
Programmable Graphics
Hardware

lessig@dgp.toronto.edu

Outline

University of TorontoDynamic Graphics Project

2 / 49

A brief Introduction into
Programmable Graphics Hardware

• Hardware Graphics Pipeline

• Shading Languages

• Tools

• GPGPU

• Resources

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

3 / 49

Hardware Graphics
Pipeline

From vertices to pixels
... and what you can do in between.

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

4 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

5 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

6 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

7 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

8 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

9 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

10 / 49

General Properties

• Strictly sequential processing (pipeline)

• Active vertex / fragment shader program is executed
for each vertex / fragment

• Floating-point pipeline
- No native support for integer / boolean data types

• GPU primitive

- Vertex Shader: Vertex
- Fragment Shader: Fragment

• Shader programs often called kernels

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

11 / 49

Fine-Grain Parallelism

• Each graphics primitive is considered as independent

• The program flow for each GPU primitive is considered
as (almost) identical

• Multiple GPU primitives are processed in parallel

• Scheduling cannot be controlled by the user

• No simultaneous read / write of a buffer

• Multi-GPU solutions extend to high-level parallelism
with explicit control for the user

lessig@dgp.toronto.edu

Uniform Parameters

University of TorontoDynamic Graphics Project

12 / 49

Uniform Parameters

• Infrequently changing

• Available in every stage of the pipeline

• Built-in or user-defined

• Examples:

- Model-View-Projection matrix

- Textures

- Parameters of shading model

lessig@dgp.toronto.edu

Varying Parameters

University of TorontoDynamic Graphics Project

13 / 49

Varying Parameter

• Change for every GPU primitive

• Availability depends on the stage in the graphics
pipeline

• Interpolation in the rasterization unit

• Built-in or user-specified

• Examples:

- Vertex position
- Vertex color
- Fragment color

lessig@dgp.toronto.edu

Vertex Processor

University of TorontoDynamic Graphics Project

14 / 49

Vertex Processor

• Up to 8 parallel units

• MIMD architecture*

- Units execute same program but operate independent

• Texture fetch possible*

- High latency
- Only 2D textures
- Displacement Mapping

• Instruction slots: 512

* Nvidia NV4X architecture

Vertex Processor

Position (Object Space)

lessig@dgp.toronto.edu

Vertex Processor

University of TorontoDynamic Graphics Project

15 / 49

Color

Generic

Uniform Variables
MVP, Texture Matrix, Textures, User-defined, ...

0

1

N

Position (mult. with MVP)

Color

Generic

... ...

lessig@dgp.toronto.edu

Vertex Processor

University of TorontoDynamic Graphics Project

16 / 49

Functionality

• Vertex transformation

• Normal, texture coordinate transformation

• Lighting

• Point size computation

• Vertex position generation

• Texture coordinate generation

• Detail generation

• Skinning

lessig@dgp.toronto.edu

Vertex Processor

University of TorontoDynamic Graphics Project

17 / 49

Functionality

• Feedback loop

1. Render-to-Texture

2. Copy to PBO

3. Use PBO as VBO

lessig@dgp.toronto.edu

Rasterization Unit

University of TorontoDynamic Graphics Project

18 / 49

Rasterization Unit

• Perspective division

• Primitive assembly

• Clipping

• Interpolation of all varying parameters

• Rasterization

•. Early-Z culling (hierarchical and / or per fragment)

lessig@dgp.toronto.edu

Fragment Processor

University of TorontoDynamic Graphics Project

19 / 49

Fragment Processor

• Up to 48 parallel units

• Quad of pixels are processed together

• Very deep pipelines to hide texture fetch latency

• Effectively SIMD architecture

- All occurring program paths have to be computed for
for all fragments in a batch (4 x pipeline depth)

- Incurs very high penalty for incoherent branching

• Instruction slots: 1024 - 4096

lessig@dgp.toronto.edu

Fragment Processor

University of TorontoDynamic Graphics Project

20 / 49

Fragment Processor

Screen space
position

Color

Generic

Uniform Variables
Textures, Textures, MVP, User-defined, ...

0

1

N

Color

Depth ...

lessig@dgp.toronto.edu

Fragment Processor

University of TorontoDynamic Graphics Project

21 / 49

Functionality

• Very high floating-point computing power

• Fragment position fixed

• Computing / altering the depth value possible

• Texture lookups

- Samplers = textures

- Dependent texture lookups

- 1D, 2D and 3D textures

- Explicit mipmap level addressing

lessig@dgp.toronto.edu

Fragment Processor

University of TorontoDynamic Graphics Project

22 / 49

Functionality (cont’d)

• Result can be up to

- 16 full precision floating point values

- 32 half precision floating point values

- 64 8-bit unsigned char values

• Feedback loop: Render-to-Texture

1. Render to offscreen target with texture as
attachment

2. Use texture as data source in the next render pass

lessig@dgp.toronto.edu

Framebuffer

University of TorontoDynamic Graphics Project

23 / 49

Framebuffer

• Can be onscreen or offscreen buffer

• Can have up to four Color buffers (MRTs)

• Can have depth / stencil / accumulation buffer

• Onscreen render target: Provided by Windowing System
- Visual determines properties

• Offscreen render target: Framebuffer object (FBO)
- Attachments determine properties

• Various parameters can be set by the client API
- glBlendEquation(), ...

lessig@dgp.toronto.edu

Hardware Graphics Pipeline

University of TorontoDynamic Graphics Project

24 / 49

Video Memory

Vertex
Processor

Fragment
Processor

Raster
Unit

Render
Target

CPU

Screen

GPU

Hardware Graphics Pipeline

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

25 / 49

High-Level
Shading Languages

From smooth shaded, textured fragments
... to physical accurate BRDF on graphics hardware.

lessig@dgp.toronto.edu

Mental Model Software Layers

University of TorontoDynamic Graphics Project

26 / 49

Graphics Hardware

Low Level Graphics Driver

Application

GLSL Compiler

C
g

lib

br
oo

k
lib

SH
 li

b

OpenGL Driver

Intermediate Assembler

lessig@dgp.toronto.edu

Shading Languages

University of TorontoDynamic Graphics Project

27 / 49

General Considerations

• Based on C/C++

• Additions to support graphics

• Several limitations compared to C/C++

Languages

• GLSL: OpenGL Shading Language

- Part of OpenGL 2.0

- Developed by 3DLabs, maintained by ARB forum

lessig@dgp.toronto.edu

Shading Languages

University of TorontoDynamic Graphics Project

28 / 49

Languages (cont’d)

• Cg: C for Graphics

- Developed and maintained by Nvidia

- Graphics API independent

- Proprietary
- Can be used with ATI cards when compiling to ASM

• HLSL: High-Level Shading Languages

- Developed and maintained by Microsoft

- Shading Language for DirectX

lessig@dgp.toronto.edu

Extensions for Graphics

University of TorontoDynamic Graphics Project

29 / 49

Extensions for Graphics

• OpenGL state is available via built-in uniform variables

- Availability depends on stage of the pipeline
- gl_ModelViewMatrix
- gl_LightPos[n]
- gl_ClipPlane[n]

• Parameters of GPU primitive are available via built-in
varying variables

- Availability depends on stage of the pipeline
- gl_Position
- gl_FrontColor

lessig@dgp.toronto.edu

Extensions for Graphics

University of TorontoDynamic Graphics Project

30 / 49

Extensions for Graphics

• Data types for textures

- sampler1D, sampler2D, samplerRECT, sampler3D

- texture1D(), texture2D(), ...

- texture2Dshadow(), texture2Dshadow()
- Special lookup for shadow mapping
- Perspective correct depth value comparison is

performed automatically,

- sampler1D(name, tex_coord.st, mipmap_level)
- Mipmap level can be specified explicitly

lessig@dgp.toronto.edu

Extensions for Graphics

University of TorontoDynamic Graphics Project

31 / 49

Extensions for Graphics

• Additional type qualifiers

- attribute (generic vertex attribute, varying type)
- uniform
- varying

• Built-in data types for vectors and (square-)matrices

- vec2, vec3, vec4, ivec2, ivec3, bvec2, bvec3, ...
- mat2, mat3, mat4

lessig@dgp.toronto.edu

Extensions for Graphics

University of TorontoDynamic Graphics Project

32 / 49

Extensions for Graphics

• Build-in functions for frequently needed functionality

- operator*(mat, mat), operator*(mat, vec),
operator+(mat, mat)

- dot(), cross(), normalize(), length()

• Token discard to abort any further processing of a
fragment

• Special functions for boolean operations on vectors

- any(), all()

lessig@dgp.toronto.edu

Restrictions

University of TorontoDynamic Graphics Project

33 / 49

Restrictions (compared to C/C++)

• No double, unsigned int, ... data types

• No strings and character data types

• No dynamic memory allocation and no pointers

- Array indexing has to be compile time constant

• No enums and unions

• No classes
- No templates

• No bit-wise operations

lessig@dgp.toronto.edu

Restrictions

University of TorontoDynamic Graphics Project

34 / 49

Restrictions (compared to C/C++)

• No stack for registers

- No context switches
- No “real” function calls

• No switch statement, goto statement and labels

• Branching and looping available but instructions
significantly more expensive than on a CPU processor

lessig@dgp.toronto.edu

Example: Vertex Shader

University of TorontoDynamic Graphics Project

35 / 49

Example: Vertex Shader

uniform float diffuse;

// vertex shader entry point
void main() {

// compute eye space position of vertex
vec3 es_pos = gl_ModelViewMatrix * gl_Vertex;

// apply normal transformation
vec3 n = gl_NormalMatrix * gl_Normal;

// compute light vector
vec3 light_vec =

gl_LightSource[0].position - es_pos;

lessig@dgp.toronto.edu

Example: Vertex Shader

University of TorontoDynamic Graphics Project

36 / 49

Example: Vertex Shader

// vectors have to be normalized
light_vec = normalize(light_vec);
n = normalize(n);

// compute diffuse color contribution
gl_FrontColor = max(dot(light_vec, n), 0.0)

* diffuse;

// apply texture transformation
gl_TexCoord[0] = gl_TextureMatrix[0] *

gl_MultiTexCoord0;
}

lessig@dgp.toronto.edu

Example: Fragment Shader

University of TorontoDynamic Graphics Project

37 / 49

Example: Fragment Shader

// define texture
uniform sampler2D texture;

// fragment shader program entry point
void main() {

// lookup texel
float4 ctexel = texture2D(texture,

gl_TexCoord[0].st);

// modulate fragment color and texel
gl_FragColor = ctexel * 0.5 + gl_Color * 0.5;

}

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

38 / 49

GLSL

+ Built-in uniforms

+ No separate libraries required

+ Extensions

+ Good portability (compared to Cg)

– No compiler flags (in the standard)

– No includes (in the standard)

– No control over intermediate assembler

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

39 / 49

Cg

+ Structs with member functions

+ Interface structs (Compile time polymorphism)

+ Command line flags

+ Faster evolution

– Setting up default unfiorms tedious and error prone

– Proprietary (but can be used on ATI / 3DLabs cards)

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

40 / 49

Miscellaneous

• Compiler still (very) buggy

- Look at the assembler to verify correctness

• Test shader with offline compiler

- cgc compiler from Nvidia (-oglsl for GLSL)

- GLSLvalidate from 3DLabs

• Debug properly

- Setup debugging environment before start coding

lessig@dgp.toronto.edu

Shading Languages

University of TorontoDynamic Graphics Project

41 / 49

Other Languages for GPU Programming

• Motivation: Simplify GPU programming

• Abstract programming models (e.g. stream processor)

• Integration of shader programming into client side
program code

• Hardware independent

- Graphics API / Shading Language implementation have
slight differences between vendors

- Compilation for CPU (helpful for debugging) or other
parallel architecture with similar capabilities possible

lessig@dgp.toronto.edu

Shading Languages

University of TorontoDynamic Graphics Project

42 / 49

Other Languages for GPU Programming

• Brook

- Developed at the graphics lab in Stanford
- GPU as stream processor
- Mainly for GPGPU applications

• SH

- Developed at the graphics lab in Waterloo
- Graphical and general purpose computations
- Shader can be created at runtime using C/C++

language features (metaprogramming)

lessig@dgp.toronto.edu

Tools

University of TorontoDynamic Graphics Project

43 / 49

Tools
The things which come after printf debugging ...

lessig@dgp.toronto.edu

Debugging / Profiling

University of TorontoDynamic Graphics Project

44 / 49

Debugging / Profiling

• No direct debugging possible

- No breakpoints

- No stepping through a program

• GPU Printf Debugger: Readback framebuffer content
and analyze

- Writing content to an image often helpful

- Floating point render targets if precision matters, e.g.
FBO with float texture as color attachment

lessig@dgp.toronto.edu

Debugging / Profiling

University of TorontoDynamic Graphics Project

45 / 49

Debugging / Profiling (cont’d)

• GDebugger

- OpenGL debugger

- OpenGL state can be queried and compared / saved

- Allows on-the-fly modification and re-compilation
shader programs

- Textures can be queried via an integrated image
viewer

- GUI integration for performance counter from
3DLabs and Nvidia, ATI will follow soon

lessig@dgp.toronto.edu

Debugging / Profiling

University of TorontoDynamic Graphics Project

46 / 49

Debugging / Profiling (cont’d)

• GPUBench

- Developed at the graphics lab in Stanford
- Benchmark for GPUs with focus on features which

are important for GPGPU
- Provides brief summary over GPU capabilities

• Profiling libraries

- Available from 3DLabs and Nvidia
- Can be integrated into application
- For many purposes integration into GDebugger

sufficient

lessig@dgp.toronto.edu

Debugging / Profiling

University of TorontoDynamic Graphics Project

47 / 49

Shader Creation Tools

• Avoid overhead to write a full OpenGL / DirectX
application just to write a shader

• Provide easy-to-use interface to change shader
parameter, set lighting, load textures, ...

• Nvidia: FXComposer

• 3DLabs / ATI: RenderMonkey

• Typhoon Labs: Shader Designer (Win / Linux)

lessig@dgp.toronto.edu

What’s coming next?

University of TorontoDynamic Graphics Project

48 / 49

What’s coming next?

• Geometry shader

- Located after vertex processor in the existing pipeline
- Primitive information available
- Can generate geometry on the fly

• Unified shader processor units

- In hardware, no distinction between vertex, geometry
and fragment shader

- Enables arbitrary feedback loops

• Support for integer in hardware

lessig@dgp.toronto.edu

Questions

University of TorontoDynamic Graphics Project

49 / 49

Questions?

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

Resources
- OpenGL Shading Language (2nd Edition), Randi J. Rost, The first chapters gives an introduction into the GPU

graphics pipeline. The next chapters provide information about the OpenGL Shading Language, in particular on how the
client side API works, how to write a first shader and then different shaders are explained and its implementation is
discussed.

- The Cg Tutorial: The Def initive Guide to Programmable Real-Time Graphics, R. Fernando, M, J. Kilgard, Similar
to the OpenGL Shading Language book by Randi Rost (see above) but it uses Cg as shading language.

- www.gpgpu.org, Homepage on General Purpose Programming on GPUs, Has many material and links related to GPUs in
general ans GPGPU. The FAQ (http://www.gpgpu.org/wiki/FAQ) provides a profound resource for writing shaders.

- GPU Gems 2 : Programming Techniques for High-Performance Graphics and General-Purpose
Computation, M. Pharr, R.Fernando, Six chapters discuss general programming models and techniques for GPUs as well as
a concrete architecture. The remaining book is a collection of technical reports on advanced graphics and general purpose
algorithms which use the GPU.

- Programming Graphics Hardware, R. Fernando, M. Harris, M. Wloka and C. Zeller, Tutorial Notes, Eurographics
2004, August 2004, Evolution of GPUs, its working principles and recent trends.

- Reality Engine graphics, K. Akeley, SIGGRAPH 1993, July 1993, Good explaination of the graphics pipeline (as
implemented on SGI workstation) and the functionality of the different stages. The architecture discussed differs slightly
from current GPUs but most discussions are still valid.

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

Resources (cont’d)
- http://www.cs.unc.edu/Events/Conferences/GP2/, GPGPU conference, the proceedings (can be found under program)

provide an overview over applications possible on the GPU.

- http://developer.3dlabs.com/openGL2/index.htm, 3DLabs developer support homepages,

- http://developer.3dlabs.com/downloads/index.htm, Code examples and helpful tools, e.g. offline parser for GLSL

- http://developer.3dlabs.com/documents/index.htm#Presentations, Randi Rost’s presentation GLSL Overview gives a concise
overview about GLSL, its API and some examples (parts of this slides are based on his presentation)

- http://developer.3dlabs.com/documents/glsl manpage_index.htm, GLSL API man pages online

- http://developer.nvidia.com/page/home.html, Nvidia’s developer support website

- http://developer.nvidia.com/object/gpu_programming_guide.html, Many useful tips on how to write fast GPU applications

- http://developer.nvidia.com/page/event_calendar.html, Presentation slides from various conferences including Siggraph and
Eurographics. Helpful as an introduction for topics covered, often with good examples.

- http://download.developer.nvidia.com/developer/SDK/Individual_Samples/samples.html, Many code examples, each covers a
specific feature, similar to the OpenGL redbook examples, programs use either Cg or GLSL, Source code for Windows
available, partially also for Linux

- http://developer.nvidia.com/page/tools.html, Various tools for developer, including Cg libraries, FXComposer, Nvidia
photoshop plugin, tool to generate normal maps, profiling tools, ...

- ftp://download.nvidia.com/developer/cg/Cg_1.4/Docs/CG_UserManual_1-4.pdf, The “How to get started” for Cg, containing
explanation of the client and server side functionality and program examples.

lessig@dgp.toronto.edu

Modern Graphics Processors

University of TorontoDynamic Graphics Project

Resources (cont’d)

- http://ww.ati.com/developer/, ATI’s developer support website with code examples, demos, presentations, technical
reports

- http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47, Tutorial how to write a simple vertex shader and the
corresponding client side code

- www.libsh.org, SH metaprogramming language

- http://graphics.stanford.edu/projects/brookgpu/, BrookGPU language

- http://graphics.stanford.edu/projects/gpubench/, GPU benchmark, check also the results section

