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What ?

Why ?

How ?

Mesh 
segmentation 

algorithm

Provides higher-level structural information about 
geometry to facilitate various applications:

3D recognition [Hoffman & Singh 84]

Geometric morphing [Shlafman et al. 02]

Mesh parameterization [Zhang et al. 04]

Collision detection [Li et al. 01]

Skeleton extraction [Katz & Tal 03]

Content based and appearance based 

Based on human intuition — the minima rule (again)

Mesh segmentation
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Definition: all negative minima of the principal curvatures 
(along their associated lines of curvature) form boundaries 
between parts. [Hoffman & Singh 84]

Decompose 3D shapes 
at concave creases

The minima rule
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Watershed [Mangan & Whittaker 99]

No need to know how many parts a priori

Over segmentation & critical region bypass

Fuzzy clustering [Katz & Tal 03]

Intrinsically a “fuzzy” k-means clustering

Space sweeping [Li et al. 01]

Convex decomposition [Chazelle et al. 94]

Graph 
min-cut

Fuzzy region 
construction

Previous work
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Polarization theorem
[Brand & Huang 03]

original space

embedding space

Affinity matrix: 
W ∈ RN×N

Eigenvalue 
Decomposition: 
W = EΛET

Spectral clustering

k-means 
clustering on 
rows of U

Find m-dim. 
embedding

U = [e1,e2,…em]
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Overview
On a 2D manifold (triangular face assumed)

Primitives to cluster — faces

Faces provide the simplest and most natural tiling of 
the surface

Segmenting along edges fits well with Minima Rule
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Adjacent faces:

Distance:

δ <geodesic distance> + (1 – δ) <angle distance>

Angle distance depends on convexity or concavity

Concave angle much more emphasized

Non-adjacent faces i and j :

Distance Di, j : shortest distance in (dual) graph

Distance between faces
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Affinity matrix & normalization

Affinity matrix W using exponential kernel

2
, 2/

,
σjieji

DW −=

2/12/1 −−= WLLO

L : diagonal matrix of W ’s row sums

Normalization
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i-th row of U gives m-dimensional spectral 
embedding of mesh face i

U = [e1 e2 … em]

e1 e2 … em : m largest eigenvectors of O

Normalize each embedding coordinate to have 
unit length

Ûi = Ui ⁄ ||Ui||

m-dimensional embedding
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Association matrix
Computed from spectral embedding Ô = ÛÛT

Histogram of W entries Histogram of Ô entries
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Performed on embedding coordinates based on 
Euclidean distance

Initial cluster centers extracted from Ô

First two centers chosen to be furthest apart

Subsequent centers added in a min-max fashion

k-means clustering
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To determine the number of segments k

Work with original affinity matrix

Add representatives in min-max fashion until max 
affinity between them increases dramatically

Not guaranteed to work well in general [Everitt 01]

How many eigenvectors to use? 

Well-practiced heuristic: same as number of segments

Choice of k and m
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Execution time (in seconds)

Machine configuration: Intel Xeon 2.8GHz, 1GB RAM

6.490.291.444.762000

29.571.726.521.354000

3.970.171.12.71619

2.310.090.521.71200

0.910.030.370.51800

0.350.020.160.17496

TotalClusteringEigen-decomposeAffinity mat.No. Faces

Note: Most time spent on constructing affinity matrix
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Segmentation results
3 parts

2 543

5 parts 9 parts

Hierarchical decomposition via increase in k
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More results
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Problematic examples
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Polarization matters
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Feasibility and effectiveness of spectral clustering 
for 3D mesh segmentation

Polarization matters

Still much to be improved, e.g., timing, parameters

Ease of implementation
Plug in existing eigensolver (Arpack) and standard k-
means

Quality
Comparable to fuzzy clustering [Katz & Tal 03]

Conclusion
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Sub-sampling algorithm

Complexity: O(|F|2log|F|) → O(s|F|log|F|), where s is 
number of samples and is really a constant

Hierarchical bisection 

Avoids choosing k

Improves segmentation quality

Boundary smoothing via morphology

Replace k-means by more advanced clustering

Current and future work
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Thank you!

Questions?


