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Introduction Weaknesses Perception Learning

General observations

o differential constraint planners: room
for improvement
@ current planners:
e do questionable explorations

(e.g., try to drive into walls)
o they keep doing this, repeatedly

(i.e., “experience” not accumulated)

) inefficient
@ underlying problems:

e planners cannot “see”
e planners do not learn
(transferrable skills)
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Introduction Weaknesses Perception

Specific problems addressed

@ we address these shortcomings
e provide “sight”
e avoid “questionable” exploration
@ the point: greater efficiency, speed up
of up to 10x

better
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Introduction Weaknesses Perception Learning

Adding “sight”

@ “sight”
e needed to anticipate and avoid traps, behave smarter
e collision-check: only a tactile sense
e need longer range, “perception at a distance”
@ = augment agent with virtual sensors
e measure agent < environment distance along line or curve
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Introduction Weaknesses Perception Learning

Learning smarter behaviour

@ “questionable explorations” =
e nonviable states
(Viability Theory: J.P.Aubin)
o Xic
(J.Kuffner & S.LaValle)
o Inevitable Collision States (ICS)
(T.Fraichard et al.)

@ goal: learn these states, avoid them
i.e., viability filtering

@ same solutions, less time & effort
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Introduction Weaknesses Perception Learning

Learning smarter behaviour

@ “questionable explorations” =
e nonviable states
(Viability Theory: J.P.Aubin)
o Xic
(J.Kuffner & S.LaValle)
o Inevitable Collision States (ICS)
(T.Fraichard et al.)

@ goal: learn these states, avoid them
i.e., viability filtering

@ same solutions, less time & effort

impossible!
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Introduction Weaknesses Perception Learning

Why viability filtering makes sense

basic observation from viability theory
@ a nonviable state (e.g., X,y € Xyic) cannot lead to a viable state

@ if it did, x,, would be viable, by definition

Thus
@ if Xgoa Viable:

® Xp, cannot lead to Xgoa/
@ = X, cannot be part of a solution
e = exploring x,, = pointless, waste of effort

@ if Xgoa/ NONviable:

o still partially helpful
e automatically resolved when using two trees
(see paper)
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Implementation Planner augmentation Viability model

Adding “viability filtering” to a planner

Retrofitting a planner

Simple:
© build or obtain a local
viability model for agent

@ replace calls to
collision_check(x)
with
nonviable check(x)

Maciej Kalisiak, Michiel van de Panne Faster Motion Planning Using Learned Local Viability Models



Implementation Planner augmentation Viability model

Modeling viability

e Viab(K) usually not known ahead of time;
where does Viab(K) end and X, start?

v

solution

@ empirical data + simple heuristic — approximate model

@ prior solution trajectories: potential empirical data source

@ model is local: parametrized by virtual sensors’ output

A\

Maciej Kalisiak, Michiel van de Panne Faster Motion Planning Using Learned Local Viability Models



Implementation Planner augmentation Viability model

Our model building process

random walks

’ viable samples x ‘

’ localized samples y‘

local model of
Viab(Xfree) using SVM
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Implementation Planner augmentation Viability model

Our model building process

random walks

’ viable samples x ‘

’ localized samples y‘

local model of
Viab(Xfee) using SVM

Maciej Kalisiak, Michiel van de Panne Faster Motion Planning Using Learned Local Viability Models



Experiments Problem specification Results Tree structure

Outline

© Experiments
@ Problem specification
@ Results
@ Tree structure

Maciej Kalisiak, Michiel van de Panne Faster Motion Planning Usi earned Local Viability Models



Experiments Problem specification Results Tree structure

Agents & sensors

@ one thruster always @ minimum turning @ fixed forward velocity
“on” radius: large .
ol ) g _ @ steering for balance
@ sensor along velocity @ fixed forward velocity and navigation
el @ curved path sensors: @ failure if lean exceeds
max 180° 60°

Maciej Kalisiak, Michiel van de Panne Faster Motion Planning Using Learned Local Viability Models



Experiments Problem specification Results Tree structure

Environments

some environments tested
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Experiments Problem specification Results Tree structure

Sample results

agent problem posed model trained on
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Experiments

Sample results

Problem specification Results Tree structure
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RRT-CT 2148.6s
RRT-Blossom 305.7s
RRT-Blossom-VF 34.3s




Experiments Problem sp s Tree structure

Effect of viability filtering on tree branches

bt g
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Experiments

Tree structure comparison

RRT-Blossom (plain)

RRTExtExt-CT
RRTExtExt
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Experiments Problem specification Results Tree structure

Tree structure comparison

RRT-Blossom (plain)
RRT-Blossom (filtered)

RRTExtExt-CT
RRTExtExt
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Summary

Summary

@ current planners do not “see”, nor “learn” transferrable lessons

@ limit planner to Viab(Xfee): same solutions, significant speed-up
(e.g., 4x-10x)

@ good results despite heavily imperfect models

Additional information

@ http://www.dgp.toronto.edu/~mac/research/viability-filtering/
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Appendix Tree structure (zoom)

Tree structure comparison
RRT-Blossom (plain)
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Appendix Tree structure (zoom)

Tree structure comparison
RRT-Blossom (
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Appendix Tree structure (zoom)

Tree structure comparison
RRT w/Collision Tendency (RRT-CT)
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Appendix Tree structure (zoom)

Tree structure comparison
plain RRT (RRTExtExt)
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Appendix Tree structure (zoom)

Viability vs. collision-checking

X € Viab(Xf,ee) X € X X € Xopst
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Appendix Tree structure (zoom)

Viability vs. collision-checking

X € Viab(Xf,ee) X € X X € Xopst
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Appendix Tree structure (zoom)

Viability vs. collision-checking

x € Viab Xfree Abiite X € Xopst
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