
New C functions to compute rotation matrices

Didier Pinchon

January 16, 2010

1 Introduction

In a recent paper1, Philip Hoggan and I have introduced a new algorithm to compute general
rotation matrices using the precomputation of matrices Jl for l ≥ 1. A package of C functions
has been distributed that computes rotation matrices for 1 ≤ l ≤ lmax provided the coefficients of
matrices Jl are stored, in a compact way, inside a file. The main function of this package is the
function matl_rotation() that computes simultaneously all the rotation matrices for 2 ≤ l ≤ lmax
and given Euler angles.

However, as noted by Christian Lessig in recent mail exchanges, the performance of the function
matl_rotation() is very poor In this note, I describe a new set of function to compute a rotation
matrix for a given value of l and Euler angles. Performance comparison are done between the old
and new functions.

The code for the new package is distributed in an archive file Rotation2.tar.gz that contains in
particular

• The source code in C for the functions of a library in directory Rotation2/Src/Base,

• The source code in C for two application programs in directory Rotation2/Src/Util,

• The trace of some of their execution results in directory Rotation2/Src/Maple.

However, for size reasons files, files containing the precomputed entries of Jl matrices that should
be present in directory Rotation2/Src/Maple/NumMatJ has not been stored in the archive file.
Only the files for 1 ≤ l ≤ 50 are given in the archive file. Maple programs are given to generate
the files for 51 ≤ l ≤ 200.

2 Results

Four new functions have been introduced in source file rotation.c:

1. gsl_matrix *read_matJ(int l) that reads the entries of Jl for a given l in file
Maple/NumMatJ/numMatJ-l.dat and construct the symmetric square matrix Jl of size 2l +1.

1D. P. and Ph. Hoggan,Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in

pace-fixed axes, J. Phys. A 40(2007), 1597-1610.

1

2. mat_product_Zalpha_left(int l,const gsl_matrix *matl1, const double alpha,

gsl_matrix *res)

that computes the product ZαA where A is matrix of size 2l+1 and Zα is the rotation matrix
of size 2l + 1 for a rotation with axis Oz and angle α.

3. mat_product_Zalpha_right(int l,const gsl_matrix *mat1, const double alpha,

gsl_matrix *res)

that does the same job to compute a product AZα.

4. mat_rotation(int l,double alpha, double beta, double gamma,gsl_matrix *res,

const gsl_matrix *matj)

that compute the rotation matrix R = ZαJlZβJlZγ for given values of l and Euler’s angles
α, β, γ.

These four function use the C-type gsl_matrix from the GNU Scientific Library (GSL). The code
of function mat_rotation() is very short :

int mat_rotation(int l,double alpha, double beta, double gamma,gsl_matrix *res,

const gsl_matrix *matj)

{

gsl_matrix *tmp;

tmp = gsl_matrix_calloc(2*l+1,2*l+1);

mat_product_Zalpha_left(l,matj,beta,tmp);

gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,matj,tmp,0.0,res);

mat_product_Zalpha_left(l,res,alpha,tmp);

mat_product_Zalpha_right(l,tmp,gamma,res);

gsl_matrix_free(tmp);

return EXIT_SUCCESS;

}

A first version uses the C-blas function gsl_blas_dsymm, because matj is a symmetric matrix with
the line

gsl_blas_dsymm(CblasLeft, CblasLower, 1.0, matj, tmp, 0.0, res);

instead of gsl_blas_dgemm(CblasNoTrans,CblasNoTrans,1.0,matj,tmp,0.0,res);

As shown in Figure 1, it was not a good idea, at least on my Linux workstation.

The program test_rotation that received four arguments
test_rotation lmax alpha beta gamma

with lmax ≤ 20, checks that the computed rotation matrices for 2 ≤ l ≤ lmax are exactly the
same when computed by the old function matl_rotation() with one call and the new function
mat_rotation() with one call per value of l.

The program time_rotation that received two arguments
test_rotation lmax maxiter

computes maxiter rotation matrices for each values of l such that 2 ≤ l ≤ lmax. The three Euler’s
angles are chosen at random in their definition domain 0 ≤ α, γ ≤ 2π and 0 ≤ β ≤ π with an

2

uniform distribution. This doesn’t correspond to the uniform distribution on SO(3, IR) but was
estimated to be sufficient to test the time performance of function mat_rotation.
Figure 1 gives the mean time in seconds for one call of this function as a function of l. The upper
curve was obtained for lmax = 200 and 100 runs for each value of l, when using the C-blas function
gsl_blas_dsymm and the lower with gsl_blas_dgemm.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140 160 180 200

l

Times (sec)

GSL
dgemm
dsymm

Figure 1: Comparison between programs using dsymm or dgemm GSL routines.

Figure 2 shows the final performance curve. Using a linear regression to find the best constants a

and b such that log T (l) ∼ a log l + b where T (l) is the mean time to compute a rotation matrix for
l with 100 ≤ l ≤ 200 gives

T (l) ∼ 2.81 log l − 18.34 .

So T (l) = O(l3) where the proportionality constant is machine dependent, this result beeing con-
firmed by a precise study of the arithmetic complexity of the algorithm.

3

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 20 40 60 80 100 120 140 160 180 200

l

Times (sec)

Figure 2: Time for computing a rotation matrix.

4

