We now detail our approach to curve fitting using a sequence
of clothoid, circular arc and line segments (see Figure 1,13).
Note that while the steps below fit a polyline, they can be
used to fit any curve representation that is discretely sampled
at an appropriate resolution.

4.1. Discrete curvature estimation

Discrete curvature for planar curves can be estimated at a
point using the circum-circle formed with its two adjacent
points or the Frenet-Serret fomulae as shown in [MR07].
Given any three sequential points pi−1, pi, pi+1 of the input
polyline, using the vectors v1 = pi − pi−1, v2 = pi+1 − pi,
the estimated curvature at pi is given by

κ(pi) =
2sin

(
θ

2

)
√
||v1|| · ||v2||

, (6)

where θ = arccos
(

v1
||v1|| ·

v2
||v2||

)
. Robust statistical ap-

proaches to curvature computation that perform better in
the presence of noise and irregular sampling [KSNS07] can

also be used. The curvature for discretely sampled analytic
curves may also be directly sampled from the analytic curve.

Each point is now mapped into curvature space, where
the horizontal axis denotes arc length and the vertical axis,
curvature (see Figure 4a). We adopt (positive/negative) cur-
vature to denote (right/left) turning in this space.

4.2. Piecewise linear curvature segmentation

We now segment the curve into a minimal sequence of pieces
of linearly varying curvature. A dynamic programming algo-
rithm finds a connected set of line segments which minimize
both the number of line segments used, and the error in fit
with the curvature space points. The number of pieces used
is minimized by assigning a penalty Ecost for each linear
piece. We populate a matrix M with values, in a bottom-up
fashion, using the following:

M(a,b) = min
a<k<b

{
M(a,k)+M(k,b),E f it(a,b)+Ecost

}
.

(7)
M(a,b) denotes the minimal cost of a configuration of con-
nected line segments from point a to b. M(a,b) entries are
calculated for all a < b, making M strictly upper triangular.
E f it(a,b) denotes the vertical error resulting from linear re-
gression with the points from a to b. Expressing the linear
regression line using slope and y-intercept, denoting them
lslope and lyint respectively, we can define E f it precisely as

E f it(a,b) =
b

∑
i=a

∣∣lyint + lslope ·arclength(pi)−κ(pi)
∣∣ , (8)

where (arclength(pi),κ(pi)) is the curvature-space point
corresponding to pi.

c© The Eurographics Association 2008.



J. McCrae & K. Singh / Sketching Piecewise Clothoid Curves

The solution, a set of connected line segments in curvature
space, defines the set of connected clothoid segments that
will be used to fit the input curve. Figure 7 shows the effect
that different values of Ecost has on the generated solution.
In practice, we use values of Ecost ranging from 0.01 to 0.1.

κ
arc-length

κ
arc-length

κ
arc-length

κ
arc-length

Figure 7: The effect of Ecost on the generated segmentation.
As Ecost decreases, more segments are used.

4.3. Segment parameterization

For each clothoid segment, we have its curvature space end-
points (xP

i ,yP
i ) and (xP

i+1,y
P
i+1). yP

i and yP
i+1 specify the

start and end curvatures of the segment, and the difference
xP

i+1−xP
i specifies the arc length. These parameters uniquely

map to a clothoid segment defined by the scaling parameter
B, and the start and end parameter values t1 and t2. Since the
curvature of a clothoid is t

B :

t1 = yP
i B and t2 = yP

i+1B. (9)

B can be expressed using the formula for arc length:

xP
i+1− xP

i = πB(t2− t1)

= πB(yP
i+1B− yP

i B) (using (9))

= B2
π(yP

i+1− yP
i )

xP
i+1− xP

i

π(yP
i+1− yP

i )
= B2

and since B must be positive,

B =

√
xP

i+1− xP
i

π(yP
i+1− yP

i )
. (10)

Each clothoid segment is translated and rotated to connect

end points and align tangents to adjacent segments resulting
in an overall G2 curve (see Figure 4a).

4.4. 2D Rigid Transformation

We now need to translate and rotate this overall curve, so
as to minimize the fitting error to the input curve. We cast
this as a weighted least squares minimization problem as fol-
lows: Sample a corresponding set of n points from the canon-
ical clothoid spline, using the arc length positions from the
input polyline. Define the set of corresponding n canonical
points with an S superscript:

{
(xS

0,y
S
0), . . . ,(x

S
n−1,y

S
n−1)

}
.

Figure 8 shows the clothoid spline in its canonical form, with
the corresponding set of n points sampled along it.

Figure 8: The points
{

(xS
0,y

S
0), . . . ,(x

S
n−1,y

S
n−1)

}
on the

composite curve in pink must undergo a rigid 2D transfor-
mation to match the sketched input curve in white (left). The
result of the transformation (right).

The goal is to minimize the sum of 2-norm distances be-
tween corresponding pairs of points with a rotation matrix R
and translation vectors T and T S:

n−1

∑
i=0

∣∣∣∣∣∣∣∣R((
xS

i
yS

i

)
+T S

)
+T −

(
xi
yi

)∣∣∣∣∣∣∣∣
2
. (11)

Our approach is based on the solution for shape matching
shown in [MHTG05]. The optimal translation vector is given
by aligning the weighted centroids of both sets of points:

T S =
1

∑
n−1
i=0 wi

(
∑

n−1
i=0 wixS

i
∑

n−1
i=0 wiyS

i

)
, (12)

T =
1

∑
n−1
i=0 wi

(
∑

n−1
i=0 wixi

∑
n−1
i=0 wiyi

)
, (13)

where each weight wi specifies the relative importance of the
corresponding pair of points (xi,yi),(xS

i ,y
S
i ) in the fit (see

Figure 4b,9).

(a) (b)

κ

arc-length

Figure 9: Equal weights for all sample points (a), and only
weighting the end-points (b), result in different rigid trans-
forms for the same composite curve segmentation on the
right.

c© The Eurographics Association 2008.



J. McCrae & K. Singh / Sketching Piecewise Clothoid Curves

Define sets of points which are the relative locations to the
centroids qi = (xS

i ,y
S
i )−T S and pi = (xi,yi)−T . To deter-

mine the rotation matrix, the problem is relaxed to finding
the optimal linear transformation A, where we want to min-
imize ∑

n−1
i=0 wi(Aqi − pi)2. Setting the derivatives with re-

spect to all coefficients of A to zero yields the optimal trans-
formation

A = (
n−1

∑
i=0

wi piq
T
i )(

n−1

∑
i=0

wiqiq
T
i )−1 = ApqAqq. (14)

Aqq can be ignored as it is symmetric and does scaling
only. The optimal rotation R is then the rotational part of
Apq, found by a polar decomposition Apq = RS, where S =√

AT
pqApq, and so R = ApqS−1.

If the matrix AT
pqApq is near-singular, instead the vector

from the start to end point of the sketched curve given by
(xn−1,yn−1)− (x0,y0) is used, and its arctangent provides
an estimate of the best angle of rotation.

5. Fitting extensions

5.1. Sharp corners (G1 discontinuity)

Many sketching applications require the user to only sketch
smooth strokes and handle corners by requiring two separate
smooth strokes to end at a corner. Such a restriction adds a
cognitive burden on the user and can be disruptive to the
sketching process. To automatically handle sharp corners in
our framework, we first need to detect points of G1 disconti-
nuity in the sketched stroke. Observe that such sharp corners
appear as large spikes in curvature space (see Figure 10).
Statistical approaches to curvature estimation [KSNS07] are
able to robustly filter out similar spikes that may arise from
noise and outliers in the sketched stroke. Simple threshold-
ing of points with both high curvature and high variation in
curvature yields our set of sharp corners. We then force a
segment break at all sharp corners and flatten the curvature
spike from the set of curvature points so as not to bias the
subsequent fitting process. The final segmentation is a fur-
ther refinement of the segments induced by the sharp cor-
ners. We now treat the composite curve as having limbs that
articulate at the corners. We fit this curve by finding the op-
timal transformation for the first limb as in Section 4.4. The
translation of each subsequent limb is now constrained but
its optimal rotation may once again be solved as in Section
4.4. We use a higher weight for the corner points in this fit-
ting to better match the user sketched corners. While a more
globally optimal set of transformations may be sought, we
find this greedy approach to work well in practice and the
resulting curves closely match the input sketch.

5.2. G3 continuity

It is also easy to extend the given piecewise construction
to produce G3 continuous curves. Following the curvature

κ

arc-length

κ

arc-length

κ

arc-length

κ

arc-length

Figure 10: Curves with sharp corners or G1 discontinuities
are automatically handled by our fitting approach.

space linear segmentation step, between each pair of seg-
ments, we can round the corners in curvature space by per-
forming a local blend (see Figure 11). For each segmentation
point (xP

i ,yP
i ) that is the endpoint of two segments, blending

occurs within a window of distance d around xP
i . A set of

blended samples can be constructed for this window, sam-
pling with a value s such that 0 < s < 1, each sample point
is given by(

x
y

)
=

(
xP

i +d(2s−1)
yP

i −m1d(s2 +2s−1)+m2ds2

)
(15)

where m1 =
yP

i −yP
i−1

xP
i −xP

i−1
and m2 = yP

i+1−yP
i

xP
i+1−xP

i
are the slopes of the

curvature space line segments.

Segmentation point (xP
i ,yP

i ) is then replaced by the gen-
erated set of blended samples. The samples in this region
finitely approximate a quadratic function with a continuous
derivative.

5.3. Geometric interpolation

While our approach is tailored towards constructing fair
curves that approximate sketch strokes, it may be desirable
to interpolate given geometric constraints. Performing such
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κ

arc-length

Figure 11: A G3 continuous curve obtained by local linear
blending of adjacent clothoid segments.

interpolation strictly using clothoids is sometimes impossi-
ble [MW92]. Instead within our system we simply use quin-
tic Hermite splines that we locally blend into the curve gen-
erated by Section 4 to interpolate arbitrary points with G2

continuity (see Figure 12). We note that while G2, the use
of Hermite splines can destroy the fairness properties of the
overall curve.

Figure 12: The curve composed of clothoid segments (red) in
Figure 3 is edited in the middle using a quintic spline (green)
with G2 continuity but with degradation in quality of the cur-
vature plot.

6. Sketching Applications

We have implemented our approach both as a simple sketch-
ing interface capable of generating a wide variety of aes-
thetic curves (see Figure 13) and as part of Drive, a compre-
hensive system for sketch-based road network design (see
Figure 5). While Drive has a number of sophisticated fea-
tures specific to the conceptual sketching of a driving ex-
perience, it is built around a simple interface for sketching
clothoid curves. The framework naturally favours lines, cir-
cular arcs and clothoids which are common in road design
and also desirable from a steering standpoint. In our system
users can prescribe a preference for more or less segments

by directly specifying Ecost , or by specifying an error of fit,
in which case the system iteratively uses a lower Ecost , if the
error of fit is above the given tolerance (see Figure 7). Users
can also oversketch parts of curves as one might expect, in
which case the track is globally refitted or blended in locally
using a spline as in Section 5.3 (see Figure 14).

Our demo application is implemented in C++ using
OpenGL and GLUT. It was tested on 2 systems: an AMD
Athlon64 3000+ 2GHz and an Intel Xeon 2.2GHz, both with
1 GB RAM, and in both cases curves consisting of hundreds
of points are generated in real time. The most computation-
ally costly step in our approach is determining the curva-
ture space segmentation. As a dynamic programming algo-
rithm is used to find a global minimum solution, the num-
ber of points of the input polyline determine the number of
rows and columns of the cost matrix M, leading to quadratic
growth in the number computations required.

κ
arc-length

κ

arc-length

κ arc-length

κ
arc-length

κ

arc-length

Figure 13: Gallery of curves sketched using our system (left)
with corresponding curvature profiles (right).

7. Conclusion

We have presented an approach to fitting sketched strokes
with a sequence of line, circular-arc and clothoid segments.
We empirically find that clothoids tend to capture sketched
strokes well and usually only a few (less than five) clothoid
segments can capture a stroke with screen resolution fidelity.
Figure 3 shows our fitting approach to be an appealing alter-
native to current approaches to stroke fairing, such as Lapla-
cian smoothing or cubic spline fitting, particularly when a
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Figure 14: Oversketching to edit curves.

good approximation is more desirable than precise interpo-
lation of any given point. If cubic splines are necessary for
downstream use, we find that fitting the clothoid curves pro-
vides better fairness than directly fitting the input stroke. We
also demonstrate our approach to work effectively within a
road design system. Designers often work with characteris-
tic shape palettes defined by French curves [Sin99], or pre-
defined pieces. In the future we hope to explore the use of
intrinsic splines such as clothoids for both palette represen-
tation and shape editing.
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