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Abstract

We present novel techniques for interactive editing the motion of
an animated character by gesturing with a mobile device. Our ap-
proach is based on the notion that humans are generally able to
convey motion using simple and abstract mappings from their own
movement to that of an animated character. We first explore the
feasibility of extracting robust sensor data with sufficiently rich fea-
tures and low noise, such that the signal is predictably representa-
tive of a user’s illustrative manipulation of the mobile device. In
particular, we find that the linear velocity and device orientation
computed from the motion sensor data are well-suited to the task
of interactive character control. We show that these signals can be
used for two different methods of interactively editing the locomo-
tion of an animated human figure: discrete gestures for editing sin-
gle motions, and continuous gestures for editing ongoing motions.
We illustrate these techniques using various types of motion edits
which affect jumps, strides and turning.
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1 Introduction

Animated characters are increasingly prevalent in films, games, and
as avatars in interactive virtual experiences. Authoring or manipu-
lating an animated 3D character with several complexly correlated
degrees of freedom can be a daunting task for novices and meticu-
lous work for experts.

One promising approach to interactive character animation are
performance interfaces, where the user physically performs a ver-
sion of a motion, and their performance is used to manipulate the
digital character in space and/or time in an absolute or relative fash-
ion. An appealing aspect of a performance interface is that intri-
cate space-time relationships resulting from the motion of biome-
chanical joint chains are implicitly included in the physicality of
the performance; manually authoring these relationships to appear
plausible is extremely difficult. The challenge with all performance
interfaces is defining mappings between the user’s motion and the
manipulated character that are both conceptually natural and easy
to perform by the user.

Mobile devices such as tablets and smartphones provide an oppor-
tunity for performance interfaces, given their increasing computa-
tional power and familiarity among many users. While the touch
surface of a mobile device could be utilized in a manner similar to
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prior work using a pen [Thorne et al. 2004] and multi-touch input
[Lockwood and Singh 2012] for character control, we are to our
knowledge the first to explore the use of simple motion sensor data
from a commodity mobile device for interactive control of motion
editing.

Figure 1: Reference and performed motions (showing tablet ver-
tical velocity) to edit a jump (top); Tablet orientation to control
character heading (bottom).

Overview: We found informally that users could utilize two differ-
ent methods for communicating character motion by manipulating
a handheld device: by either mimicking the overall body motion in
an illustrative gesture, or by mimimicking interaction with a control
device correlated with a parameter of a motion such as character
heading. We analyzed the sensor data available in mobile devices,
which many users are comfortable manipulating, to enable inter-
active control of motion editing with either discrete gestures (for
motions with a defined beginning and end) or continuous gestures
(for ongoing but parameterized motions). These gestures were then
used to control the editing handles of a path-based motion editing
algorithm [Lockwood and Singh 2011], which resulted in motion
edits that matched user expectation (Figure 1).

Contribution: Our primary contribution is, to our knowledge, the
first system to use mobile device motion sensors for interactive
character animation. Within this context, we analyze example per-
formance data to propose motion signals best suited to the task of
controlling motion edits. We then develop two novel algorithms:
first, the usage of discrete gestures in the form of separate reference
and editing gestures which control the extent of a standalone mo-
tion; and second, the usage of a user’s continuous gesture to edit
ongoing motion interactively, while maintaining continuity across
motion cycles.

2 Related Work

Our work is inspired by a rich body of research in puppet-like per-
formance interfaces for animation, using input in a variety of forms
including manipulation or movement through space of handheld
input devices [Oore et al. 2002; Dontcheva et al. 2003; Shiratori
and Hodgins 2008; Numaguchi et al. 2011; Jacobson et al. 2014],
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body movement [Shin et al. 2001; Ha et al. 2011; Seol et al. 2013;
Gupta et al. 2014; Rhodin et al. 2014], and touch-based or pen in-
put [Thorne et al. 2004; Lockwood and Singh 2012]. Prior work
has shown that a small number of points could be used to effec-
tively manipulate a character’s motion trajectory [Gleicher 2001],
and even the trajectories of multiple interacting characters [Kim
et al. 2009]. Our method builds upon the path-based motion edit-
ing algorithm of Lockwood and Singh [Lockwood and Singh 2011]
which automatically modifies the motion and timing of a character
according to biomechanical principles when the user edits its path
by repositioning automatically-identified motion editing handles.
In this work, we use motion sensor data to automatically control
the positions and arrangement of these motion handles.

3 Motion Data from Mobile Devices

Smartphones and tablets today are commonly equipped with
a 3-axis accelerometer, a gyroscope, and a magnetometer.
The raw signal data from these sensors
is typically processed to provide motion
signals in the form of linear acceleration
along each local axis of the device, rota-
tion around a semi-arbitrary initial world
coordinate frame, and a rate of rotation (in
a predefined rotation order) around each
local axis (shown inset for a tablet).

Motion sensor data has been analyzed for use in a wide vari-
ety of scenarios, ranging from a passive determination of user
context/activity [Hinckley et al. 2005; Sprager and Zazula 2009;
Kwapisz et al. 2011] to more active gestural control of the device
[Jones et al. 2010; Zarek et al. 2012]. A performance interface to
edit and control an animated character requires sensor signals that
are smooth, so they can be mapped to character motion without
introducing noise artifacts. The signal must also be sufficiently de-
tailed, so that motion features like the motion extrema of the veloc-
ity signal shown in Figure 1(top) can be identified reliably in order
to edit motion or compare the signals of different performances.

Sensor data needs to analyzed in a user-centric reference frame,
where the data is more representative of a performance. We thus
transform the device-local accelerometer data into user-space, us-
ing the gyroscope-based current rotation of the device. A pre-
established vertical axis (opposite to gravity), and arbitrary but con-
sistent horizontal axes are used, which are tracked by the device
over time. Signals for velocity and position of the device are ob-
tained by integration (using finite differences) of the user-space ac-
celeration.

Figure 2 shows these values along the vertical axis for a “jump”
gesture performed with the device, mimicking the motion of a full-
body jump. There is substantial noise observable in the raw ac-
celeration data, which can make the robust identification of motion
extrema difficult; however, filtering the data could reduce the accu-
racy of the extrema by over-smoothing them. The twice-integrated
position data, which should reflect the vertical up-and-down motion
of the device during the jump, lacks noise and is dominated by drift
introduced by the accelerometer data, resulting in a smooth but fea-
tureless signal. This drift is a result of bias in the accelerometers,
which can also be observed as non-zero acceleration when the de-
vice was stationary at the beginning and end of the gesture. While
this bias could potentially be measured and accounted for, it still
presents a significant impediment to using integrated position data.
Integrating acceleration once to provide a velocity signal is a good
trade-off, providing smoothness while preserving important motion
features. Accelerometer drift results in a linear offset that skews the
velocity, but has a smaller impact on its motion features.

Figure 2: Vertical acceleration, integrated velocity, and twice-
integrated position during the performance of a “jump” gesture.

However, mimicking the overall motion of a character is not al-
ways the most appropriate method of control. For ongoing control
of motion heading, we utilize a more direct conceptual mapping
between the device and the animated character: that of a steering
wheel, which users may be familiar with from mobile or console
video games. When the device is held level, users can reasonably
expect the character to proceed straight ahead, and turn as appro-
priate in response to tilting the device. This “steering angle” of
the device can be measured and applied instantaneously, as long
as the motion editing algorithm ensures continuity of the charac-
ter’s motion over time. We are able to compute this instantaneous
steering angle from the device’s current rotation directly, as the de-
vice’s rotation around an axis normal to its display, allowing the
“steering column” to be oriented to the user’s comfort (Figure 3).
We compute the steering angle from world-space device rotation as
the difference between the device’s current rotation and a level ver-
sion of that rotation, determined using the world up direction. This
level rotation is the smallest rotation around an axis normal to the
device’s display which would make an edge of the device parallel
with the ground plane. Steering can be disabled when the device is
near parallel with the ground plane, which would otherwise result
in a steering angle which is undefined.

Figure 3: Starting with a neutral “steering wheel” grip of the de-
vice (a), steering angle is measured as the rotation left or right
around an axis normal to the display (b). Rotating the device
around a vertical axis (c) or tilting it (d) should have no effect on
the measured steering angle.

4 Motion Editing with Discrete Gestures

We assume for the purpose of this section that the input motion is
finite, like the jump in Figure 1(top), or has a representative cycle



like the walk in Figure 1(bottom). We also assume that each such
motion has a pre-defined gestural representation, either computed
automatically from the motion using any of a variety of pose ex-
traction schemes [Assa et al. 2005], or defined manually in advance,
such as a simple mimicking of the overall body motion. This ges-
tural representation, which is correspondingly finite, is referred to
as a discrete gesture. However, a single performance of this gesture
is not sufficient for editing. Because different users might naturally
perform the same in different ways, a baseline of some sort is re-
quired to determine the scale of the motion. Instead of requiring
users to perform with a fixed scale, we assume that a single user’s
performances are consistent amongst each other, and utilize two
gestures: a reference gesture, mimicking the current motion, and
an editing gesture, mimicking the desired new motion.

Figure 4 shows that while the extents of the vertical velocity curves
of various jump performances may differ, they velocity profiles are
remarkably similar in shape. The velocity extrema may not coin-
cide with spatially intuitive parts of the gesture; for example, the ve-
locity maximum naturally occurs midway through the “upswing”,
before slowing and becoming negative prior to the apex of the de-
vice’s trajectory. As long as we are able to match the velocity fea-
tures with those of the reference motion, however, a meaningful
difference between the motions can be computed to define a scal-
ing factor: for example, a scaling factor of 2.0 for a “jump” motion
would indicate that the user’s editing gesture was twice as high as
the reference gesture, and that the jumping motion should be edited
accordingly.

Figure 4: Vertical velocity profiles of “jump” gestures of various
heights.

This scale factor is determined by the product of the relative scal-
ing in each of the velocity and time dimensions. Due to the relative
simplicity of the velocity profiles, our approach calculates this scal-
ing from an approximate similarity transform from a small num-
ber of corresponding feature points (the local extrema) identified in
the profiles. In the simple case of two identified features in each
gesture, the scaling factor can be determined as follows. The fea-
tures of the reference gesture, r0 and r1 correspond respectively
to the features of the editing gesture, e0 and e1, with points in a
two-dimensional space where the axes are time and velocity: ri =
(rit, riv), ei = (eit, eiv). The deltas between each gesture’s pair
of features, ∆r and ∆e, are the vectors from the first to second fea-
tures: ∆r = r1−r0 = (∆rt,∆rv),∆e = e1−e0 = (∆et,∆ev).
The final scaling factor, s, is the product of the ratios between each
dimension of the delta vectors: s = ∆et

∆rt
· ∆ev

∆rv
.

This scaling factor represents the change in spatial extent between
the reference and editing gestures. That same scaling factor can
be applied to the current motion to obtain a new motion with a
correspondingly edited extent.

We now describe how a motion can be parameterized to capture
how the entire motion changes relative to an appropriate spatial ex-
tent. This parameterization specifies the position of a sequence of
motion editing handles which are automatically detected by, and
control the path-based motion editing method of Lockwood and

Singh [Lockwood and Singh 2011]. We define the n editing han-
dles for an input motion, with initial positions h1,h2, . . . ,hn. Our
parameterization is a set of functions ĥi(t), each of which deter-
mines the new position of a handle based on the scalar parameter t:
ĥ(t) =

{
ĥ1(t), ĥ2(t), . . . , ĥn(t)

}
. This motion parameterization

can be generated procedurally, or manually authored by providing a
number of example positions for the motion handles. We compute
edited motion handles by simply computing the functions at a pa-
rameter s· t̄, where t̄ is the parameter corresponding to the reference
motion.

Figure 5 shows an example of this technique for editing jump
height. The features within the vertical velocity profiles of the refer-
ence and editing gestures are determined, which results in the cal-
culation of a scale factor of 2.98. This scale factor is applied to
the initial jump height of 23cm, resulting in a new jump height of
68cm.

Figure 5: Velocity profiles with identified features and the corre-
sponding motions for the reference gesture (left) and the editing
gesture (right) for editing jump height.

The procedure for editing a jump’s distance is similar to editing
jump height. The reference and editing gestures are two “forward
jump” gestures demonstrating the current and desired distance of
the jump. While the vertical velocity of the handheld device is rel-
evant in these gestures, the horizontal velocity is also important,
as it demonstrates the horizontal distance of the gesture. How-
ever, since the device’s world horizontal axes can be oriented ar-
bitrarily, the gesture’s motion may occur along a combination of
those axes. We thus, use the magnitude of horizontal velocity
‖vhoriz‖ =

√
vx · vx + vz · vz. Figure 6 shows the horizontal

velocity profiles from four different “jump forward” gestures of in-
creasing distance, along with the corresponding vertical velocities.

Figure 6: Horizontal and vertical velocity profiles of four different
“jump forward” gestures of varying distances.



In these examples, the differing magnitude of the peak horizontal
velocity offers a clear indication of the magnitude of the gesture,
but the smoothness of the velocity over time makes determining
exact correspondences between gestures difficult. Conversely, the
vertical velocity has useful features, as utilized in the previous sec-
tion to edit jump height, but does not capture the magnitude of the
gesture’s horizontal distance. We thus the vertical velocity features
to determine timing, but the horizontal velocity values to determine
the scale factor, as the product of the ratio of the duration between
each pair of features and the ratio of the maximum horizontal ve-
locity during the time between the corresponding features.

Figure 7 shows an example of this technique for editing jump dis-
tance. The features within the velocity profiles of the reference and
editing gestures are determined, which results in the calculation of
a scale factor of 1.77. This scale factor is applied to the current
jump distance of 88cm, resulting in a new jump distance of 156cm.

Figure 7: Velocity profiles with identified features and the corre-
sponding motions for the reference gesture (left) and the editing
gesture (right) for editing jump distance.

These methods can be applied to the editing of non-jumping mo-
tions as well. To edit the stride distance of a walking motion, a
“forward walk” gesture similar to the forward jump is used, but
the user can perform multiple “hops”, representing steps. We can-
not expect users to provide a precise correspondence between the
reference and editing gestures; therefore, instead of identifying a
single pair of features within each profile, the longest continuous
sequence of such pairs is identified, where each pair signifies a per-
formed step. The scaling factor is then calculated using the average
of the calculations on all steps in each gesture, but instead of an
average of ratios between reference and editing gestures, a ratio of
averages is used, as the number of steps in both gestures may differ.

Figure 8 shows an example of this technique for editing stride dis-
tance. The features within the velocity profiles of the reference and
editing gestures are determined, which results in the calculation of
a scale factor of 1.75. This scale factor is applied to the current
walking motion with a total distance of 3.36m, resulting in a new
walk with a total distance of 5.89m.

5 Motion Editing with Continuous Gestures

Sometimes more direct spatial control over a motion is required
than can be obtained by a velocity based gestural approach. A
prime example of this is controlling the motion trajectory of a walk-

Figure 8: Velocity profiles with identified features and the corre-
sponding motions for the reference gesture (left) and the editing
gesture (right) for editing stride distance.

ing character. We address such scenarios with a technique utilizing
ongoing or continuous gestures, demonstrated in Figure 9. As with
the scenarios of discrete gestural editing, this is a case of a relatively
simple motion with a single spatial degree of freedom.

Figure 9: A novel motion generated with continuous gestural con-
trol of the motion’s turning angle in real-time.

A parameterized motion, similar to those used for discrete gestural
editing, forms the basis of the motion that will be generated with
continuous control. The parameterization takes the scalar steer-
ing angle as input, and modifies a straight-ahead walking motion
to have a constant turning rate by arranging the handles along an
approximate circular arc. The entire parameterized motion is mod-
ified in real-time as the steering angle changes based on how the
user manipulates the device. Equal successive rotations around a
vertical axis are applied at each editing handle, so that the direction
of each segment (formed between pairs of editing handles) differs
from that of the previous segment by an angle equal to the steering
angle multiplied by a constant factor. The distance between succes-
sive editing handles remains unchanged, and handles “bend” as if
a rigid chain. Note that the bending this motion provides relative
rather than absolute control of character orientation, thus retaining
higher-frequency motion, such as hip sway, from the unedited mo-
tion. Figure 10 shows the results of this path bending for a variety
of steering angles.

The method as described generates consistent motion directed by
the continuous steering control of the user, but is ultimately limited
by the length of the original motion. However, the cyclic repetition
in a motion such as forward walking means that edits to a small rep-



Figure 10: A short walking motion with successive handles bent by
interactive steering angles of 0, 10, 20, 30, and 40 degrees.

resentative motion (a “sidecar” motion) can be applied repeatedly,
to produce a streamed motion very similar to the results of editing
a large motion composed of many cycles. In the case of forward
walking, the cyclic portion of the motion is two forward steps, one
left and one right. Whenever an evaluation of the sidecar motion
would require a pose beyond the last frame, the method concep-
tually splits this timestep in two parts. First, the sidecar motion is
stepped forward to exactly the last frame, and then “rewound” to the
first frame. Then, the remaining timestep is taken and the procedure
continues as before. For efficiency, it is desirable to have a sidecar
motion which is as short as possible, but a motion consisting of the
smallest repeatable part, two forward steps, will not generate con-
sistent motion due to the path-based editing technique’s behaviour
at the endpoints of an edited motion. We thus use a walk with four
steps, and the actual cycled portion of the motion is in the interior
two steps, with the first and last steps providing continuity in the
character’s facing direction. The difference between using a two-
step sidecar motion and the interior two steps of a four-step motion
is shown in Figure 11.

Figure 11: A two-step sidecar motion (top left) results in a path
shape that does not appear smooth when repeated (bottom left).
Using the interior two steps of a four-step motion (top right) results
in a tighter, smoother path when repeated (bottom right).

6 Animator Feedback

One application of our work is to potentially make the creation of
animation more accessible to users who have no prior experience.
In addition, we were also curious how our techniques could be ap-
plied by professional animators in their efforts to produce extremely
high-quality animation. To that end, we presented our techniques
running interactively on a tablet to five visual effects character ani-
mators, with experience ranging from four to twenty-two years, and
discussed their potential applications.

The animators all agreed that our techniques could have a signif-
icant impact on their work during the early stages of crafting an

animated performance, where a character’s movement through the
scene and environment - the “blocking” - are established. Creating
the blocking of a single performance through traditional keyfram-
ing can be quite time-consuming, a difficulty which is compounded
by the often many iterations and versions produced as different pos-
sible performances are explored, or the goals change after feedback
from a director. All of the animators felt that directly authoring ini-
tial character movements by gestures would be far more efficient,
with some animators pointing out the similarities to the reference
material that they perform themselves in video or motion capture.
While the highly nuanced performances in feature-quality anima-
tion require significant animator time and effort to manually craft,
our techniques could allow the broad strokes of a performance to
be converged upon much more quickly, allowing even more time to
refine the final performance.

7 Conclusion

We have presented a novel approach to interactive motion editing
using gestural manipulations of mobile devices. A technique for
discrete editing of motions identifies features in the velocity profile
of the device during both an initial reference gesture and subsequent
editing gesture. The difference between these gestures is applied to
a variety of motions which have been specifically parameterized
using a path-based editing algorithm. A second method for con-
tinuous editing of motions uses steering wheel-style manipulation
of the device to control the path bending of a cyclical walking ani-
mation. Successive poses from this cyclical animation are arranged
in space to ensure continuity as the motion continues indefinitely,
with continuity during cycling enforced by careful automatic ar-
rangement of the path editing handles.

There are limitations to our work. There can be noticeable noise
as well as a lack of precision in handheld gestures, which can be
caused by either the device’s sensors and/or instability in the user’s
gestures; different methods or hardware could potentially track the
position and rotation of the device with more precision, though even
with perfect data the illustrative and imprecise nature of user perfor-
mances of motion [Lockwood and Singh 2012] must be accounted
for. We also require that the input motion be parameterized a-
priori; while this is simple to specify, an automatic approach could
be more flexible, such as determining which aspect of the motion
to edit based on its similarity to the reference gesture [Dontcheva
et al. 2003]. In addition, a system which unifies the use of discrete
and continuous gestural control by seamlessly switching between
those methods could be useful for generating full-body motions
with more variety, such as causing the directional control of walk-
ing character to transition to directional control of a running char-
acter. Finally, a user study could provide quantitative data on how
effective manipulating a mobile device is, compared to other input
methods which could still drive our motion editing techniques. De-
spite these limitations, our work has shown the potential of motion
sensor information to control animated characters independently, or
in conjunction with touch-based techniques, on mobile devices.
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