A set of C functions to compute rotation matrices
and spherical harmonics expansions

Didier Pinchon

July 13, 2011

1 Introduction

In a recent paper!', Philip Hoggan and I have introduced a new algorithm to compute general
rotation matrices using the precomputation of matrices J; for [> 1. A package of C functions
has been distributed that computes rotation matrices for 1 < I < Imax provided the coefficients
of matrices J; are stored, in a compact way, inside a file. The main functions of this package are
functions that compute simultaneously all the rotation matrices for 0 <1 < Imax and given Euler
angles or all rotated vectors of spherical harmonics expansions. Other functions are also provided
to compute individually, for a given value of [, the rotation matrix or a rotated vector of size 2]+ 1.

This version 2.0 improves a previous version 1.0 and is distributed under the GNU General Public
License (see file COPYING).

2 Description of the code

Two structures VecL and MatL are introduced to represent a list of vectors Vi, = (V})o<;<r, and a
list of matrices My, = (M))o<i<r,, where V] has 2[4+ 1 elements and M is a (20 +1) x (20 + 1) matrix:

typedef struct S_VECL {
int lmax;
gsl_vector *x*xlvec;

} VecL;

typedef struct S_MATL {
int lmax;
gsl_matrix **lmat;

} MatL;

These structures and the signature of available functions are defined in file rotation.h. The code
of the functions are located in the following C files.

alloc.c

ID. P. and Ph. Hoggan,Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in
pace-fized azes, J. Phys. A 40(2007), 1597-1610.

This file contains four functions to allocate, for a given value of L, and desallocate space for VecL
and MatL objects.

VecL *vecl_calloc(int 1lmax);
void vecl_free(VecL *vecl);
MatL *matl_calloc(int lmax);
void matl_free(MatL *matl);

matj.c

The core of the algorithm presented in our paper is the precomputation of a set of matrices (J;)o<i<r.-
Two functions allows to recover .J; matrices whose coefficients are stored in file Bin/numMatJ.dat
for 2 <[< L or individually for each value of [in file Bin/NumMatJ/numMatJ-1.dat. These last
files may be extracted from Bin/numMatJ.dat. For reason of place, Bin/numMatJ.dat is provided
in this distribution for L = 150 and individual numMatJ-1.dat for 2 <[< 50.

MatL *read_lmatJ(int lmax) recovers (J;)o<i<r-

gsl_matrix *read_matJ(int 1) recovers an individual matrix J;.

rotation_matrix.c

int matl_matl_product(const MatL *matll, const MatL *matl2, MatL #*matres)
computes the list of product matrices Cr, = (C})o<i<1, where C; = A;B; given Ar, = (A;)o<i<r, and
By, = (Bi)o<i<L-

int matl_rotation(int lmax,double alpha, double beta, double gamma,MatL *res,
const MatL *matj)

computes the rotation matrices Ry, = (R;)o<i<z, for a set of Euler’ angles a, 3,7.

int matrix_rotation(int 1,double alpha, double beta, double gamma,gsl _matrix *res,
const gsl_matrix *matj)$}

computes R; for given angles «, (3, .

Four local fonctions are defined in rotation_matrix.c

int Zalpha_matl_product(const MatL *matl, const double alpha,MatL *res)
int matl_Zalpha_product(const MatL *matl, const double alpha,MatL *res)

to compute (Z;(o)Mp)o<i<r, and (M;Z;(«))o<i<r, where Zj(a) is the rotation matrix of a rotation
with z-axis and angle a. in these two functions the iteration on [is done in an inner loop to
compute the products row by row. This allows to compute cosla,0 <[< L only once. However
this may present the following disadvantages for computation efficiciency: an access to distant
elements during the computation and a drawback to parallelization.

int Zalpha_mat_product(int 1,const gsl_matrix *mat, const double alpha,gsl_matrix *res)
int mat_Zalpha_product(int 1,const gsl_matrix *mat, const double alpha,gsl_matrix *res)

compute Z;(«)M; and M;Z;(«) for a given value of .

rotation_vector.c

int matl_vecl_product(const MatL *matl, const VecL *vecl, VecL *res)
computes Wy, = (W))o<i<r, where W; = A;V; given a MatL set of matrices A, = (A;)o<i<r and a
VecL set of vectors Vi, = (V})o<i<rL-

int vecl_rotation(int lmax,double alpha, double beta, double gamma, const VecL *x,
VecL *res, const MatL #*matj)

computes the VecL set of vectors (R;V])o<;<z, for a rotation given by its Euler’ angles.

int vector_rotation(int 1,double alpha, double beta, double gamma,const gsl_vector *x,
gsl_vector *res,const gsl_matrix *matj)

does the same job for a single value of [.

Two local function are provided to compute (Z;(a)V)o<i<r, or Zi(a)V] for a single value of I:

int Zalpha_vecl_product(const VecL *vecl, const double alpha,VecL *res)
int Zalpha_vec_product(int 1,const gsl_vector *vec, const double alpha,gsl_vector *res)

3 Test programs

Two test programs are located in directory Src/Util.

test_rotation.c

It is called by the command ./test_rotation lmax alpha beta gamma to check several features
to insure that rotation functions do the right job. Here is an example of execution:

./test_rotation 40 0.3 0.7 0.9

1 -> Global rotation in MatL and rotations by bands in gsl_matrices are equivalent
2 -> Rotating all SH coefficients for lmax = 40 by two methods gives equivalent results,
dist = 8.8817841970012523e-16
3 -> Rotating SH coefficients for each 1=0..40 gives identical results,
dist = 0.0000000000000000e+00
4 -> Conservation of the squared 12-norm by rotation :
5.6276343149376009e+02, 5.6276343149375964e+02 —-> err rel = 8.0806130149468742e-16
5 -> Inverse rotation applied to the rotated vector : dist = 7.7715611723760958e-16

time_rotation.c

This program evaluates times to compute R;V; for each [with 2 < [L for a fixed random set
(VL = (V})o<i<r, and a number of random choice of «, 3, for the rotation by two methods. In the
first method, matrix R; is computed and then applied to vector V; while in the second method uses
only matrix-vector product using the product decomposition of R; described in our paper.

The command is ./time_rotation lmax nb_test where lmax stands for the maximum value L
of [and nb_test is the number of random rotations. A second run of each computation, without

timing, is done to check that the methods provide equivalent results (not exactly tha same because
the order of arithmetic operations is not the same). Execution times are recorded in a file res.dat.
The following graphic has been done using results in res.dat.save obtained by the command
./time_rotation 150 10000.

Execution times for the two methods
T T T] 10

Seconds

—— Method 1 |]
—— Method 2

-6

1 I
1
0 25 50 75 100 125 150

