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Human figure animation is a widely researched area with many applications. This
thesis addresses issues specific to the synthesis, animation and environmental inter-
action of human figures in complex virtual worlds. The techniques developed are
aimed at applications such as virtual space teleconferencing, where realistic real-time
animation of the human figures is desired. Visual realism of the characters dominates
over the physical accuracy of the generated motion.

A layered representation of the human figure is adopted. Physical modeling and
animation techniques, though effective, are too complex to achieve real time result-
s. Implicit functions show promise in elegantly handling many issues involved in
articulated figure animation that can be cumbersome for existing B-rep (boundary
representation) based techniques. Real-time animation requirements, however, cur-

rently make the use of polygon-based models imperative. Approaches to improving
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the display efficiency of implicit functions are therefore discussed. Further, general
implicit shape definitions for objects modeled using B-reps are provided. This allows
an integration of B-rep and implicit function based techniques. To facilitate efficient
environmental interaction, an existing collision detection and deformation model is
extended and combined with constraint satisfaction for deformable objects. A realis-
tic human figure model, allowing the application of implicit function and B-rep based
animation techniques, is proposed. The implicit function muscle model and skeletal
posture control a polygon based skin structure. Implicit functions detect and handle
collisions in the environment homogeneously and efficiently. Precise collision contact
surfaces are generated and physical characteristics of muscles in systems employing
force feedback are simulated. Clothes are modeled as textures mapped on a geomet-
ric skin. Characteristic wrinkled textures for garments are synthesized and wrinkle
formation is carried out by texture morphing and wireframe displacement controlled
by the posture of the animated human. The effectiveness of the developed concepts
and proposed models are illustrated by their implementation within a virtual space
teleconferencing system.

This thesis contributes to object modeling and animation by successfully marrying
implicit function and B-rep based methodologies. The human figure models developed
are elegant, efficient and showcase this hybrid approach. These solutions can be easily
applied to existing real-time human figure animation applications where visual realism

is more important than an anatomically and physically precise model.
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...to the ubiquitous Taramani Nair

No one told you when to run, you jumped the starting gun!
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CHAPTER 1

Introduction

Virtual Reality (VR) is a fast emerging field with a number of applications in pro-
totyping, training, operator assistance, telecommunication, telepresence and enter-
tainment. The user is typically immersed in a virtual world that can exceed the
limitations of physical reality and where the illusion of reality is complete in all sens-
es. Augmented reality applications aim to integrate the virtual world with the real
world using devices such as see through displays. Simulated humans are an integral
part of a large class of applications varying widely from avatars representing real
humans in virtual space teleconferencing [44] to computer generated armies in mili-
tary training simulators [21]. Most virtual environment applications do not require
anatomical and physical accuracy of the character models. It is the real-time visu-
al realism of the generated human figures that creates the illusion of reality. While
anatomically and physically accurate models provide good visual results [15][37], their
computational complexity makes them unsuitable for real-time applications. On the
other hand, purely geometric models are becoming less desirable with the onset of
haptic devices [13]. This thesis is thus targeted at developing a visually realistic hu-

man figure model that is computationally efficient and has a physical interpretation,



allowing its incorporation in virtual environments with force feedback.

1.1 Character animation

Human figure animation is a widely researched area in itself. Current photorealistic
rendering capabilities make the main problem one of character modeling and anima-
tion. A layered approach [14] to the modeling and animation of articulated figures is
currently a widely adopted methodology. With respect to human figures the layers

may be broadly classified into:
1. Skeletal
2. Muscle, Skin and underlying tissue
3. Hair, Nails, Blemishes and other such features
4. Clothes and Accessories

The above layers are not necessarily mutually exclusive and are often omitted, col-
lapsed together, or further subdivided depending on the sophistication and thrust of
the application.

Given a human figure representation, motion control mechanisms (MCM) specify
the appearance of the figure during animation [36]. These can be roughly classified
into Geometric, Physical and Behavioral, based on the emphasis and the manner in
which the problems related to animating a synthetic actor in a virtual world are ad-
dressed. Geometric MCM’s treat the actor in the environment from a purely geomet-

ric perspective. Keyframe techniques, kinematics, geometric deformations, collision



processing and obstacle avoidance are examples of this category.

Physical MCM'’s incorporate the physical aspects of the actor by using techniques like
dynamics, physical collision and deformation models, computation of environmental
forces, and force feedback models.

Behavioral MCM’s capture the emotional aspect of the human figure. Models in-
volving individualized attributes, quirks and disabilities, sensory interaction with the
environment and emotional communication between actors are examples in this class.

Building such levels of abstraction and automation of the animation process over
the basic object representation of the actor is presented by Thalmann and Thalman-
n [36]. We would like the lower level representations to be modeled with enough
generality so that a number of high level techniques may be applicable.

There is an outward dependency across the layers. The skeleton affects the shape
of the muscle and skin, which in turn shape the apparel. Thus for physically accurate
cloth model results on a human figure, the models of the underlying layers should
be accurate. On the other hand, if visual realism is the major concern, visually
reasonable models for the outer layers can hide problems in the models for the inner

layers and may even obviate modeling them explicitly.
1.1.1 Skeletal layer

Most character animation systems model skeletons as articulated rigid bodies. As
the skeleton is not directly visible, often the skeleton comprises only virtually linked
joints with no explicit geometric skeletal shape. Human bones have limited flexibility

and are almost always modeled as rigid bodies. Skeletal joints have over 200 degrees



of freedom. Typically, however, the number of bones and joints modeled are greatly
reduced and only about 50 degrees of freedom are explicitly modeled.

A number of robotics algorithms for motion control such as kinematics, dynamics
and obstacle avoidance can be applied to the skeleton modeled as an articulated rigid
body. A number of problems result from the application of these techniques to the

skeleton due to the many approximations:

e Human bones often indirectly shape the visual appearance of the skin in thin
bony figures and around joints (such as the elbow and knee). The proximity
of the bones to the skin surface determines the extent to which they deform
the skin. This distance between bones and the surface of the skin is subject to
change during animation of the figure. The influence of bones is thus hard to

model for human figures where the skeletal model has no explicit geometry.

e For robotics algorithms such as inverse kinematics, often solutions for an under
constrained skeleton are sought that avoid singularities and stay away from joint
limits. While this is an acceptable solution for machines, the human skeleton
is quite comfortable with many joints extended to their limits. This problem
is worsened by the fact that these limits change based on the overall skeletal

posture. Robotics solutions for these extreme cases thus appear unnatural.

e Human joints are not perfectly rotational joints at a point about a fixed axis. As
an example, the center of the shoulder joint rotates away from the skin surface

inside the body as the arm is raised. For joints fixed near the surface, vertices



tend to penetrate the body for large angles. Similarly, if the joint is fixed away

from the surface, the arm is like a flexible pipe for small angles.

Despite the problems arising from such approximations [36], various robotics tech-
niques adapted to the human figure have provided realistic results. Additionally, for
many applications such as virtual space teleconferencing, the skeletal model is driven
by tracking the posture of a real human figure. For such applications, motion control
of the skeletal layer reduces to one of tracking the posture of the real human using e-
quipment such as magnetic sensors [42] or by image processing live action. This thesis
thus develops human figure synthesis and animation techniques based on reasonably

accurate motion of a skeletal structure modeled as an articulated rigid body.
1.1.2 Muscle and Skin layer

Modeling and animation of the muscle and skin layer has almost entirely dealt with
figures modeled by a boundary representation [14][37][60]. Polygon based structures
are popular due to their simplicity, generality and hardware support. Prototype mod-
els, typically of the real figure in a relaxed pose, are used to represent the geometric
skin. Muscle models then control the deformation of the skin during animation.
The deformable nature of human muscle, fatty tissue and skin is described in [60].
Physical tissue characteristics are modeled as spring and damper meshes attaching
skin to the underlying skeleton. Forces are applied iteratively and the stabilized net-
work shapes the skin. The paper deals specifically with facial animation. The use of
the finite element method (FEM) is illustrated in animating a human hand in a grasp-

ing situation [37] and in simulating a biomechanical muscle model [15]. Physically



based models such as the above can handle interaction with the environment but are
computationally too intense for real-time response in complex virtual environments.

Free form deformations are used to empirically deform the skin layer in [14]. There
is no explicit underlying muscle model. An empirical correspondence between joint
angles and the deformation is made. A human skin model based on Bezier surfaces
in [30] controls deformations like [14] by manipulating the surface control points.
Position of a wireframe skin around joints in terms of a function that is specific and
local to the joint skeletal area is presented in [37]. Geometric approaches like those
just described are efficient and show realistic results in many cases. They do not,
however, address environmental interaction or issues relating to the dynamics of the
figures.

The muscle and skin layer is very important for visual realism and its effect on
subsequent layers. Further, the complexity of modeling facial detail, hair and clothing
is often reduced to textures mapped on the skin surface making skin the quintessential
layer.

Facial Animation is very important for many virtual world applications, such
as teleconferencing, not only for the realism of the animated figures but for communi-
cation through facial expressions. Facial animation techniques provide a higher level
of control, typically built on a muscle and skin layer, for behavioral control over the
animation of facial expressions. The analysis and classification of different human
facial expressions in relation to expressed emotions has been extensively researched

and several facial animation models have been proposed. Most approaches for the



analysis and reconstruction of human facial expressions are physically based [52][64]
or parameterized [49].

Ekman and Friesen [16] have identified six primary expressions and catalogued
thousands of different expressions; they formulated the Facial Action Coding System
(FACS) which is a parameterization of muscles in relation with the corresponding
emotions. Simplified muscles are attached to a skin mesh and manipulated to model
human facial expressions based on FACS by Platt and Badler [52]. Terzopoulos and
Waters [64] have used a simple form of FACS to derive a 3D model motivated by tissue
biomechanics; their physically-based model for facial tissues has three layers: skin,
sub-cutaneous fatty tissue, and muscles. The underlying layers of these muscle-based
approaches should be sufficiently precise to provide physically accurate results for
motion. Parke [49] introduced parameterized facial models in which facial parameters
are empirically specified. Such approaches can be efficient but the quality of realism
is usually closely related to the resolution of the skin geometry, as surface geometry
is used to model even the finest of wrinkles. Beier and Neely [6] have developed a
technique in 2D for the metamorphosis of one image into another. The morph is
controlled by manually specifying corresponding features on the images using line
segments and defining a geometric transformation between them. This method may
be used effectively to animate a face by morphing one facial expression into another.

While physically based techniques are computationally complex, most parametric
models require dense wireframe meshes to represent fine surface detail like wrinkles.

This makes them inefficient and hard to control. Facial animation is thus treated in



a hybrid fashion in our model. The muscle and skin model control large deformations
on the face. Deformations resulting in small visual details are dealt with using texture

morphing techniques.
1.1.3 Cloth Layer

Cloth animation has become an important area of computer animation, especially
related to human figure animation [1][31][32][35][45][65]. The problems to be ad-
dressed may be separated into cloth shape and deformations due to environmental
forces (gravity, wind) and cloth collisions with itself and synthetic actors. Techniques
for cloth animation without environmental force deformations have been proposed
[59][65]. Cloth animation with self-collisions and collision with almost rigid bodies
is addressed by Lafleur [32]. Essential to animation of apparel on the human body
is the process of wrinkle formation. Approaches to modeling wrinkle formation and
propagation have been provided by Aono and Kunii [1][31].

Cloth models may be classified as geometric or physically based. Geometric models
such as the one presented by Weil [65], while effective and robust for simple cloth
pieces like a flag, cannot capture the complexity of clothes like a shirt on a human
figure. Physical methods [1][24][59] animate the cloth shape by solving differential
equations based on the physical properties of the piece of fabric. These models can
provide realistic results for fairly complex clothes.

As described by Thalmann [35] a cloth animation system should have the following

attributes:



e A cloth model that suitably addresses the requirements of the application. Fac-
tors to be considered are external forces, fabric properties, environmental colli-

sions and self-collisions.
e An interactive interface for the synthesis of apparel on human figures.

e An interactive interface for adjusting parameters that affect the appearance of

the cloth during animation.

Cloth animation of human figures in virtual worlds is important for enhancing
their visual realism. It is impossible to realize physically based cloth animation in
real-time with current computing resources for complex virtual worlds. For many

applications the following are reasonable assumptions for tight fitting apparel:

e Shape deformations of clothes are governed by the shape and motion of the

human body and not by wind, gravity or other external forces.
e Cloth animation only takes place during animation of the human figure.

e Cloth animation is local, in that animation of a part of the body only deforms

a limited region of the apparel clothing it.

Tight fitting apparel, like facial detail, is modeled as color textures applied to the
geometric skin. In this thesis we present simple interactive techniques by which cloth
animation effects may be obtained based on the animation of the underlying skeleton.
The approach makes use of the aforementioned assumptions. It is not physically

accurate and thus unable to achieve the realism of physically based methods [1][59].
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The advantages of our approach are twofold. The visual realism of the figure is
enhanced and discrepancies in the behavior of the muscle and skin layer are hidden
at a minimal computational overhead.

This thesis focuses on the muscle, skin and clothing layers which are the layers
most directly responsible for the visual appearance of the human figure in a given
skeletal posture. Implicit functions provide elegant solutions to many of the problems
in the modeling and animation of these layers. They thus form the foundation over

which the proposed models for these layers are built.

1.2 TImplicit Functions

Implicit surfaces are a popular approach to object modeling and animation and are
especially applicable to physically deformable objects [8][10][20][41][55][68][69]. An
implicit surface is defined as the set of points P satisfying an implicit equation F'(P) =

0.
1.2.1 Implicit Surface Primitive Shapes

A useful set of implicit surfaces can be generated as an algebraic combination of
polynomial functions each of which is defined over a finite volume. For summed poly-
nomial functions, F(P) = 3 F;(P) — T, where i runs over the primitive polynomial
functions F; and T is a threshold value € [0, 1]. Subsets of these surfaces are distance
surfaces and convolution surfaces [11]. Typically, each primitive is defined by a
skeleton S, a cutoff distance R, and a function f. An example of f : [0,1] — [0, 1],

called a density or blend function, with the desired properties [68] is shown on the
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left in Figure 1. For a point P whose shortest euclidean distance from P to S (which
is a point Q on S) is smaller than R, F(P) = f(|P — Q|/R)*. |P — Q|/R is referred
to as the distance-ratio(P) for the primitive. F(P) = 0 for points P with distances
greater than R (outside the realm of influence of the primitive). Such a primitive is a
distance or offset surface [11]. Convolution surfaces require the integration of function
values obtained with () varying over every point on S, rather than just the closest.
The difference between the two surfaces lies in the function value computed for P.
Convolution surfaces result in surfaces with properties such as seamlessly blended

concavities and a lack of unwanted bulges on blends.

Primitive Shape
at O<threshold<1
Bounding Shape: V

FP)=H(IP-QIR)

Skeleton: S

1
()
0 t 1
DENSITY FUNCTION SPHERE SPHYLINDER ROUNDED POLYGON CONE-SPHERE

Figure 1: Implicit Primitive Shapes

The simplest implicit shape used as a modeling primitive is a sphere, which is

!Terminology: In this thesis implicit functions for points in space F are often based on a single
variable function f. The procedure for mapping a point P to a value in the domain of f is generally
fixed for given classes of primitive shapes. We use lower case to denote single variable functions and
upper case for their corresponding function of points in space for implicit primitive shapes.
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an offset surface around a central point S. The terms metaball, blob and soft objects
have been used in previous work [8][18][41][68] to refer to this shape and, by extension,
to any such primitive used in constructing an implicit surface. For the purpose of

articulated figure animation we introduce the following primitives (see Figure 1):

e Sphylinders are finite extent cylinders with hemispheres capping both ends.
They are offset surfaces whose skeleton, S, is a line segment. They are useful
for modeling a variety of shapes, especially longitudinal ones, which can only

be approximated by a number of linearly placed spheres.
e Rounded polygons are offset surfaces, where S is a planar polygon [11].

e (Cone-Spheres are a generalization of sphylinders in which a truncated cone is
capped on either end with spherical segments that maintain first order continu-

ity at the junction of conical and spherical surfaces [38] 2.

More general implicit primitives are superquadric ellipsoids and toroids [4]. A power-
ful extension to these primitives is the overlay of modal deformations and displacement

maps [55].
1.2.2 Implicit Surface Characteristics

Implicit surfaces are popular due to several reasons.

2The offset surface definition given above cannot define this shape. They may be defined by the
more general implicit surface primitive definition we formulate in Chapter II.
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e Implicit primitive shapes are intuitive for building more complex shapes [8],
which can be deformed easily by manipulating the individual primitives [68].

Topological changes during animation are automatic.

e Continuity properties for the resulting surface can be ensured by appropriately
combining continuous primitive functions, making implicit surfaces a modeling

alternative to higher order surface patches.

e Various physical characteristics such as elasticity [20] and thermal properties
of objects are easily modeled. Further, implicit functions can replace discrete

spring models with stiffness fields that are continuous in space.

e Efficient implicit function evaluation greatly improves the efficiency of collision
detection between objects [51]. Algebraic combinations of implicit functions

may be used to model creases and collision contact surfaces [20].

e Implicit primitives like blobs [41] or superquadrics [55] can be fitted to real 3D

data, such as obtained from laser scanners or range images.

A major drawback of implicit surfaces is the necessity to sample space in order to
determine the implicitly defined surface [8][18]. Implicit surfaces can be rendered in
one of two ways. The implicit surface representing the object can be reconstructed
by polygonization [9][54] and subsequently displayed. Alternatively, one may display
the implicit surface directly, by tracing rays through space, sampling the function
as the rays progress away from the observer until the surface threshold is achieved

[18]. Various techniques for fast and robust ray tracing of implicit surfaces have been
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studied [23][26][70]. Blinn [8] addresses the issue of efficiently rendering surfaces de-
fined by spherical density functions by employing scanline processing. While this fast
scanline technique for rendering spheres exists, spheres alone have limited usefulness
as a modeling primitive.

The bulk of modeling, animation and display techniques currently in use require
object representations that are B-rep and often polygon based. Much work has there-
fore been done on generating a polymesh representation from other object represen-
tations [9][34][43][54].

Work on implicit surfaces thus is focussed on:

e Extending implicit surfaces into a general, user-friendly object modeling tool.
e Applying them to model and animate various physical models.

e Speeding up the implicit surface rendering process.

We formulate implicit shape definitions for polyhedral objects which unify implicit
function and boundary representation based methods. Efficient display techniques
for surfaces constructed as an algebraic combination of implicit surface primitives in
general and polyhedral primitives in particular are addressed.

We further develop a method by which objects with a polyhedral definition are
deformed by implicit functions. Such a method has many benefits of implicit function

based techniques and the display efficiency of polygon based structures.
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1.2.3 Collision Detection and Deformation

Collision detection between objects is a problem that has been widely researched
[3][22]]40][50][51][61]. While the problem can be analytically solved for rigid bodies
[3][22], the dynamic simulation of deformable objects remains a difficult problem.
Colliding deformable objects exhibit complex behavior. The objects remain in contact
over a period of time and energy is typically lost as a result of the collision. Contact
modeling is difficult and most approaches use penalty methods [40] to determine the
reaction forces on interpenetrating objects.

A novel collision detection and deformation model for objects defined using implic-
it functions has been proposed by Gascuel [20]. Colliding objects impart each other
with a deformation function. The deformed objects are represented by the implicit
surface which is deformed as a result of the addition of the deformation function to
the implicit function of the object. The deformation functions are negative in the
region where the objects penetrate, causing the object surfaces to move inward and
form a precise common contact surface. A small region around where interpenetration
occurs is called the propagation zone. Here the deformation functions are positive
causing the object surface to bulge outward. This is to maintain continuity of the
deformation function and to model volume conservation of the objects. The simple
case of two colliding objects is shown in Figure 2.

A physical interpretation may be attached to this model, allowing the implicit
function gradient to model the stress-strain characteristics of the object. This model

shows promise in modeling the environmental interaction of human muscle, fatty
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Figure 2: Implicit function based collision model

tissue and skin.

The separation of the dynamics of deformable bodies into rigid and deformable
components [62] is computationally more efficient than considering the general La-
grange equations of motion [59]. This separation is based on the approximation that
the mass distribution of the deformable object is constant and corresponds to that
of the object’s undeformed shape. Such an approach is well suited to human figure
models, where the deformations are localized and are small relative to the size of the
figure. The collision deformation approach [20] is such a deformable layer model.

In Chapter II we extend this collision model to incorporate time varying elastic-
ity, to vary the relative rigidity of two colliding objects, and to facilitate constraint
satisfaction between deformable objects. The constraint and collision models are

homogeneously applied to the objects.



17

1.2.4 Constraint Satisfaction

Constraint satisfaction and collision deformations are crucial to the visual realism of
grasped objects and in providing operator assistance to users while interacting with
inanimate objects in a virtual world.

Satisfaction of constraints between objects has been well addressed. Featherstone
[17] provides an efficient solution to articulated chains with 1 DOF links, which has
been extended to articulated chains [33]. Wilhelms and Barsky [66] allow rotations
and translations at the joints of objects linked in tree like structures. An efficient
approach to the satisfaction of constraints between objects linked by rotational hinges
in a system without a closed loop of constraints is given by Armstrong [2]. General 6
DOF constraints between objects are allowed by Isaacs and Cohen [25], which provides
a solution based on d’Alemberts virtual work principle. An inefficient but general
method using constraint forces holding together an arbitrary system of objects and
constraints is presented by Barzell [5]. Here the constraints manifest themselves as
forces forming a system of coupled differential equations. Van Overveld [63] describes
a simple and efficient method based on point dynamics. Constraint satisfaction by
iterative displacements is presented by Gascuel and Gascuel [19].

The model of Gascuel and Gascuel [19] is comprised of solid objects connected
with an arbitrary constraint graph. The satisfaction of constraints is decoupled from
the rest of the animation. Constraint satisfaction here does not involve explicit calcu-
lation of constraining forces and is thus also applicable to purely kinematic animation

frameworks. Realistic results at interactive rates are illustrated. In this thesis we use
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a similar constraint model with the satisfaction of constraints decoupled from the
rest of the animation. As our approach is targeted at deformable objects, we sat-
isfy constraints by localized deformations of the objects rather than by rigid body
displacements as in [19].

We formulate a generalized framework for deformable objects with implicit func-
tion definitions, into which collision deformations and constraint satisfaction are ele-

gantly embodied.

1.3 Overview

This thesis is motivated by the desire to obtain visually realistic human figure anima-
tion and environmental interaction in real-time. Realistic animation of a deformable
body with the complexity of a human figure and its interaction with the environment
is inherently an interaction of object volumes. Simple boundary representations do
not capture this notion making algorithms like collision detection, that are based on
a boundary representation, inelegant and inefficient. Implicit functions, on the other
hand, define volumes in space that can interact efficiently [20][51]. We thus devel-
op an implicit function based virtual world model within which an implicit function
based human figure model is proposed. Following the transformations resulting from
animation and interaction in the virtual world, the objects need to be displayed. Ex-
plicit boundary representations of objects, especially polygon based structures, can

be displayed in real-time by existing hardware. Implicit surfaces have an inherently
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inefficient display characteristic. Aside from the ability to polygonize implicit sur-
faces [43], the two modeling approaches have so far been distinct and isolated. This
thesis unifies these distinct representations in ways that allow hybrid models to avail
of the advantages of both approaches. Finally, real-time techniques for the animation
of clothing on these human figures is developed.

This thesis thus provides a comprehensive model for the realistic real-time anima-
tion and environmental interaction of human figures in complex virtual worlds. All
the ideas and concepts presented in this thesis barring Gascuel’s collision deformation
approach [20], are original and new.

The contributions of this thesis are:

1. A generalized framework for modeling and animating objects and external forces
in a virtual world using implicit functions. The model can be viewed purely

kinematically or with a physical interpretation.

2. A method for constraint satisfaction between deformable objects built on pre-

vious work in collision detection and deformation [20].

3. A technique by which objects with a polyhedral definition can be embedded in
a hierarchy of implicit functions. The implicit functions can then deform the

polyhedral definition of the object.

4. Implicit surface primitive shape definitions for polyhedral objects. These defi-

nitions unify the two object representation methods.
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5. Efficient display techniques for implicit surfaces, especially those constructed

with polyhedral implicit primitives.

6. Efficient geometric computations for analytic primitive shapes like cone-spheres,

which are useful for human figure animation.

7. A new human figure model, where implicit functions model bones, muscle and
skin. The model fits into our implicit function based framework for the vir-
tual world. The model is visually realistic and has physical and anatomical

interpretations.

8. A technique for the synthesis of wrinkled textures. Wrinkles on skin and clothing
are animated by texture morphing and wireframe displacement of the human

figure in real-time.

9. Finally, the techniques developed above are integrated and illustrated by a
real-time implementation of human figures in a virtual space teleconferencing

system.

The rest of this thesis is organized as follows.

Chapter II describes research built on the work of Gascuel [20]. The model is
extended to incorporate time varying elasticity and to facilitate constraint satisfac-
tion between deformable objects, such that the constraint and collision models may
be homogeneously applied to the objects. The implicit function based model for ar-
ticulated deformable objects is then presented. Deforming objects with a polymesh

representation using implicit functions is also described.
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Chapter III discusses implicit function based modeling and animation. Implicit
primitive shape definitions, for objects modeled as B-reps, are presented. Methods to
improve the display efficiency of these implicit surfaces are then presented.

Chapter IV proposes a human figure model that aims at high visual realism,
efficient environmental interaction, and the capability of a physical interpretation for
dynamics based systems.

Chapter V presents a texture based wrinkle model for the formation and propa-
gation of wrinkles on skin and clothing.

Chapter VI describes the implementation of the proposed models and concepts
within a virtual space teleconferencing system.

Chapter VII provides a discussion of the results obtained, presents conclusions
and discusses the scope for future work.

Appendix A provides exhaustive detail for computation that is required for the
rendering of some useful implicit surface primitives.

Appendix B shows effective approaches to shape transformation using polyhedral
implicit surface primitives.

Appendix C lists example blend and ghost functions to achieve different kinds of

implicit primitive interaction.



CHAPTER 11

Implicit Function based Virtual World Model

This chapter proposes a model for the animation and efficient interaction of objects
and other forces in a complex virtual environment. The central theme of this thesis
are human figures in the virtual world and so the scope of objects in our model should
include articulated deformable bodies. The model, being targeted at VR applications,
should be computationally efficient and general. It should be applicable to open loop
systems (which are typically kinematic) as well as those with environmental force
feedback.

In our model, all objects are represented by implicit functions. Objects interac-
t and deform each other by imparting additional implicit functions to each other.
During animation, all the implicit primitives in the environment are first individual-
ly manipulated. This may be done kinematically or based on environmental forces.
The objects then modify each other’s implicit functions to model all interactions
like collisions and constraints. System forces as a result of these interactions can be
computed.

We also address the issue of incorporating objects with a polymesh representation

into this virtual world model. The conversion of polyhedral shapes to implicit surface

22
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primitives, as described in Chapter III, is one solution. In this chapter, however,
we show how polymesh objects can be incorporated into the model while preserving
their polymesh representation. Each polymesh object is embedded in a hierarchy
of implicit functions. These functions act as the implicit function definition of the
object, while the visual appearance of the object is governed by the polymesh. The
functions interact with one another and with other implicit functions in the world,
resulting in deformations to the underlying polymesh. This gives us the advantages of
the computationally efficient implicit function model and the display efficient polygon
based structure of the object.

Section 2.1 describes the notion of objects interacting by imparting additional
functions to each other and lays the foundation for the implicit function based virtual
world model. The collision detection and deformation approach of Gascuel [20] is
shown in this light. Section 2.2 presents a new approach to satisfaction of point con-
straints between deformable objects, which is coherently integrated with the collision
detection and deformation model of Gascuel. Section 2.3 presents the embedding of
the polymesh object in a hierarchy of implicit functions and its animation as a rigid
body with a subsequent implicit function based deformation. Section 2.4 extends
the above model to incorporate articulated deformable objects, in particular human
figures [58]. Section 2.5 describes the implementation and Section 2.6 discusses the

results.
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2.1 Implicit Functions: Ghosts

Different objects have their own implicit functions that determine the object surface.
These objects may interact by imparting additional implicit functions to one another
[20]. Here, during collision of two or more implicit objects, each object imparts
an implicit function to each colliding (interacting) object so as to model collision
deformations. Examples are the colliding eyeballs in Figure 33 and the elbow crease
in Figure 43.

We extend this notion to allow an object to freely impart and control various
implicit functions that deform other objects based on the interaction between the
objects. These functions are temporal and are controlled by the imparting object.
The temporal parameter allows us to model various temporal properties of objects
like viscoelasticity. Additionally certain environmental deformation forces such as
gravity and pressure in a fluid may be modeled as force field functions imparted to
the objects in the environment. Such implicit functions that manifest themselves
by influencing the shape of objects in the environment will be referred to as ghost
functions.

Each ghost function also has a unique priority value to determine the order in
which the ghost functions for an object combine with the implicit function for the
object. Further, the influence of a ghost function is only considered within the realm
of influence of the object’s implicit function (The implicit functions dealt with in this
paper are polynomial and have a positive value defined over finite volume in space,

unlike the exponential functions used by Blinn [8]). For the most part, ghost functions
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are simply additive, where the combination is both associative and commutative. The
priority number is included here for the sake of completeness, but has not been used
in practice. The collision deformation function [20] is such a ghost function. This
and other examples of ghost functions, modeling various properties, are shown in
Appendix C.

The deformable model separates the physical characteristics of objects into rigid
and deformable components that may be applied successively [20]. The rigid com-
ponent deals with the animation of rigid objects. It also involves animation of the
implicit function primitives and ghost functions which define deformable objects inde-
pendent of each other. The deformable objects are then deformed appropriately as a
consequence of the interaction of their implicit function and imparted ghost functions
(see Figure 3).

Ghost functions require that the deformable object has an implicit function of its
own that they can interact with. The framework described so far thus applies directly
to objects modeled using implicit functions. The embedding of polymesh objects in
implicit functions to incorporate such objects into the above framework is presented

in Section 2.3.
2.1.1 Gascuel’s Collision Deformation Model

Gascuel [20] describes a technique by which objects with implicit function definitions
can be deformed appropriately during collisions with each other. A collision between
two implicitly defined objects causes each object to impart the other with a ghost

function. These ghost function have a negative contribution in the region where
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Figure 3: Rigid, Deformable Component Transformation

the objects penetrate each other (refered to as the interpenetration zone). In a finite
neighboring region around the the interpenetration zone (refered to as the propagation
zone) the ghost function values are positive. The negative ghost function values
cause the object surfaces in the interpenetration zone to move inward causing the
objects to abut along a common contact surface (See Figure 2). The positive ghost
function values in the propagation zone cause the objects to bulge outwards. The
provides the appearance of preserved object volume and maintains surface continuity
properties between the inwardly deformed surface in the interpenetration zone and
the undeformed part of the object surface. The ghost function in the propagation
zone for an object is formulated such that the outward bulge of the object surface

does not cause new interpenetrations with the colliding object.
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Formalizing the above idea, let object 7 be modeled using implicit function prim-
itives with blend function f;. Objects are represented as the implicit surface at some
threshold T (points P where F;(P) = T) as described in Section 1.2.1. The ghost

function g; imparted by object 7 to object j on a collision is characterized by:
e An interpenetration zone (where f; > T): g; =T — f;
e A propagation zone (where f; < T): g; = prop;

prop; is a function with the properties in Figure 4.

1

Properties of fi
T:fi(t) 1) fi(0)=1, fi’(0)=0

2) fi(1)=0, fi’(1)=0

0 Properties of propj
1) propi=0. propj®)=- f;'(t)
2) prop(1)=0, prop;(1)=0

T-f; 3) propi)< T- ;09 xin (t1)
gi
T-1

Figure 4: Collision Ghost Function

In the region where interpenetration occurs (see Figure 2) the ghost function
object ¢ imparts to object j is g; = T — f;. Thus the implicit surface of object j in

this region shifts to points where F;(P) + (I' — F;(P)) = T or the median surface
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where F;(P) = F;(P). This symmetrically happens to the implicit surface of object
1 causing a common contact surface at points in the interpenetration zone where

F;(P) = F;(P) (see Figure 5).

F P+ G] (P)=T FJ- (P)+ G (P)=T

Deformed implicit
functions

fi+gj=fj+gi=T

when f; = fj .

0

Figure 5: Collision Deformations

Stiffness along radial directions at points in the realm of influence of the implicit
function of an object are modeled directly as the corresponding blend function gradi-
ent for distance surfaces. Enhanced ghost functions that model the rigidity of objects

relative to each other are given in Appendix C.1.

2.2 Constraint Satisfaction

Satisfaction of constraints between objects is important for many VR applications.

They are also important for human figures performing object grasping tasks in virtual
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environments.

Most constraint satisfaction methods [2][17][19] do not address collisions between
objects in the environment. The separation of collision and constraint processing
into two stages poses a big problem. None of the existing constraint satisfaction
approaches preserve a collision free environment. Satisfaction of constraints after
collision processing can therefore cause new interpenetrations between objects. Simi-
larly, application of current collision handling models after constraint satisfaction can
cause a violation of the satisfied constraints. Another problem with most constraint
satisfaction methods is their inability to handle constraint graphs with loops robustly.
This is due to global changes to the objects in the presence of circular dependencies.

We aim at satisfying constraints between objects by local deformations that do
not affect the object globally. One may envision a drop of honey dripping off the lid of
a jar or a fly trying to escape from fly-paper as examples of such an approach. Local
deformations make the changes to the object due to each constraint essentially inde-
pendent of each other. The action of the constraints, just like collision deformations,
is decoupled from the rest of the motion of the objects [19][20]. This new approach
is built on the collision deformation method making collision detection deformation

and constraint satisfaction a single integrated process.
2.2.1 Single Point-Point Constraint between Spheres

Let us start with the simplest case of a point-point constraint between two deformable

implicit objects (for example, the spheres in Figure 6a). The objects are modeled as
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implicit spherical primitives with a blend function f3 as shown in Figure 1. The object
i being defined as f(D;(P)) = f(t) = T. D; is called the distance-ratio function for
distance surfaces. It is defined as D;(P) = |P — C;|/r;, where C; is the center and
r; the radius of influence of the spherical primitive i. The specified threshold value
defining the object surface is 7. Let ¢t = f~!(T"). There is a point constraint between
points P;, P, on the line joining C7, Cj.

The ghost function corresponding to the interpenetration zone, T'— f deforms the
objects inward such that the colliding object surfaces abut at a common surface. By
using the same function for a part of the propagation zone we can cause objects to
deform outward and abut at a common surface to meet constraints. This concept is
formalized by the ghost function con. As can be seen from Figure 6a the function
con is very similar to the collision ghost function in Figure 4. The difference lies in
the region x € [t,t], where con(z) =T — f(x) and prop(z) < T — f(z). It is in this
region that con ghost functions cause separated objects to abut.

The con ghost function value at points where the distance-ratio is t is zero. These
points lie on the surface that separates the interpenetration and propagation zones.
The value t' essentially determines the sub-region of the propagation zone around
the interpenetration zone, where the positive ghost function values cause the outward
deformation of the object surfaces to make contact. This results in satisfaction of
constraints between objects. The constraint between two objects is satisfied only if

the sub-regions of the ghost function defined by ¢’ overlap. This imposes a cutoff

3The function f for each primitive can be different. We use the same function for both objects
here to keep the presentation simple.
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distance between the objects after which the approach will be unable to satisfy the
constraint.
We define a function con : [0,1] — [T — 1, T] with the following properties for the

prespecified values t and ¢, t' > t:
e con(z) =T — f(x), z € [0,1].

e con(x) is a polynomial for z € [t', 1] with the constraints con(t') = T — f(t'),

con'(t') = —f'(t'), con(1) =0, con’(1) = 0 and con(z) < T — f(z),Vz € (¥, 1].

The negative region of the ghost function 7" — f is used to prevent interpenetration
between objects by causing the deformed objects to abut at a common surface. To
satisfy point-point constraints, we exploit the positive region of this function in the
region [t,?'], as in Figure 6a.

Let us use @ to refer to the mid-point of the line joining P; and P, as shown in
Figure 6a. (@ is also the point at which the spheres corresponding to f(D;(P)) = f(t'),
abut. Each object imparts a constraint ghost function con. Object1 is thus defined as
f(D1(P)) + con(Dy(P)) =T, Object2 is symmetrically f(Do(P)) + con(Dy(P)) =T.
The resulting function for points along the line joining the centers for Objectl and
Object2 is shown in Figure 6b. The solid curves indicate f(D;(P)) + con(Dy(P))
on the left and f(D;(P)) + con(D2(P)) on the right. The dashed curves correspond
to functions f(D;(P)),con(D1(P)) and the dotted curves to f(Dy(P)), con(Ds(P)).
It can be verified from the properties of con and Figure 6a,6b that the surface for

Objectl is pushed out due to the positive contribution of con(Dy(P)) from where the
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Figure 6: Point-Point constraint between spheres
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second spherical primitive begins. The value at point @ on Objectl is f(t')+T — f(t').
Thus P; gets pushed out to (Q on Objectl, as does P, on Object2.

The objects deform appropriately to meet the constraint precisely. Moving the
objects closer creates a contact surface and this continues to be the case even if the
objects are colliding identical to the collision deformation method. Also note the

failure to meet the constraint if the objects move further apart.
2.2.2 Implicit Objects with a single Point-Point Constraint

We now wish to adapt the above idea to general implicitly modeled objects with a
single point-point constraint. We must, therefore, do away with many of the assump-

tions of the previous subsection:
e The implicitly modeled objects need not be spheres any more.

e The point constraint may be between any two points on the objects. The only
assumption maintained is that the points be reasonably close. This is fixed by

the value of ¢'.
e The objects involved need not be equally flexible.

Consider two arbitrary implicit objects with a point constraint P;, P, as shown in
Figure 7. The object i is still modeled by f(D;(P)) = f(t) = T, D;(P) in this case
being the distance-ratio function for the implicitly defined object.

If the objects penetrate each other at points P;, P,, the collision contact surface

idea [20] satisfies the constraint. Suppose then that the objects do not penetrate each
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other in some neighborhood of P, P5, on their respective objects. Consider the line
joining constrained points P, P,. Let us call it the deformation axis. We will attempt
to meet the constraint at some point (), along the segment between P; and P,. The

position of () models the relative rigidity between the objects.

Deformation Axis

Figure 7: Constraint satisfaction without sphylinders

The following issues need to be addressed:

1. Minimality of deformation: The deformation should be minimal, in that it
is just enough to maintain contact between the objects at some point along the

deformation axis.

2. Locality of deformation: We would like to be able to localize the deformation

to some controllable region around P; and P, on their respective objects.
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3. Directionality of deformation: The deformation should be directed along

the deformation axis.

Looking at these requirements with respect to Figure 6a, the placement of the
spheres and the constrained points were such that the deformations were just enough
to make the objects abut at (). The deformation axis being radially aligned with
respect to the two spheres made the deformations symmetrically oriented around the
axis. Localization of the deformation was not addressed. Using the simple approach of
the previous subsection with a deformation axis that is askew to the radial directions
of the objects as in Figure 7 would violate all three stated requirements.

The following approach to satisfying the above requirements is proposed. Let j
be the index of the constraint P;, P». Define a realm of deformation with a parameter
rdi; and rdy; for the each of the two objects for the given constraint. This defines two
semi-infinite sphylindrical realms formed by (P, < Py, P> >,7dy;) and (P2, < Py, P, >
,7d1;), where each realm is defined by the point on the object, the deformation axis
in the direction of the point on the other object and the realm of deformation of the
other object as the radius.

A finite volume V;; is now defined by the intersection of the volume (f(D;(P)) >
0) — (f(D1(P)) > T) and the semi-infinite sphylinder (Pi, < Py, Py >,rdy;). Vaj
is defined symmetrically (see Figure 8). These volumes define the regions for the
imparted constraint ghost functions.

We now need to define the implicit functions within these volumes that realize the

deformations. The ghost function con must be modified so that the resulting ghost
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Semi-infinite sphylinder for V2

Sphylindrical blend functions

Figure 8: Definition of sphylindrical ghost functions

function is continuous at the boundaries of its realm of influence.

Define an implicit function CONSTRAINT;;(P) as follows:
1. If P lies outside (f(D;(P)) > T)UV;;, CONSTRAINT;;(P) =0, else
2. If P lies on or inside f(D;(P)) > T, CONSTRAINT;;j(P) = CON;(P), else

3. If P lies on or inside V;;, CONSTRAINT;;(P) = Fyppy,;(P) * CON;(P), where
Fophyi; (P), is the function value due to the sphylindrical primitive defined by

Vi; (see Figure 8 Appendix A.2).

The deformed Objectl is now simply Fi(P) + CONSTRAINT,;(P) = T. Similarly

Object2 is F5(P) + CONSTRAINT,;(P) =T (see Figure 9).
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F2(P)+CONL1(P)xFsphyl1(P)=T

F1(P)+CON2(P)xFsphyl2(P)=T

Figure 9: Constraint satisfaction with sphylinders

The relative rigidity of objects here can be modeled in two ways. The first is a
direct extension of the approach for collision deformations. This approach can be
found in Appendix C.1. Alternatively a simple solution for constraint satisfaction is

as follows:

1. Let () be the point on the deformation axis at which the constraint is to be met.
The position of () along the deformation axis can be arbitrarily fixed based on

the relative rigidity of the two objects. Let w = F1(Q)/F»(Q).

2. Now coni(z) = T — fi(z)/w and cons(z) = T — wfy(z) for z € [0,#]. The
continuity constraints for the remaining polynomial functions for con(z),z €

[t', 1] are suitably altered.

It can be easily verified that the constraint ghost function con given above causes

the constraint to be met at point @) on the deformation axis (see Figure 10). The
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function in the previous subsection is a special case of this function with w = 1%.

We will now verify the desired properties due to the proposed formulation.

1. Continuity Properties
Let us first look at the continuity properties of the ghost function CONSTRAINT;;(P).
Being an algebraic combination of continuous functions, it is continuous within
each of the sub-volumes within which it is defined. We must, however, verify

continuity at the sub-volume boundaries.

e At the boundary of V; and the outside: CONSTRAINT;j(P) = Foppy,; (P)*
CON;(P) = 0, either due to the sphylinder boundary Fyppy,; (P) = 0 or the
object boundary, where CON;(P) = 0. Similarly VCONSTRAINT;;(P) =
(VEphyi;; (P))¥*CON;(P) 4 Fyppyi,; (P)*(VCON;(P)) = 0 on the boundary.

This ensures continuity with the outside.

e We only have zero order continuity at the boundary of F;(P) = T and
Vij. We use the assumption that objects do not interpenetrate in the
sphylindrical neighborhood around the deformation axis. The deformation
caused by CONSTRAINT;;(p) thus always lies within V;;. It only touches
the F;(P) = T boundary at its intersection with the deformation axis, when
the Object ¢ is rigid. At this point we have functional continuity as the

function along the deformation axis is CON;(P).

4This approach may also be used for collision deformations that exclude rigid bodies. Rigid
bodies pose a problem because the contact surface is fixed by the shape of the rigid object. The
calculated value w is unlikely to be the same for all points on this predetermined contact surface.
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This proves that the deformed object surface will possess the same continuity
properties of the functions from which it was obtained (Cy, C; continuity for

the functions we use).

. Constraint satisfaction
We must verify the satisfaction of the constraint at some point () on the defor-

mation axis between P; and P, controlled by w.

Along the deformation axis in Vi, Fyppy,; (P) = 1. Thus for Object1 we solve for
Fi(Q) + CONy(Q) = T, and for Object2 we solve for F»(Q) + CON{(Q) = T.
We now use the precondition that the constrained points are close to each other.
At point Q, CONy(P) =T — F(P)/w and CONy(P) =T — w * F(P) for the
objects. The point at which the constraint is met on the deformation axis, thus

has F;(P) = w x F5(P), which by definition is point Q.

If the assumption of proximity fails the deformation functions are smaller than
those just mentioned. The objects in this case do not deform enough to satisfy
the constraint at a common point. This may be useful in modeling a gradual
breakaway of objects. Further, the deformations reduce and finally disappear
as the constrained points get further apart. This can be clearly seen for many

of the constraints in Figure 10.

. Minimality of deformation
One may expect a common contact surface area around (), comprising points

where Fi(P) = w x F5(P), like in Figure 8. The deformation ghost function is
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Fophyi;; (P) ¥ CONi(P). fophyi(Dij(Q)) = 1 and fopnyi(Di;(P)) < 1 for all other
points P on the hypothetical contact surface, as they are a finite distance away
from the sphylindrical deformation axis. Thus the deformation term added
would be less than that required for these points to lie on either of the two

deformed objects. This proves the minimality of the deformation.

. Predetermined area of contact

By the same reasoning as above we can generate controlled contact surfaces.
Suppose that the constrained points were close enough that the ghost function
CON;(P) creates a larger contact surface than is desired. Define f,p, for the
sphylinders to be 1 up to some distance d away from the sphylindrical axis, after
which the function drops off satisfying its other requirements (see Figure 9).
This generates an elliptical (due to the sphylindrical shape) contact area with
a predetermined minor axis d * min(rd,;,rdy;), around the deformation axis.
There is no sanctity in the use of sphylinders. Any semi-infinite implicit function
may defined around the deformation axis such as a prism or even a cone-sphere.

These can be used to generate contact surfaces of various non-elliptical shapes.

. Localised deformation around the deformation axis

The deformation of Objectl is essentially controlled by the volume V5; which
is controlled by the user parameter rd;;. Thus even though F,(P) > 0 may
largely overlap Objectl, the region of deformation on the surface of Objectl

is restricted to the surface lying within the sphylindrical region. This can be
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controlled individually for each object for each constraint. The sphylindrical

functions also add a measure of directionality to the deformation.
2.2.3 Multiple Constraints

Arbitrary constraint graphs pose no problem. Each constraint is met via a local de-
formation without globally affecting the object, as can be seen in Figure 10,11. Local
deformation ghost function values due to all constraints may be added up for each
object. A problem does occur when there are deformation functions due to different
constraints overlapping along deformation axes. This occurs either due to the defor-
mation radii being large or if the set of constrained points are very close. This may be
avoided by reducing the size of the deformation radii or, if this is unsatisfactory, by
using an area constraint. An important observation is that this approach smoothly
facilitates the satisfaction of multiple points of attachment between the same two

objects, which is hard to do without singularities [20].

Figure 10: Animated Spherical Objects with Point-Point Constraints
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2.2.4 Physical Properties

The same physical connotations as in the collision deformation method [20] may
be attributed to the objects. Similar forces can be calculated. They may be used
similarly in the next animation step. Equal and opposite reaction forces are applied
at the constraint. Approaches that separate the characteristics of an object into rigid
and deformable components [20][62] assume invariant object properties like mass and
moment, of inertia. Using this assumption and the fact that only balanced internal
forces are added to the system, the first order momentum of the system is conserved

19].
2.2.5 Characteristics of the Approach

We have thus proposed and formulated an extension to Gascuel’s [20] approach that
facilitates constraint satisfaction between implicitly defined deformable objects. The

chief characteristics of this technique are as follows:

An integrated collision handling and constraint satisfaction model is provided.

Physical forces can be calculated if required. First order momentum is con-

served.

There is good user control over the deformations.

Each constraint independently deforms the object locally, allowing arbitrary

constraint graphs.
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Precise constraint satisfaction precludes the need for iterations or convergence

to a satisfying state.

Point-Point constraints can be extended to Area-Area constraints, with a pre-

determined contact surface shape and area.

Multiple points of attachment between the same pair of objects are easily han-

dled.

The approach may be integrated with a displacement based approach [19] for

better results.

Figure 11: Constraint Satisfaction between Spherical Objects
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2.3 Deformable Model applied to Polymesh Objects

2.3.1 Synthesis

Implicit functions for polymesh objects are constructed by immersing the polymesh
model in a number of implicit surface primitives [68] that approximate the general
shape of the object. The vertices of the polymesh object are then calibrated based on
their implicit function values so that they all lie on some convenient implicit surface.
During animation the vertices are transformed appropriately to stay on that implicit
surface.
Implicit Primitive Selection

The shape of the implicit primitive [68] provides a bounded volume for the realm
of influence of the associated function, as well as a mapping from a point within
the volume to a value within the domain of the density function (to calculate the
function at that point). A convenient threshold value T is chosen to define the implicit
surface that approximates the polymesh object. The choice of T is influenced by the
deformable characteristics of the object being modeled.

The choice of the implicit primitive shape for an object is influenced by the fol-

lowing requirements :
1. Implicit function computation for the primitive should be efficient.

2. Bounding volume intersection computation between the primitives should be

efficient.
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3. The primitive shape at some threshold value should fit the embedded region
of the polymesh well [41]. The behavior of the polymesh region then closely

follows that of the surface defined by the implicit primitive at that threshold.

4. The primitive bounding volume around the embedded polymesh region should
be reasonably tight, so as to avoid wasted polymesh deformation computation

during interaction with the environment.

Simple offset primitives (spheres, sphylinders, offset polygons) and cone-spheres
(see Figure 1) meet the first two criteria well, which are independent of the object
under consideration. The primitives for a particular object may be selected and
positioned by the user as part of the object modeling stage (see Figure 12).

To avoid local bulges in the functional definition across the entire object these
primitives should be treated as convolution surfaces [11]. For the sake of efficiency
and the typically small number of primitives required, we adhere to the distance sur-
face formulation. This problem will be further reduced by the calibration of polymesh
vertices within the space of its implicit function definition, which takes this formula-
tion into account.

Implicit Primitive Synthesis

Once appropriate primitive shapes for an object are selected, they must be fitted
to the underlying polymesh data. For user selected offset primitives, the skeleton
S may be positioned using a combination of user interaction and simple bounding
box based techniques. Each polymesh vertex then contributes to the synthesis of the

implicit primitive(s) whose skeleton it is closest to. Two radii R,,; and Ry, are then
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calculated for each offset primitive. These are based on the distances of contributing
polymesh vertices from the primitive skeleton S. R,,; is the maximum and R;, the
average of distances of contributing vertices from S. R, is the bounding radius of
the primitive and R;, the surface of best fit. From the definition of R,,; and the
fact that every vertex contributes to some primitive, we are ensured that the implicit
function definition completely envelops the polymesh object. The primitives within
whose realm of influence a polymesh vertex lies, are now called the defining primitives
for that vertex.

W =T/ f(Rin/Rout) is the shape weight for the primitive, where f is the associated
density function (see Figure 1). The function value for primitive 7 at a point P is
then F;(P) = W; x f;(distance-ratio(P)), where distance-ratio is defined as in Section
1.2.1. Thus the shape at threshold 7" of the primitive is the offset surface with radius
R;,.

Figure 12 shows primitives fitted to a human polymesh model. Bounding volumes
for the right half of the body and primitives of best fit for the left half are shown.
Complex primitives such as cone-spheres or superquadrics may be fitted using existing
techniques [41][55].

Once the implicit primitives have been synthesized, the polymesh model needs to
be calibrated. Here a weight attribute for each vertex is calculated, ensuring that
the implicit function model produces no deformation to the polymesh object in the
absence of any environmental interaction.

Polymesh Vertex Calibration
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For a vertex v on the prototype polymesh, let DF,(P) be the implicit function
computed based on its defining primitive(s) at a point P in space. The implicit func-
tion for a vertex v at point P, based on its defining primitive(s), DF,(P), is computed
as a sum of F;(P), where i runs over the defining primitives. v is calibrated by as-
signing a weight w, = T/DF,(P), where P is the spatial position of the vertex on
the undeformed polymesh. In the absence of environmental interaction the implicit
function for the vertex at P is, F'(P) = w,* DF,(P) = T, ensuring that the polymesh
lies on the implicit surface determined by the implicit model at threshold 7. Note
that the unwanted bulge problem occurring due to overlap of multiple defining prim-
itives [11] is attenuated for vertex v by the use of shape weight w, in the functional
calculation.

This completes the construction of the implicit model and calibration for polymesh

object.
2.3.2 Animation

Rigid bodies are well represented by polymesh models and can be animated efficiently
and robustly. For the rigid component it suffices to subject the polymesh model, its
enveloping implicit primitives and the primitives for the implicit ghost functions to
the rigid body transformations specified by the animation. The result of this rigid
component transformation forms the input to the deformable component model. The
results before and after the deformable component transformation can be seen in

Figure 3.
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The individually manipulated implicit primitives and ghost functions for an object
now interact to appropriately deform the embedded polymesh model. Deformation
of the polymesh models is carried out by deforming the position of each vertex of the
model from its current position P to a point P’, such that F/(P') =T.

Function Computation at Polymesh Vertices

Ghost functions for the implicit object at a point P are of the form G(P,t), where
t is a temporal parameter. We modify these functions for polymesh objects to per-
mit additional control for each polymesh vertex. Thus every ghost function is of the
form G,(P,t) for the vertex v. The implicit function for v at P at time ¢ is then
F(P) = w, * DF,(P) + X; Gi,(P,t), where i runs over all ghost functions G for the
object. To illustrate this, the ghost function that models collision deformations [20]
Giy(P,t) = COLL;,(P), where i runs over all interacting objects (whose F'(P) > 0).
COLL;,(P) is the collision deformation function [20] imparted by object ¢ with a
minor difference (appropriate multiplication by the vertex weight w,):

Penetration zone: COLL;,(P) =T — w, * F;(P).

Propagation zone: COLL;,(P) = w,* PROP;(P), where PROP;(P) is the propa-
gation function. The introduction of ¢ into the above formulation to model temporal
elastic effects is discussed in Appendix C.

The vertex v is constrained to a point P, where F(P) = T, or for example in
the presence of a colliding primitive 7, the common collision contact surface where
DF,(P) = F;(P). Proof of polymeshes deforming to generate common collision con-

tact surfaces is straightforward.
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Polymesh Deformation
Having laid the theoretical foundation that deforms the polymesh model, we ad-
dress the algorithmic aspects for a practical implementation. The algorithm for de-

formable component transformation of objects is carried out in 3 steps as follows:

1. A list of interacting objects is constructed for each object in the environment.
Interacting objects impart ghost functions to each other. The ghost functions

are controlled by the imparting objects and a temporal parameter.

2. The vertices of each polymesh object are then deformed based on function values

computed using its defining primitive(s) and the objects ghost functions.
3. Further processing using the deformed polymeshes takes place.

Step 1 benefits from efficient intersection computation of the bounding volumes of
primitive shapes. A simple analytic solution (see Appendix A) exists for intersection
testing between simple shapes like offset surfaces, which may be exhaustively inter-
sected with each other. Spatial subdivision techniques such as octrees may also be
used.

Step 2 is the crux of the algorithm. Every vertex of a polymesh object must now
be deformed based on an implicit function F. This function is specific to the vertex
and is calculated as described in Section 2.3.1. The position of this vertex must be
deformed from its position P computed by the rigid component transformation, to a
point P’ such that F(P') = T. As the implicit function defines a continuous implicit

surface in the neighborhood of P, the deformation mapping of P to P’ for the vertex
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is ill-defined. This is an artifact of using a discrete polymesh representation to follow
the deformations of a continuous implicit representation. The solution proposed is to
deform P along its vertex normal. Alternatively, P maybe deformed along VF(P)
i.e. the normal to the implicit function at that point (see Figure 13).

For offset primitives, the distance ratio function for any point along a ray can be
represented in terms of its parametric distance along the ray (see 3.3.1). Thus P’
may be obtained analytically along any ray, by solving a sequence of quartic equa-
tions by using a quartic density function. Alternatively, a hybrid Newton-Raphson,
Regula Falsi iterative technique may be used which is efficient in this case, as the
deformations, being incremental, are small.

Step 3 deals with the computation of surface normals or other spatial attributes
of the polymesh or any desired parameters based on the deformed polymesh. Addi-
tionally, for systems with force feedback, integration of forces at individual vertices
of the object and collision contact area computation may be done in this step.

The worst case complexity of the above algorithm is O(m? 4+ mn), where m is
the number of implicit primitives (including those used to model the ghost functions)
and n the number of polymesh vertices in the environment (n >> m). Despite fast
octree based techniques for coarse collision detection, precise detection and handling
using conventional polygon methods is O(n?) in the worst case [22][51], making this

approach superior as the complexity of virtual worlds increase.
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2.3.3 Dynamics

A physical muscle interpretation, which in conjunction with the skeleton controls
the animation of the geometric model, is presented in Chapter IV. Variations in
tissue characteristics [60] are modeled by piecewise smooth density polynomials whose
gradient reflects the change in stiffness, making reaction force computation for a
vertex simple [58]. Area computation of polymesh faces whose vertices are deformed
to lie on a collision contact surface [20] may be done in Step 3 of the algorithm in
Section 2.3.2. These areas can then be used in the computation of area dependent

reaction and friction forces completing a force feedback loop.

2.4 Articulated Deformable Objects

Here we address extensions required to coherently integrate articulated deformable
objects like human figures into the proposed framework.

The synthesis of the implicit function embedding the articulated figure involves
the implicit function synthesis for each articulation of the body as an independent
polymesh object described above. Additionally a primitive (typically a sphere) is
synthesized around each joint. The joint primitives are responsible for maintaining
smooth connectivity across the joints. The realm of influence of the joint primitives
is influenced by the polymesh vertices around the joint. The polymesh vertices are
thus refered to as either joint vertices or limb vertices (see Figure 13).

The implicit function for a vertex v at point P, based on its defining primitive(s),

DF,(P), is computed as follows :
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Figure 13: Implicit Primitive Hierarchy

Limb Vertex: DF,(P) = F;(P), where i is the defining limb primitive.

Joint Vertex: DF,(P) = F;(P)+ DIFF(F;(P), Fy(P)), where i is the joint prim-
itive and j, k the limb primitives. The DIFF function, like COLL [20] mod-
els the formation of creases at joints (see Figure 3). An example of DIFF is
DIFF(a,b) = |a™ — b"|'/™.

During animation the rigid component is determined by a skeletal structure; the
deformable component is determined by the interaction with other objects in the en-
vironment. This model is particularly well suited to human figure animation. For the
rigid component it suffices to subject the polymesh model to the rigid body transfor-
mations specified by the underlying skeleton. Care is taken to preserve connectivity

and continuity around joints. This may be done using free form deformations [14].
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Alternatively the quarternion based rotation around a joint is interpolated for vertices
around a joint [58]. This maintains smooth connectivity around joints but does not
provide much shape control or address collisions in the joint region.

Articulations are treated as different implicit objects in the environment that
interact with each other for collision detection and deformation. Thus self-collisions
between different parts of the body are homogeneously handled alongside collisions
with any other objects in the environment. Joint regions, where both blending and
collision deformations occur, are handled by one or more joint primitives that blend

the two limb primitives together (see Figure 3).

2.5 Implementation

This model enveloped human figures and other objects for a real time virtual world
simulation on a SGI (Crimson, Reality Engine) machine.

The human figure polymesh (= 7500 vertices) is embedded in 23 implicit primi-
tives. The implicit model is constructed hierarchically, in an object oriented fashion,
making the fitting of any polymesh object as well as the introduction of new implicit
primitive shapes a simple task.

Figure 3 shows the elbow region after rigid component transformation and its sub-
sequent deformable component transformation. Spherical primitives modeling skele-
tal elbows cause the elbow to protrude in the bent arm and precise crease formation
may be seen. The deformable component computation using a Regula Falsi-Newton

Raphson approach typically takes 2-3 iterations per vertex.
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Figure 14a shows deformations of an arm and a ball on collision. Figure 14b
illustrates the homogeneity of collision deformation on two arms belonging to the
same articulated figure. Figure 15 shows a ball bouncing off a head. The head is
given a plastic attribute and the ball a viscoelastic one so as to clearly show the
deformations that result.

Existing polymesh based techniques may be integrated with the rigid component
in our implementation. As an example, free form deformations [14] on the spine are
used to animate the torso of the human figure (see Figure 12). The spatial positions
of the torso vertices prior to the free form deformation are used in the torso implicit

primitive function calculations.

2.6 Discussion of Results

A model for the synthesis and animation of objects with a polymesh representation
is presented. The physical characteristics of the object are separated into rigid and
deformable components. The implicit function based deformable component performs
collision detection and handling with a linear time complexity in terms of number of
object vertices, which is important when dealing with complex virtual worlds [51].
The implementation of the presented concepts shows their effectiveness both in
terms of computation speed and the degree of realism obtained. The separation of
the physical characteristics of objects into rigid and deformable components works
particularly well for human figures. The model handles self-collisions of the body and

skeletally based deformations (crease in Figure 3) elegantly. Physical characteristics
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can be overlaid on the model for dynamic simulations [58].

The ability to apply implicit function techniques in general to existing polygon
based data is an important advantage of our approach. It can unify and be inte-
grated with existing polygon based or implicit surface based modeling and animation
systems.

The under-constrained nature of the deformable component mapping of polymesh
vertices may cause surface consistency problems. A dense well fitted polymesh such
as the human figure, causes simple displacements along vertex normals to give good
results without vertices bunching together or diverging abnormally. Incorporation of
techniques [67] that adaptively subdivide and coalesce the polymesh in real time is a
possible solution.

There is scope for future work on construction and fitting of primitives to the
polymesh. Poor fitting primitives may result in very close objects being deformed
to abut at the implicit model contact surface. For applications where visual realism
dominates over spatial accuracy, the above artifact does not pose a problem. Using
a greater number of primitives and more complex primitives improves the fit but de-
grades implicit function and bounding volume intersection computation efficiency. An
empirical tradeoff between a better fit and computation efficiency should, therefore,

be taken into consideration.



CHAPTER III

Polyhedral Shapes as Implicit Surface Primitives

A useful set of implicit surfaces can be generated as an algebraic combination of
polynomial functions each of which is defined over a finite volume. The behavior
of each polynomial function in space is intuitively governed by a geometric volume
known as an implicit primitive shape. Examples of primitive shapes introduced in
1.2.1 are spheres, sphylinders, cone-spheres and rounded polygons.

Object modeling and animation with existing implicit surface primitives has cer-
tain limitations. Realistic objects, such as bone structures and plants, often exhibit
a smooth amorphous nature, combined with sharp features which can be hard to
model precisely with the aforementioned primitives. Though a superquadric primi-
tive can be fitted to a 3D point data set [55], a precisely defined B-rep data model,
can only be approximated by existing implicit surface primitives. Very thin objects
that are best represented by surfaces, like paper or leaves may be difficult to model
robustly as thin volume primitives. Often a large number of simple primitives may
be needed to model certain objects realistically. An energy minimization technique
was presented by Muraki [41], where summed implicit spherical primitives fit data

points. The order of hundreds of primitives are required in general for a good fit.

28
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This makes the rendering of the object computationally expensive [8], and its anima-
tion by manipulating primitives, cumbersome. Rendering techniques, special effects,
anti-aliasing techniques and such issues have to be specially addressed for analytically
defined shapes, often independently for each primitive.

On the other hand many of the advantages of implicit functions such as properties
of smoothness, changes in topology, precise collision contact surfaces are hard to
achieve with B-reps in a unified elegant fashion. The ability to integrate B-rep models
with simple analytic shapes (which have complex B-rep approximations), would also
be useful.

Many modeling and animation techniques individually developed for solving par-
ticular problems using B-rep models are easily and elegantly accomplished using im-
plicit functions. As examples of such techniques, Ricci [53], converts CSG operations
of union and intersection into algebraic functions that can blend objects together with
a varying degree of smoothness. A technique for generating a controllable fillet sur-
face between two planar facets of an object was presented by Middleditch [39]. Spring
and damper techniques, [59] physically model deformable B-rep based objects. Free
Form Deformations [14][56] are a very popular technique for modeling the deformable
nature of objects modeled as B-reps.

We thus argue the case for a closer link between B-rep and implicit function
modeling and animation paradigms. In this chapter we propose definitions for B-
rep objects as implicit modeling primitives. This facilitates the direct application of

implicit function techniques to B-rep models. Within an implicit surface modeling
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system, B-rep objects become a powerful user definable primitive. Polygonization of
general implicit surfaces [9][54] allows the user to easily switch between B-rep and
implicit surface models. This toggling between models is effective in incremental and
hierarchical object modeling and animation. The use of polyhedral implicit primitives
is discussed in detail. We generalize in two ways on the idea of a skeleton and a
radius of influence defining an implicit primitive. Existing implicit primitive shapes
are special cases of this generalized idea.

The display of objects modeled and animated using implicit surface primitives is
then addressed. Techniques for scanline display, ray tracing and polygonization of
polyhedral primitives are presented.

The above approach makes B-rep and implicit surfaces representations completely
interchangeable. The inherent display inefficiency due the implicit surface represen-
tation unfortunately remains, and is possibly increased. This problem is overcome
by the indirect deformation approach of Chapter II. The methods in this and the
previous chapter thus provide two alternatives. For cases where display efficiency is
the foremost requirement, the indirect deformation approach of Chapter II should be
used. In other cases the techniques in this chapter are more general and likely to
produce better looking results.

Chapter IT presents a technique by which implicit functions deform polyhedral
structures. Further work needs to be done before this approach can be applied to com-
plex deformations such as those involving a change in object topology. The approach

also has other limitations resulting from the indirect nature of the deformations.
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The algorithms of this chapter are easy to duplicate and may be incorporated into
any existing B-rep or implicit surface based modeling and animation system.

The rest of this chapter is organized as follows:

Section 1 develops the generalized notions of the implicit primitive shape. Section
2 describes the usage of polyhedral shapes as primitives. Section 3 addresses the dis-
play of implicit surfaces using scanline rendering, ray tracing and polygonization. The
emphasis is on the rendering of polyhedral primitives. Section 4 gives implementation
details and presents the results. Section 5 presents conclusions and a discussion of

results obtained from the approach.

3.1 General Implicit Surface Primitive Shape

The implicit primitive definition in 1.2.1 was based on a skeleton which along with a
cutoff radius, fixed a finite volume as the realm of influence of the primitive.

We define each primitive shape as < V| S, f >. V is a finite volume, S is a
skeleton within the volume, and f is a blend function. The primitive only contributes
to the surface within V. For a point P within V', the function value is determined
by first computing a value € [0, 1] called the distance-ratio. f(distance-ratio) is then
the function value. If () is the closest point on S to P, then the distance-ratio is
computed by taking the ratio of |[P — Q| (from P to a point @) on S), and a distance
|P' — @, where P’ is determined by the shape of V. Point P’ is the intersection of

the ray Cﬁ with the boundary of volume V. We assume that the intersection of Cﬁ;
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with the boundary of volume V' is unique. For points P outside V', F(P) = 0. This
is a more general formulation than the currently accepted one in Chapter II. This
formulation reduces to the previous definition in the special case that the boundary
of V is an offset surface at distance R from S.

The shape of an implicit primitive V' thus provides a bounded volume, the interior
of which is the realm of influence of the associated blend function. In addition, V'
provides a mapping from a point within the realm of influence to a value within the
domain of the blend function, which is used to calculate the function at that point.

We use this formulation to provide implicit primitive definitions to B-rep shapes
which typically represent the surface of V.

Scaled volumes result from the isolated primitive shape at various thresholds when
S is a single skeletal point contained within V. In general, isolated primitive shapes
for various thresholds are an intermediate shape between the boundary of V' and
S. Typically, we would like S to be a simple surface such as a point-set, sphere or
polygon. The closest point calculation given a query point is computationally efficient
for such skeletons and the intermediate isolated shape reasonably predictable.

The restriction imposed by the assumption of a unique intersection point is equiv-
alent in statement to the following:
Let Vp be the subvolume of V', comprising the points whose closest point on S is the
same point P. Then Vp must be star-shaped with respect to P. This is illustrated in
Figure 16.

Most existing primitives are special instances of V' and S.



63

F(P)=
f(ILPYI2P])
P Vvl
V7 not star-shaped
1.3 with respect to point7
“\ w2
2 i 6
T
3 5
3
V4
Star-shaped el
sub-volumes E .
V2, V3, V4. Voronoi
T Boundaries

Figure 16: Restriction on shape of V,S

e For spheres, V' is the bounding sphere defined by a radius r around a center C.
S is just the point C'. Similarly, superquadric ellipsoids are the superellipsoid

volume V around the center C.

e Sphylinders (rounded polygons) have as V', the bounding sphylindrical (round-
ed polygon) shape, defined by radius r around S which is the line segment
(polygon) of key points. For cone-spheres, the bounding volume V' is the cone-

spherical shape [38] around S, the line segment formed by the key points.

e Superquadric toroids [4] have as V, the bounding toroidal shape and as S, the

circle defined by the hole parameter .

3.2 Polyhedral Implicit Primitives

The complexity of modeling, animating and display of objects built from implicit

primitives depends on:
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1. The number of primitives.

2. The complexity of the primitive determined by the complexity of evaluating
the parameters of the primitive at a point, such as the implicit function value,

gradient or color value.

3. The combination complexity of the structure that combines all the primitives

to obtain the implicit object.

Polyhedral primitives aim at shifting the complexity of the implicit object from a
large number of simple primitives to a small number of primitives of higher complexity.
This also reduces the combination complexity as the number of primitives to be
combined decreases.

A general polyhedral primitive (referred to as a polyblob) is simply the gener-
alized implicit primitive shape, where V', S are defined using polyhedral B-reps. An
instance of the primitive thus has the polymeshes, V and S, appropriately positioned
and f, its associated blend function.

For the polyblob to be a useful and intuitive primitive it is imperative that its
shape as an isolated primitive at various thresholds be fairly predicatable. Thus
for most of the thesis, S for a polyblob is assumed to be a point contained within
V', unless otherwise specified. Such a polyblob is referred to as a pointblob (see

Figure 17).
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3.2.1 Pointblobs

The pointblob as stated above is thus defined as < V, S, f >, where V is a non empty
bounded volume, S is a skeletal point contained within V and f is a blend function.
The realm of influence of f is the interior of V. Given a point P within V, let the ray
from S through P intersect the boundary of V at point P'. Let us restrict V, S to be
such that the intersection P’ is unique for all points P. The polygon of V' containing

P' is called the defining polygon of P (see Figure 17). Define g : R®* — [0,1]. For

P=S]|

,m). Clearly g(P) is a value that ranges from 0 at S

a point P, g(P) = min(1
to 1 for points on or outside the boundary of volume V. Now the function value
at P is F(P) = f(g9(P)). F(P) thus varies from a value of 1 at S, to 0 for points
on and outside the boundary of volume V. Scaled volumes result for the isolated
primitive shape at various thresholds (see Figure 17). Given a threshold T, let W
be this isolated shape. We can equivalently define the pointblob in terms of W, T
instead of V' (since V' can be uniquely obtained from W, T, f). In fact modeling with
the shape W is more intuitive than with V' as it gives a better indication of where
the implicit surface at the threshold T lies.

The computation of g associates a unique point P’ on V, with every point P within
the realm of influence of the primitive. This point P’ can be used in determining
the normal, texture and other object attributes for the primitive at point P. The
attributes for all contributing primitives are weighted appropriately to obtain the

attribute at P for the implicit surface.

There may be cases, such as Figure 20, where clearly a single point within the
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polyhedron cannot satisfy the shape restriction for pointblobs. This is also evident
in Figure 16 where a single point would not be sufficient to allow for functional inter-
action at both prongs of the fork. Further, with many different regions of interaction
in a primitive, a measure of local control over the interaction in different regions of
the primitive is useful. As defined, a pointblob lacks this property. The above two is-
sues are addressed by point-setblobs. Point-setblobs extend the pointblob definition.

They are quite different, however, from general polyblobs.
3.2.2 Point-setblobs

Point-setblobs may be motivated by the example of articulated figure modeling and
animation, where each limb is an implicit primitive (pointblob) and the figure a
blended result. It may be impossible to satisfy the star-shape restriction on V' by the
placement of a single skeletal point within arbitrarily shaped limbs. We would also
like to localize the blending centered around joints (for example the upper arm may
blend differently at the shoulder and elbow). This could be handled by a polyblob,
where S could be the set of joint centers. The isolated shape of the polyblob, however,
is unpredicatable for an arbitrary S, which is unacceptable as we wish to preserve the
basic shape of the outer volume V.

Point-setblobs rely on the assumption that for many applications such as articulat-
ed figure animation, the threshold value of an implicit object remains constant. We de-
fine a point-setblob as < W, S, F, T >. W is the shape of the isolated primitive desired
at a surface threshold 7. S = 5..5,, is a discrete set of points within W. Typically

S would represent the various blend centers. F = f;..f, is a set of blending functions



68

corresponding to each point in S, each of which possess the properties of Figure 22.
Construct volumes V;..V;,, where V; is Trans(S;)Scale(1/f; 1 (T))Trans(—=S;)W. Put
simply, V; is the appropriately scaled up volume, which treated as an isolated point-
blob < V;, S;, fi >, would give the shape W for a surface threshold value of T (see
V1,V in Figure 19a).

The function value at a point P for point-setblob < W, S, F,T > is computed as

follows:

1. Let S; = minje1.n(|S; — P|).

2. The function value at P is the function value returned by pointblob < V;, S;, f; >

at point P.

Hence the isolated shape of the point-setblob for the given threshold 7", is W. Fur-
ther, blending in a region near a blend center is locally controlled by its corresponding
function due to spatial proximity.

This provides a satisfactory solution as long as the point-setblob has no functional
interaction around a Voronoi boundary of the set S. For points on the Voronoi
boundary, the functions are only guaranteed to return the same value for points on
W (where all functions evaluate to T'). Thus if there is no interaction with other
primitives on a boundary, the surface at 7" around the boundary will be continuous
and precisely W. At function values other than 7', however, the values on either side
of the Voronoi boundary can be very different. The present formulation is thus likely
to cause discontinuities on the surface if there is interaction with other primitives in

the region of a Voronoi boundary.
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Figure 19: 2 Dimensional Point-setblob

A robust solution that would always maintain continuity across the Voronoi bound-

aries and preserve the previously achieved properties is as follows:

1. Find the closest point S; in S for some query point P.
2. Let Vk € 1.n (dy = |Sx — P| — |S; — P|)

3. Define a smoothing constant d, the size of which controls the size of a region
around Voronoi boundaries, where function values are smoothed out to avoid

singularities across the voronoi boundary.

4. Let Vk € 1.n(wy, = f(min(1,dx/d))) where f is a blending function with prop-

erties as in Figure 22.

5. Let valuey, be the function value at point P due to simple polyblob < Vi, Sk, fr >,

for kK € 1..n.
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6. The function of the point-setblob at P is then obtained as a weighted average

> oh_q wi k valuey/ Y p_q W

The function values calculated due to more than one blend center near Voronoi bound-
aries are blended together with first order continuity; the extent of the blend is a user
controlled parameter. In Figure 19a, the function value at the point shown within
the blend region should be controlled by S; according to the closest blend center
formulation. The function value at this point (and all points within the blend region
around the Voronoi boundary), however, is a blend of the values with respect to S;
and S,. This maintains first order continuity of the primitive shape.

Note that none of the properties of local functional control and an isolated prim-
itive shape of W at threshold 7" are compromised as a result of this blending (see
Figure 19b). In Figure 20, a point-setblob torus that blends seamlessly and differently
at 4 centers with identical spherical pointblobs is shown.

Note that the notion of multiple skeletal centers within a volume is not restricted
to polyhedral structures but may be applied to an outer volume of any representation.
An analytic sphere for instance, could have multiple skeletal centers within it defining
the implicit function instead of the center of the sphere.

Point-setblobs thus form a useful object modeling and animation primitive that
can be easily incorporated into any polygon or implicit function based modeling,
animation or rendering system. Local functional control over different parts of the

primitive make it well-suited to the modeling of articulated figures.
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Figure 20: Point-Setblob

3.2.3 Local Control of Implicit Functions

The notions of local control and directional blending [70] for an implicit surface prim-
itive deal with varying the blend function used over different regions of the primitive
or in varying the way that the primitive’s function values combine with other primi-
tives. The problem lies in intuitively specifying that a particular region of a primitive
blends in a different way from another. The local control afforded by different blend
centers of point-setblobs provides variations in blending for different blend centers.
Interaction of the kind seen in Figure 40, where the upper and lower arm primitives
blend smoothly on one side of the elbow and collide on the other is both hard to
specify and control. Using two closely placed blend centers for each limb primitive at

the elbow (one for either side, with functions for blending and collision respectively) is
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one solution. Alternatively, the blending can be intuitively controlled with polyhedral
primitives using the following approach.

The polyhedral vertices are assigned blend functions, fi-, in the manner that
current geometric modelers assign vertex normal/color values. Given the shape W,

threshold 7" and a blend center S, a cutoff Ry for each vertex V is calculated to be

V5]
£ (1)

(see Figure 21).

Now for any point P:
e Let POLY be the polygon of W that is the defining polygon for P.

e Let POLY"' be the defining polygon POLY, scaled with respect to S so that

point P lies on it.

e Calculate function values due to every vertex V of POLY , as fy(|V'—S|/Ry),

where V' is the corresponding vertex on POLY"5.

e F(P) is then obtained by interpolating the function values at the vertices of
POLY bilinearly or in some another fashion based on the position of P in

POLY".

In this manner every vertex of the shape W has a measure of functional control
around it, allowing different forms of interaction to manifest themself locally in dif-
ferent parts of the primitive. It is easy to see how this definition can be extended

to account for the presence of multiple blend centers in point-setblobs. Note that

5This is equivalent to the computationally efficient form fy (f;;"(T) * (P — S ).N) /d), where d is
the distance to the plane of POLY from S and N the normal to the plane of POLY .
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the above formulation preserves the shape W at threshold T in the absence of any
interaction. Further, in the special case that the functions at all vertices of W are

the same, this formulation reduces to the original definition of a point-setblob.

.............

PR ]

" defining polygon on W,
for point P (POLY)

PO

POLY’

- (u,v) parameters for
R2=P2-s| point P wrt to the
-1 defining polygon
f (T
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Figure 21: Functional calculation for Localized Blending

In Figure 40 functional attributes are assigned to the polyhedral vertices of the
point-setblob upper and lower arm primitives. The vertices around the crease region
have functions that interact to generate the collision contact surface. The function
values of vertices on the other side of the elbow simply blend together. Functional
calculation at any point is a smooth functional interpolation of the attributes at the
vertices of the defining polygon.

Polyhedral primitives (polyblob, pointblob and point-setblob) can be easily incor-
porated into any modeling, animation or rendering system that treats objects and
implicit primitive shapes in an object oriented fashion. Further all the concepts devel-
oped may be applied to B-rep primitives modeled using higher order surface patches.

Optimizations specific to polyhedral primitives need not, however, generalize.
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3.3 Display of Polyhedral Implicit Primitives

Implicit surface rendering may be done by tracing rays through space and determin-
ing the first ray surface intersection by solving the implicit equation along the ray
using numerical or analytic techniques [8][18][23][26][70]. Alternatively, a surface re-
construction algorithm may be applied to construct a boundary representation of the
surface [9][34][43][54]. The polygonized surface may be subsequently rendered.

Consider the definition of an implicit object comprised of implicit primitives. The
object has a list of component primitives, a combination graph for the primitives and
a surface threshold value 7. Each primitive has attributes of :

Shape definition : such as < V, S, f > for a polyblob, < W, S, F,T > for a point-
setblob, or center, radius and blend function for an analytic sphere. The shape
definition specifies all the parameters required for calculating the functional value of
the primitive at a point.

Attribute weights : such as a shape weight sweight, that provide additional control
over the influence of the primitive to each object attribute independently.

The above attribute descriptions are those specific to the implicitly defined object.
Display, physical, and other general attributes may also be defined, not only for the
entire object but independently for each primitive. The primitive list is a generic list
of various different implicit surface primitives, including existing analytically defined
shapes. The combination graph model used is a directed acyclic graph with the
primitive function values as source nodes, internal nodes as algebraic combinations,

and a single sink node representing the functional value of the implicit object.
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3.3.1 Blend Functions

The desired properties of a blend function f are: f is a function of the normalized
distance (distance-ratio) between 0 and 1, f(0) =1, f(1) =0, f'(0) =0, f'(1) = 0,
f is monotonically decreasing. As developed by Wyvill [68], a simple Hermite cubic
solution is well suited to the above. However, to avoid taking square roots in distance-
is

ratio calculations, a sixth degree polynomial with the added constraint f (%) = %

used.
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Figure 22: Polynomial Blend Functions

A close approximation to this blend function is provided by the quartic func-
tion f(z) = (22 — 1)? (see Figure 22). It has all the enumerated properties except
f(3) = -%; the visual difference between the blending obtained by the two functions

is negligible. For primitives where explicit distance to the skeleton can be computed
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rather than the square of the distance using geometric arguments, a combination of
two quadratics f(z) = 1—2x*2? for z € [0,0.5] and f(z) = 2 (1 —z)? for z € [0.5,1]
provides similar blending properties.

The quartic and quadratic polynomials facilitate precise ray-surface intersection
calculations for primitives whose geometry is defined as an offset surface. For example,
the formulation of the vector to the closest point on the skeletal polygon in a rounded
polygon falls under one of three cases for a point P = A+ Bxt parametrically defined

along a ray.
e The vector to one of the vertices @ is (P — Q).

e The perpendicular vector to one of the normalized edge vectors E with an

adjacent vertex Q is P — (P® E)E — (Q — (Q ® F)E)°".

e The perpendicular vector to polygon plane with unit normal N and a vertex ()

is (P—Q)®N)N.

The vector is thus of the form C+D*t, fragmented over intervals defined by the case
that determines the vector. Sphylinders and spheres are degenerate cases of the
above. Thus the parameter ¢ can be plugged into a quartic or quadratic implicit
equation and solved for explicitly over a non-overlapping interval fragment defined
by all contributing primitives. This approach has the advantage of being robust
and theoretically precise. There are two major drawbacks of this approach. Firstly,

it is inapplicable to more complex primitive shapes such as the cone-sphere where

6® is used to denote the dot product of two vectors.
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the implicit function cannot be represented precisely as a function of the interval
parameter t. For cone-spheres we obtain a ratio of two polynomials in ¢ which can
only be approximated by quartic or quadratic polynomials in . Additionally, the ray

is fragmented into intervals with different polynomials due to three reasons:

1. Due to the blend function domain if piecewise blend functions like the quadratic

in Figure 22 is used.
2. Due to changes in the formula for the distance-ratio within a primitive.
3. Due to the overlap and combination of the functions of multiple primitives.

These fragmented intervals along the ray are then solved in order for a surface in-
tersection. For complex scenes the level of interval fragmentation may make the

analytical solution inefficient.
3.3.2 Ray Tracing

Most ray tracers are designed in an object oriented fashion to allow for easy incorpo-
ration of new object representations. Typically, initialization, ray-object intersection,
normal, and color computation procedures for any new primitive need to be speci-
fied. These are elaborated on in detail with respect to polyhedral implicit surface

primitives.
Initialize(object)

Initialization usually entails preprocessing and transformation of the object into the

space where the rendering process is carried out (typically world space). In the context
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of polyblobs, the polyhedra, V' and S, are transformed, typically into world space
and preprocessed. Preprocessing involves the computation and building of various
structures, such as bounding volumes, spatial subdivision schemes, and priority lists.
These are employed by techniques that exploit different types of coherence to improve
rendering efficiency. For point-setblobs, it further involves the construction of volumes
V; for each skeletal point S;. Further, preprocessing such as the construction of voronoi
regions to speed up the closest point computation in the context of point-setblobs and

polyblobs may be done.

Intersect(RAY ,object)

Given a point in space, P, the value of the implicit function can be determined by
calculating the function values for each component primitive and then combining
them as specified by the combination graph.

The RAY intersection with the object is the first point along the ray where the
combined contributions of the primitives achieve the threshold value of the surface.
For some applications such as CSG construction of objects, all intersections of the ray
with the object may be required. A simple intersection procedure can be given based
on function evaluation at a point. Points along the ray are evaluated by stepping
along it at a fixed or adaptive resolution and the first point (or all points) where the
function value achieves the threshold is returned.

Values such as the defining-polygon of V for point P, the point P’ on the defining-
polygon, corresponding to P and the functional value, value = F'(P) are likely to be

calculated as part of the intersection procedure. They should be saved in an auxillary
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structure as these values are also needed for the computation of surface normals and
other object attributes.

The intersection computation can be optimized in a number of ways.

Primitive function computation at P
For polyblobs, efficient and accurate computation of the closest point on S to P is
crucial. Given a point in space P and a polygon, the closest point on the polygon to

P may be computed as follows:

1. Project P perpendicularly onto the plane of the polygon. If the projected point

lies inside the polygon (in the plane), return the projected point.

2. Project P perpendicularly onto the line of each edge of the polygon. The
minimum distance from P to an edge is either the projected point, if it lies
within the edge, else it is the closer of the two end-points of the edge. Return

the minimum distance from P to an edge over all the edges of the polygon.

A simple algorithm to determine the closest point on a polyhedron for a given P
is to minimize on the point with the shortest distance to P for all polygons of S. For
closed polyhedrons, back faces with respect to P may be culled from the list of faces
to be tested. Further, S should be preprocessed into an edge based structure such as
winged edge. This allows for easy access so that computations for edges and vertices
of the polyhedron need be done only once. Spatial subdivision techniques such as
octrees can also be employed to limit the number of faces that need to be tested for
a given P, using the following heuristic for closed polyhedrons:

The voronoi space of a face is the polygon extruded outwards along its normal. The



30

voronoi space of an edge is the wedge shape emanating from it and bounded by the
2 normals of its adjacent faces. The voronoi space of a vertex is the pyramidal shape
emanating from it and bounded by the planes normal to its adjacent edges. This is
strictly true only for convex objects. A spatial subdivision based on this heuristic
would typically locate the P to lie in at most a few of the above regions, all of whose
corresponding elements would then be exhaustively processed for the closest point.

For the computation of the distance-ratio function g, the restriction that the ray
through P uniquely intersects V' may be used. The intersection routine can be sped
up by intersecting polygons until it comes across any intersection, not the closest.
This should be coupled with a priority list for the polygons, with the most recently
intersected having the highest priority. The intersection routine’s overall performance
is now sped up due to the spatial coherence of rays through proximal points where
the function is sampled.

Isolating regions where primitives interact would also help speed the functional
calculation of point-setblobs immensely. Intersection bozxes, which are a set of disjoint
boxes resulting from the intersection of bounding boxes of all interacting primitives
are precomputed during initialization. Each skeletal point of a primitive defines one
or more semi-infinite pyramidal regions with the corners of the intersection box (see
Figure 23). Any candidate defining polygon of the primitive for any point within
the intersection box must intersect one of these semi-infinite regions. Thus for each
primitive a subset of polygons may be tagged as candidate defining polygons for the

primitive for all points within the intersection box. Often this preprocessing step can
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reduce the number of candidate defining polygons by many orders of magnitude. (see

Figure 23, Table 1,3).

Candidate
Defining Polygons V2

Pyramidal

regions which

a defining polygon
must intersect

No change
to polygon list

Culled polygon Intersection Box
list for primitive

Figure 23: Candidate defining polygons for 2D Pointblobs

Computing interval bounds along RAY:

Intersecting the ray with volume V' of each primitive generates a span or interval over
which it is active (contributes to the object function value). The set of intervals for
the primitives also provides us with bounds along the ray between which ray-object
intersection points lie. A bounding volume hierarchy of the object and its component
primitives can also be used to limit the number of active primitives at any point along
the ray. Spatial subdivision is also useful in this regard.

For pointblobs and point-setblobs, W, representing the isolated shape of the prim-
itive at threshold 7", should be maintained. Now in the case of a single active primitive
in some interval over a ray, the exact surface intersection is given by the ray intersec-
tion with the B-rep W.

Numerical Technique with Heuristics:



82

Blinn [8] uses a heuristically driven numerical technique to find the surface inter-
section for spherical primitives. The algorithm involves evaluating the function at a
number of guess points, one for each primitive, where the threshold is likely to be
achieved. The guess points are sorted by distance along the ray and the first interval
of consecutive guess points that straddles the surface is selected and the function
evaluated at points in the interval using a hybrid newton raphson, regula falsi ap-
proach to obtain the intersection point. The heuristic works well in practice for the
symmetric and well behaved function generated by the span of a spherical primitive
along a ray. Arbitrary polymeshes, however, can generate multiple intervals along the
ray with highly varying functions, resulting in missed intersections. These problems
are magnified if this approach is used to obtain all intersection points of the surface
with the ray. The heuristic may still be applied with a few modifications. A guess
point must be generated for each interval spanned by a polyblob along the ray. The

guess point is determined in a manner similar to Blinn as follows:

1. Intersect the ray with W. The first intersection point corresponding to a span

becomes its guess point.

2. If no intersection exists, we would like to find as guess points the points where
the value contributed by the primitive attains a maxima. For spherical primitive
spans it is precisely the mid-point of the span [8]. In this case to avoid complex
maxima computation for what is only a heuristic, the first intersection with the
isolated primitive shape at a threshold 7/2 is used as the guess point; failing

that, a fixed number of equally spaced guess points along the span are used.
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Analytic Technique:
The analytical approach described in 3.3.1 can be applied to point-setblobs. For
combination operators such as a summation, difference and union, the function value
for the object along the ray can be obtained as a number of polynomials in ¢, the
parametric distance of point P along the RAY. These equations can then be solved
analytically in order along the ray until the first intersection is found.

The analytical technique above motivates the following observation for point-
setblobs. The interval along a ray over which the point-setblob is active can be

partitioned into a sequence of intervals by adjacent defining polygons (see Figure 24).

Figure 24: Defining Polygons along a Ray

Let a given polygon define the distance-ratio for points over an interval along the
ray, the distance-ratio over the interval can be represented as a linear function of ¢, the
parametric distance along the ray. Let the normalized ray vector be RAY', originating

at 0. The normal to the plane of the defining polygon is N and the perpendicular
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distance from the skeletal point to the plane, r. Let a point P = O+ RAY «xt along the
ray. Then for all points pnt with this defining polygon, distance — ratio = |[P® N|/r,

or distance — ratio = (O ® N/r) + (RAY ® N/r)  t. This is shown in Figure 25.

Defining Polygon

Figure 25: distance-ratio over a Defining Polygon

Computation of the sequence of defining polygons is a simple incremental process
of determining the next defining polygon along the ray given the current one, by using
an edge based data structure. The spans of a point-setblob can thus be partitioned
into a sequence of intervals, the function over each being a quadratic in . The in-
tervals for all the component point-setblobs are then fragmented into nonoverlapping
intervals and combined to obtain a number of quadratic functions. These are analyti-
cally solved in order for the first intersection point. The number of intervals generated
may be upto twice the sum of defining polygons of all active interacting primitives

along the ray. Additionally, due the piecewise nature of the quadratic blend function,
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the number of intervals may be doubled.

This technique is robust and very efficient when the number of defining polygons
for a ray is small. The complexity grows linearly with the number of defining polygons.
Its locality of application and robust nature makes for a useful coupling with the
optimizations and heuristics described earlier. The ray can be pruned using numerical
and heuristic techniques to intervals in the neighborhood of a solution. The analytical
procedure can then be applied. An intersection procedure with user control over the

robustness-speed tradeoff is thus proposed.

Normal(P,object)

The normal vector to an implicit surface F(z,y,z2) at P =< z,y,z > is given by

< ‘;—I;, ‘fs—’;, fs_l:j > 7. Thus, for functions f; summed over n primitives, the normal vector

is < Y, ol %,Zﬁ%b 8: > which is Y < oL, %—J;j, 8i > Consider an im-
plicit primitive defined with a constant offset distance r from a skeleton [11] (spheres,
sphylinders and rounded polygons) with an associated function of distance ratio f.

The normal vector contribution for the primitive is , Where d is the

sweights f'(d)*N
T
distance-ratio at P, and N is the normal vector to the primitive shape at P (see

Appendix A).
For pointblobs, distance-ratio d is ((P — S) ® N)/r where S is the skeletal point,
N is the normal to the defining polgon and r is the perpendicular distance from S to

the plane of the polygon. Thus Vf(d) = f'(d) * Vd. Vd = N/r making the normal

M identical to the form for offset

vector contribution for the primitive

"N = N/|N| denotes a normalized vector.
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surfaces above. The above form represents the surface normal in terms of normals
to individual primitives appropriately weighted and algebraically combined and thus
allows for a simple integration of normal vectors computed using any primitive.

For pointblobs, the normal vector N for the polygon at P is the same as the
normal at P’as normal vectors are invariant under uniform scaling. We can thus apply
polyhedral techniques such as interpolated smooth shading or bump texture mapping
to the primitives simply by using the normal value calculated for the polyhedron at
P’. For smooth interpolation of normal vector contribution, r should also be smoothly
interpolated. This may be done for instance by calculating r values for vertices of
the pointblob averaged from the r values of their adjacent polygons. The r value at
P could then be given by a bilinear interpolation of r values of the vertices of the
defining polygon at P’.

For point-setblobs, the normal is precisely the appropriately weighted average of
pointblob normals of the contributing skeletal points. For general polyblobs, the
normal at P can be obtained as a weighted blend of the normal to V at P’ and the

normal to S at the euclidean closest point, based on the threshold value.
Color(P,object)

Color computation uses a weighted average of individual pointblob colors. These may
be obtained from arbitrary shaders for each primitive and applied to the primitive at
P’. The colors are then weighted by value x cweight and combined to return a color
value for the object, where cweight is the color weight of the primitive. Similarly

any other desired object attribute can be obtained by computing the attribute for
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a polyhedral B-rep at P’ as the attribute for the primitive and then combining the
primitive attributes appropriately.

Point-setblobs attributes are obtained from the attributes of the contributing
skeletal points. The general polyblob case is handled similar to normal computation
by weight averaging according to the threshold value, the attribute values obtained

from corresponding points on V' and S.

Other Issues

In the above procedures the primitive combination considered is a simple blend or
summation. For other combining operators the relative contributions of the polyblobs
would change accordingly. For a union or max operator, contributions of primitives
that define the surface of the object at a point would be equally blended with the
remaining contributions being nil.

From the description of intersection, normal and color computation, it is evident
that display attributes such as texturing techniques can be applied at two levels. They
may be applied independently to each primitive to influence the normal, intersection
point or color of the primitive and then blended appropriately to a global value.
Attributes obtained after blending may then be subjected to further techniques, such
as illumination effects or texture mapping applied to the resultant surface.

Any technique applicable to polymeshes can be applied to a polyhedral implicit
primitive. For pointblobs and point-setblobs all attributes may be determined from
the outer bounding volumes. It is, however, advisable to scale P’, the point on V

corresponding to P, so that it lies on W and then apply the technique. The scaled
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polymesh better represents the actual size of the object in the locality of P and would
give more consistent results for any scale variant technique such as solid texturing
and for antialiasing procedures.

Often a faster direct display approach is desired at the cost of visual realism.
Scanline or Z-buffer rendering is such a method. The scanline rendering of implicit

surfaces is, therefore, discussed.
3.3.3 Scanline Rendering

The approach taken by us is an extension of Blinn’s work but with a marked geo-
metric flavor [8]. While the organization of the processing is similar to that used in
scanline algorithms, the system is still technically a ray caster. The ray casting, how-
ever, takes place in eye-space. In eye-space, the objects are defined relative to a left
handed coordinate system centered at the observer with the positive Z-axis aligned
with the line of sight. Object geometries are transformed to eye-space with minimal
computation. Processing in eye-space simplifies the scanline calculations. Processing
in a perspective space (image space or screen space) involves dealing with geometries
and functions distorted by the perspective transform. Computation of normals to the
implicit surface is also problematic in a perspective space.

Functions that calculate scanline ranges, spans across a scanline, and depth ranges
at a pixel for every object primitive are required. This information is used to maintain
an active object list which can be incrementally updated similar to standard scanline
algorithms and produce a span-segment from the object for each scanline. While the

scanline-planes are not parallel to the Z-axis, a z value can be computed based on
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the viewing parameters such that, at that z value, each integer x value in the span
segment corresponds to a pixel on the screen.

For each such pixel covered by the span-segment a z-span (depth range of the
primitive at the pixel) is generated and added, in sorted order by closest z value, to
a bucket for that x position in the scanline. For a given scanline, once this is done
for all objects we have, for each pixel, all of the ray segments that intersect any of
the primitives. These must then be searched for the nearest z value solution to the
implicit surface equation.

In the case of incrementally building a desired surface or during animation, the in-
termediate z-span descriptions can be retained or updated to accelerate the rendering
process for subsequent versions or frames. The z-spans contain all of the information
necessary for evaluating the object blend functions.

Adding other objects to the display processing is easily handled. The implicit
surfaces can be rendered into a Z-buffer and used to initialize its contents, or the
other objects can be rendered in a scanline fashion along with the implicit surface
primitives (the ubiquitous space-time tradeoff).

Other than functions for evaluating the implicit function and other surface at-

tributes at a point for a primitive, the following functions are required:

e calcYExtent(primitive): returns the range of scanlines covered by the primi-

tive.

e calcXExtent(primitive, scanline): returns the primitive span for a scanline.
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e calcZExtent(primitive, scanline, pixzel): returns the primitive depth for a pix-

el on the scanline.

The values returned by these functions are the finite extents over which the primitive
contributes a function value. This additional information and utilization of coherence
for effective scanline rendering can be easily extended from existing techniques for
dealing with polymeshes. For polyhedral primitives, extent in Y, extent in X for a
given scanline, and extent in Z for the pixel are simply that of its bounding polymesh
and can be computed incrementally. The same may be done for S and W. Further,
the list of polygons defining the extent in Z can be easily maintained. Now the
analytic technique that specifies the function value as a quadratic in terms of the
defining polygon over an interval can be computed with great efficiency. Interval
coherence can be used when going from one pixel to another for a powerful heuristic
for point-setblobs.

The necessary calculations for other primitives (spheres, sphylinders, rounded
polygons and cone-spheres) are exhaustively enumerated in Appendix A.

The overall structure of the renderer is:
1. Transform all primitives to eye space.
2. Y-bucket sort the primitives.

3. Maintain an active primitive list and for every scanline compute extent in X for

the active primitives.

4. For every pixel compute depth Z spans for all primitives with an active X-extent.
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5. Fragment the Z spans into intervals as desired. Solve for the intersection point
using a combination of the numerical techniques, and an incremental analytic

technique.
6. Compute the surface normal and other attributes at the intersection point.

3.3.4 Surface Reconstruction

Polygonization of general implicit surfaces is described by Bloomenthal [9][43] using
convergence and surface tracking techniques using an octree structure. Schmidt [54]
extends the convergence technique [9] to allow for a more general class of surfaces
with singularities.

A motivating factor of polyhedral primitives was to reduce the number of modeling
primitives used. In such cases there are likely to be regions where a single primitive
defines the surface. Here, for pointblobs and point-setblobs, the appropriately scaled
bounding polymesh defines a polygonal representation of the surface. This provides
not only a partial polygonization of the resultant object but also provides information
of the behavior of the surface at the point where the primitive starts interacting with
other primitives.

The polygonization algorithm adopted, therefore, first finds regions where primi-
tives do not interact. These are the regions outside the intersection bozes (see Section
3.3.2) for the primitives. The existing primitive polyhedral shape is used to represent
the surface there by clipping the primitive to the intersection boxes and retaining the

outside. The inside of the intersection bozes are then polygonized using an algorithm
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such as [9]. Finally the polyhedral surface generated inside is seamlessly connected
to the clipped and retained polyhedral fragments outside the intersection boxes.

The polygonization of pointblobs and point-setblobs is as follows:

1. Compute the intersection bozes of all interacting primitives. Compute lists of

candidate defining polygons (see Figure 23).

2. Clip the polyhedral models of each isolated primitive to the the intersection

bores. Retain the outside as part of the final polyhedral structure.

3. The clipped edges of the primitives lying on the face of an intersection box
determine the quadtree structure on that face of the intersection boxr. We set
a threshold on the number of clipped edges that lie completely within a single
quadtree square on the face. The squares are subdivided until the threshold

criterion is met.

4. The clipped edges also provide a number of seed cubes. Surface tracking al-
gorithms require a seed cube, through which the object surface passes. The
algorithm tracks a connected object surface by processing neighbor cubes of
cubes through which the surface passes until all cubes through which the sur-
face passes have been processed. The clipped edges are the intersection of the
implicit object surface and a face of the intersection box. The octree cubes cor-
responding to the quadtree squares through which the clipped edges pass are

seed cubes.
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5. The seed cubes are used by an adaptive surface tracker [9] for polygonization
confined within each intersection box. Primitives other than pointblobs and
point-setblobs can be polygonized using any desired approach as long as con-

nectivity with any adjacent intersection box is maintained [54].

An approach to exploiting the parallelism potential of polygonization is described
in [71]. This approach further caters to parallelism because of the polygonization of
various disjoint intersection bozes.

We need to ensure a seamless connection without cracks of the retained polyhedral
structure and the polygonized surface within an intersection box. For each edge
generated in a face of the intersection box due to clipping, the following action as

shown in Figure 27 is taken, the results of which are shown in Figure 28a,28b,29.

e The edge is fragmented by inserting vertices along the edge at points where it
enters and exits the edges of the clipping plane quadtree. The clipping plane
quadtree is formed by the edges of the octree cubes in the clipping plane to which
the edge to be fragmented belongs. The vertex insertion is easily accomplished

by using a DDA type line algorithm.

e The edges of retained polygons adjacent to the clipped edge are beveled to

triangles.

e The retained polygon of a clipped edge that lies entirely within a single cube

must be connected to the surface intersections of the cube. A sequence of
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clipped edges all lying within the same cube cause it to be partitioned until at

most a single clipped edge lies within a cube.
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Figure 26: Polygonized Spherical Pointblobs (Without and With Clipping)
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Figure 27: Clipping Isolated Point-setblobs

3.4 Implementation and Results

The implementation ray traces the object using a hierarchy of bounding volumes for

each component primitive. The implicit surface equation is solved using a hybrid
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approach that using heuristics, obtains the locality of a solution numerically, followed
by an analytic calculation of the intersection. The speed/accuracy tradeoff is user
controllable. A priority list of polygons of V for each primitive based on the most
recently intersected is maintained to exploit spatial coherence of defining polygons.
Further, intersection box preprocessing is done to obtain a possibly reduced set of
candidate defining polygons for point-setblobs. Voronoi space precomputation for

point-setblobs and polyblobs was not implemented.

Table 1: Ray trace timings (min:secs) and statistics

Figure | # primitives total | # candidate | combination | render time | render time
# polygons polygons | complexity | as polyhedra
18 3 447 187 | summation 5:14 5:59
30 17 2236 1218 | hierarchy 15:24 17:47
31 3 2484 503 | summation 10:40 11:31
32 2 12100 650 | summation 13:27 15:33
20 5 2096 678 | summation 11:40 12:58
33 7 2008 733 | hierarchy 21:13 24:44
42 3 1062 288 | hierarchy 4:29 5:03
69 3 751 751 | summation 10:01 12:22

The 400X400 images were ray traced with a recursive depth of 3 with shadows
and adaptive antialiasing. Timings for the images given were taken on a SUN Sparc2.

Figures 18,30, 31 show objects comprised of pointblobs blended together. Figure
32 is a 450X300 image showing 2 very complex pointblobs (foot bone and muscle
model), blended at the heel.

Figure 20 shows a point-setblob torus with four blend centers that interact differ-

ently with four identical spherical pointblobs. Figure 33 shows a point-setblob hand.
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Local control is illustrated by a softer blend at the forefinger than at the thumb. This
was accomplished by specifying different blend functions to skeletal points in the
thumb and forefinger. Interacting implicit primitives to model collision deformations
[20] is also indicated by two pointblob eyeballs. Further a conical pointblob causes a
spike in the floor which is a large polygon modeled as a pointblob.

Figure 42 shows the application of point-setblobs to character animation. The arm
is modeled as two point-setblob limbs hierarchically blended together with an analytic
spherical primitive. The point-setblob limbs are laser scanned polyhedra. The arm is
shown outstretched as well as bent, where collision deformation interaction between
the point-setblob limbs causes the formation of a precise crease, while the primitives
remain smoothly blended together due to the analytic sphere.

Figure 69 illustrates a shape transformation using shape weight interpolation be-
tween appropriately placed polyhedral primitives. The figure shows a CSG modeled
pointblob transform to a pointblob sphere which transforms to a polyblob pillar. The
transformation of various color and texture attributes is also illustrated. Details on
this useful application of polyhedral primitives can be found in Appendix B.

The results of the scanline technique are shown in Figure 34,35,36,37.

The timings given in Table 2 are from a SUN IPX. In each case the object occupies
about a 1x1x1 area in world space, centered at the origin with the observer at (5,5,5)
and an angle of view of 10 degrees. The pixel resolution is 400x400. The composition
of each image in terms of spheres, sphylinders and cone-spheres and rounded polygons

is given. This is followed by the rendering time using scanline processing (referred to
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as scan) and the rendering time using a ray caster. The ray caster is identical to the

scanline renderer without the scanline related optimizations.

Table 2: Timings (in secs) for scanline rendering

H Image ‘ Sphere ‘ Sphyl ‘ C-sphere ‘ R-polygon ‘ Scan ‘ Ray cast H

35 16 20 0 0 o8 387
34 106 0 0 0 75 428
34 13 30 0 0 66 415
31 2 20 4 0 45 304
37 4 3 2 3 28 275

The implemented polygonization algorithms seamlessly integrate the retained
polyhedral structure and the one generated by a variant of the surface tracking al-
gorithm [9]. This algorithm described in Section 3.3.4 uses clipped edges on the
faces of the intersection box to determine a fixed level of subdivision after which a
number of seed cubes are spawned to the surface tracker that operates within each
intersection box. Additionally the robust convergence based adaptive polygonization

implementation [54] has been modified to polygonize polyhedral primitives.

Table 3: Polygonization timings (secs) and statistics

Figure | # primitives | # total | # candidate | # polygons | # polygons | preprocessing, | polyc
polygons polygons retained | generated clipping time
28a 2 206 98 189 536 0.1
28b 3 2484 503 2159 1841 0.2
28¢ 3 1062 288 774 243 0.2
29 6 36 30 - 6827 -
70 1 70 6 - 4290 -
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A seamless integration of the clipped and polygonized structure can be clearly
seen in Figure 28a, where a cuboid pointblob blends with a spherical pointblob. The
beveling of edges to prevent cracks has been accentuated to be clearly visible.

Figure 28b shows the polygonization of the Mickey Mouse skull in Figure 31.
Figure 29 shows pointblob cubes polygonized using the convergence based technique
and Figure 28c shows the polygonization of the arm from Figure 42. Figure 70 shows
a single polyblob with a polyhedral cube transforming to a polyhedral torus due to
threshold value interpolation. The objects at various thresholds were polygonized
using the convergence technique and subsequently rendered. The timings in Table 3

are shown for the polyblob at a threshold of 0.5.

3.5 Discussion of results

As can be seen from the resulting images, polyhedral primitives in general behave
well and in a manner similar to their analytic counterparts. This gives the user
an intuitive notion of the results whilst modeling. Blending is best made use of in
polymesh regions that closely approximate a first degree continuous surface. Here the
behavior of the implicit surface is very predicatable. It is useful for blending sharp
corners [39][53].

Unacceptable bulges can arise from blending just as is the case with other prim-
itives. These can be avoided by applying Bloomenthal’s technique of convolution
surfaces [11]. This would involve the integration of the g function defined in Section

3.2 over every point on S for the primitive.
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Techniques that deal with variations in the blend functions such as directional
blending are still applicable. Point-setblobs further provide local control allowing
differential interaction over different regions of the primitive in a fashion that is
intuitive and easy to specify. Good local control is afforded by polyhedral primitives.
Individual blend functions may be specified as vertex attributes for the polyhedra.
The functional value at a point is then obtained by a smooth interpolation of vertex
functional attributes of its defining polygon.

The rendering efficiency obtained from the implementation is reasonable. This
is illustrated from a comparison with the time taken to render the same image in
which each primitive is considered an individual B-rep object (see Table 1). The
timings were taken on the same ray tracer with all other parameters unchanged.
As can be seen from Table 1, for 400X400 images of the quality shown, every 100
candidate polygons in the scene added roughly 15 seconds to the rendering time as
B-rep objects. Other factors like the size of regions where primitives interact with
respect to the viewport are also important.

As can be seen from Table 2, scanline processing of implicit surfaces offers a
distinct advantage over standard ray tracing. In addition, intermediate structures
can be retained if a single image was being worked on repeatedly.

The power of the introduced primitives (sphylinders, cone-spheres and rounded
polygons) can also be seen [38]. These are especially useful for modeling articulated
characters and will be extensively used for our human figure model in Chapter IV. In

Table 2 face’ generates a visually similar image to face (Figure 34), using sphylinders
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to reduce the number of primitives as well as the rendering time.

Polygonization efficiency using the discussed algorithm is good (see Table 3). The
timings shown indicate the effective use of polyhedral primitives for interactive incre-
mental object modeling. Additionally, due to retaining parts of the original polyhedral
structure, the number of facets added per primitive in regions of interaction is of the
same order as the the number of original polygons in many cases, as can be seen from
Table 3. This is important to keep the number of polygons generated during incre-
mental modeling within a reasonable limit. The maximum time is spent in actual
polygonization of intersection boxes which are likely to be small at any point of time
if the object is built incrementally.

The star-shaped restrictions on the primitives can be relaxed, as long as they are
satisfied in any region that it is interacting with another primitive. In non-interacting
regions appropriately scaled polyhedra may be used to represent the surface. This
is illustrated by the teapot lid pointblob in Figure 18 | the skull pointblob in Figure
28b,31 and the foot pointblob in Figure 32. This relaxation allows a very large class
of polyhedra to be used even as pointblobs. Primitives such as the skull in Figure
28b, 31 and the foot in Figure 32 have a large genus and possibly disjoint pieces.
They cannot be fitted by a superquadric primitive [55] and would probably require
thousands of primitives to fit the complex topology, using Muraki’s technique [41].
Further, the requirements of bounding polyhedral volumes may be relaxed to the
existence of a unique defining polygon for any point where the primitive interacts

with other primitives. Figure 33 shows a single polygon being used as a pointblob for
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the floor. In Figure 33, the pointblob can be thought of as a square pyramid centered
at the skeletal point with the floor polygon as the base. For all points of interaction
with the conical pointblob the floor polygon is the unique defining polygon.

Exploiting the parallelization potential [71] of polyhedral primitives, and further
reducing the search space for defining polygons are open to future work.

Summarizing, polyhedral implicit primitives have the following attributes:

e The primitives make modeling and animation of objects that comprise of parts
with complex detail, smoothly blended together very simple. Digitized parts of
a human body for example, could be blended together as polyhedral primitives
(see Figure 42). This has the advantage of the realistic detail of polymeshes and
the animation flexibility of implicit surfaces. Pointblobs are useful for animating

blemishes on complex objects like a bump on a head (see Figure 31).

e Any polygon based technique is directly applicable to polyhedral primitives

making them very powerful implicit modeling primitives.

e Polyhedral primitives are useful for incrementally building objects. An object
constructed from any implicit primitives can be polygonized and reused as a
single polyhedral primitive. This allows a degree of local control lacking with
other primitives. It also keeps the number of primitives below a reasonable
limit, which drastically improves display efficiency, making interactive modeling

feasible.
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e Polyhedral primitives show promise as a technique for shape transformation
between polyhedrons, where they may be employed effectively in two different

ways (see Appendix B).

e The implicit primitive definitions can be easily adapted to use higher order

surface patches in place of polygons.

e A disadvantage of polyhedral primitives is the loss of a closed functional form for
their definition. Such a form exists for every defining polygon of the bounding
polyhedron. The functional computation at a point, however, involves a search

for its defining polygon, before the functional form can be applied.

This chapter thus formulates a method by which object modeling and animation
techniques based on polyhedral B-reps and implicit functions maybe combined in a

simple and coherent manner.
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Figure 30: Blended Pointblobs: 2

Figure 31: Blended Pointblobs: 3
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Figure 33: Point-setblob, Collision Deformations
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Figure 34: Scanline 1

Figure 35: Scanline 2
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Figure 36: Scanline 3

Figure 37: Scanline 4



CHAPTER IV

Implicit Function Based Human Figure Model

Human figures are an integral aspect of many VR applications. Varying degrees of
realism are required of the human figures in different applications. Their animation
and interaction with the virtual world in real-time, however, is quintessential. For
applications like VR games or military training simulators [21], human figures are little
more than passive objects in the environment. Figures that resemble robots or cartoon
characters that possess little or no environmental interaction are often acceptable and
even desirable. In such cases, simple geometric deformation approaches based on the
skeletal posture [14][37] can be quite effective. The motion of the human figures is
almost entirely scripted for most entertainment applications. This allows the off-line
processing of motion using computationally expensive methods that provide a high
degree of realism. The real-time aspect then simply involves a context dependent
playback of precomputed postures or images from a database [21]. In an application
like virtual space teleconferencing, every human figure is an active participant. A
level of interpersonal interaction and communication that would make the illusion of
reality complete is desired. It is evident that the aforementioned methods would not

be suitable for such an application.
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While dealing with human figures for a real-time application, decisions regarding
the degree of realism need to be made with respect to modeling as well as animation.

Modeling at a level currently accepted as a realistic human figure (which is sta-
tionary for the most part) requires of the order of 10,000 polygonal facets [44]. This
number needs to be increased in regions of large surface changes, if the figure is to be
animated. Animation of very detailed object representations is both computationally
expensive and hard to control. Textures are very useful for compensating for a lack
of geometric detail. In Chapter V we describe a technique for the animation of facial
wrinkles using textures, instead of modeling them geometrically. Such approaches,
however, are limited to very fine surface detail. Other object representations like
implicit surfaces are better suited to modeling human figures. They, however, lack
the necessary hardware support for real-time display.

Given a virtual world application, we must first choose the level of detail at which

to represent the human figures. The choice is largely determined by:
e The degree of realism required.
e The type and amount of mobility desired.
e The number of human figures involved.

For some applications like training simulators the size of objects relative to the ob-

server is in constant flux. Human figure models with multiple levels of detail can be
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used in such scenarios. For an application such as virtual space teleconferencing de-
tailed human figures are used because the number of figures involved is few and a high
level of realism is imperative. This thesis is primarily targeted at such applications.

Given a human figure representation, motion control mechanisms need to be pre-
scribed. For most VR applications, behavioral and skeletal motion for the human
figures is invariably scripted beforehand or driven by a real human using VR devices.
Thus, we focus on generating the visual appearance of the human figure given a set
of skeletal and behavioral parameters. Specifically, the issues to be addressed by the

human figure model are:

1. Allowing customizable human models. We would like to generate or modify

existing human figure geometries to closely resemble specific people.

2. Ensuring smooth connectivity of the geometric human figure during animation.

This is a non-trivial problem especially around joints [36].

3. Modeling the formation of bone and muscle bulges, creases and wrinkles which

add to the visual realism of the animated figure.

4. Modeling deformable contact surfaces on collisions. This may be considered as
a global issue for the virtual world. We wish to address this issue from within
the human figure model itself to better handle self-collisions. This also lays a

solid foundation for hair and cloth modeling techniques.



111

5. Modeling the physical properties of the human figure for virtual worlds that
involve force feedback. Issues such as muscle actuation, reaction to forces, and

the deformable properties of human tissue need to be addressed.

Existing geometric approaches [14][37], while efficient, are not as realistic as physically-
based animation. In particular, they do not address requirements 4 and 5. While
manipulation of bezier surfaces [30] is well suited to requirements 2 and 3, they lack
customizability and once again do not address interaction with the environment. The
blobby model as developed by Opalach [46] caters to Disney type animation and lacks
both realism and display efficiency. Physically-based approaches, such as biomechani-
cal models [15], spring and damper methods [60] or the finite element method [37], are
capable of addressing the above requirements well. They, however, lack the efficiency
necessary for a real-time implementation within a complex virtual world.

This chapter presents a model for the animation of human figures using implicit
functions. The techniques presented in Chapter II and Chapter III allow this model
to be applied to both implicit surface and polygon based representations. The model
proposed here is not anatomically correct. Instead it attempts to capture the basic
dynamics of the human skeleton, muscles and fatty tissue and their visual impact on
the shape of the skin. The model is based on implicit function techniques and lets us
address both geometric and physical issues involved at various levels of sophistication.

The hierarchical model of the human figure, comprised of implicit primitives is
presented in Section 4.1, and techniques for handling collisions, and other physical

deformations during animation are discussed in Section 4.2.



112

4.1 Geometric Model

The human figure is essentially built up from a hierarchical model of implicit surface
primitives. Unlike [46] where simple primitives build blobby human figures, a visually
realistic appearance is required here, often of a specific human figure, such as for
avatars of participants in virtual space teleconferencing. We thus require that the
model allow some degree of customization based on data obtained from real humans®.

In our approach a number of implicit surface primitives combined in a prespec-
ified manner are used to define the skin surface. These may be obtained from real
data (typically laser scanned) as polyhedra (point-setblobs) or superquadrics [55] (see
Figure 39,55a). These primitives are fitted on a point-linked virtual skeleton (see Fig-
ure 38a). The blended skin primitives in themselves result in a realistic representation
of the scanned human in some relaxed posture.

Similarly muscles are modeled as implicit function primitives that blend with
and thus deform the implicit surface skin that envelops them. Muscle primitives are
usually simple offset surface shapes (see Figure 39). From a purely geometric point
of view, the change in shape of the muscle primitive based on the skeletal posture
influences the shape of the skin (see Figure 40). The next section describes physical
interpretations of the geometric model for muscles.

Bones often come close to the surface and actually define the shape of the skin
during animation [36]. The implicit model handles this elegantly. Primitives for the

skeletal structure are specified and blended with the geometric skin primitives. During

8Note that our model will work equally well for cartoonish characters.
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animation, the skeletal primitives contribute to the shape of the skin automatically
only when the primitive is close to the surface of the geometric skin primitive.

Veins may be modeled effectively using a technique similar to that presented by
Bloomenthal [12]. Analytic offset surfaces around free form curves may be used to
model a network of veins blended with the geometric skin primitives (see Figure 43).

Additional primitives may be used for control in special situations like animating
bumps, scars, blemishes.

Point-setblob skin primitives allow the use of a number of blend centers to localize
and control the blending in different parts of the primitive. Placed along the skeletal
structure (see Figure 38a,39), the blend centers are analogous to points of muscle
attachment to bones.

The primitives are selectively blended based on the hierarchical structure in Figure
38a,39. We use the term selective blending to indicate that primitives are combined
in a manner specified by a combination graph (see Figure 39b). Primitives that do
not blend mutually are treated as different implicit objects. All implicit objects in the
environment interact with each other for collision detection and deformation. Thus
self-collisions between different parts of the body and other environmental collisions
are handled homogeneously. Joint regions such as the elbow where both blending and
collision deformations occur, may be handled using the localized blending (see Figure
40) described in Section 3.2.3 or by introduction of an intermediate primitive that
blends the two arm primitives together (see Figure 39,43). The use of an intermediate

primitive is more general in that it is direction independent and can therefore handle
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3 DOF joints like the shoulder. On the other hand the localized approach allows finer

control over the blending.

Muscle Primitive

Bicep Blend
Center

Scanned Point-setblob
Primitives (Arm)

Bone Primitive

(Intermediate)

Elbow Primitive Joint Blend Centers

(a) ARM IMPLICIT PRIMITIVES (b) COMBINATION GRAPH (c) SKIN (IMPLICIT SURFACE)

Figure 39: Implicit Function Model for the Arm

This model is animated by individual manipulation of the primitives based on the
underlying skeletal model. The skin primitives are transformed as rigid bodies based
on the skeltal posture. Muscle primitives undergo a similar rigid body transform.
They are also scaled appropriately based on the relevant joint angles to simulate flex-
ing and relaxing of muscles. Similarly other primitives are manipulated as functions
of the skeletal posture. An overview of the model is shown in Figure 38b. Other
implicit objects in the environment are treated similarly as described in [57]. The im-
plicit functions automatically maintain a smoothly blended body as well as collision

deformations.
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Figure 40: Animated Arm with Localized blending

4.2 Physical Model

The above model is sufficient for a purely kinematic implementation. So far all im-
plicit primitive deformations are empirical functions of the animated skeletal posture.
Further, the issue of interaction of the human figure with system forces is yet to be
addressed. We now describe physical interpretations of the above model, which allow
the human figure to be part of a dynamics driven environment. Issues that need to be
addressed are the deformable nature of the tissue, modeling of forces generated by the
figure due to muscle actuations and reactions (both with the self and with external
objects/forces) The results should be manifested in terms of collision contact, creases

and bulges.
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e The general deformable model techniques proposed by Terzopoulos and Fleis-
cher [59] may be applied directly in the context of point-setblobs by working on

the primitives as polyhedra and then converting to the implicit function model.

e The blend function gradient is used to model radial spring stiffness by Gascuel
[20]. Objects are considered as rigid with a superimposed deformable layer.
Such a model is well suited to articulated figures that are supported by more

or less rigid skeletal components [57].

e Variations in tissue characteristics [60] are modeled by piecewise smooth poly-
nomial blend functions whose gradient reflects the change in stiffness. Localized
variations of tissue stress/strain characteristics are easily handled by using dif-
ferent blend functions for different vertices of the skin point-setblob primitives

(see Figure 21,22).

e Muscle actuations may be modeled by changes in the shape of the blend func-
tion instead of a scaling of the primitive. The change in shape of the blend
function causes the distance-ratio value at which the fixed threshold value is
attained, to change. This causes a displacement of the implicit surface. This
displacement also causes an internal force. The force is obtained as the product
of the displacement and the gradient of the blend function for a point on the
implicit surface. The force computed in this fashion can then manifest itself on

the skeletal posture (see Figure 40).
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e The point-setblobs, in addition to joint blending centers, also have skeletal
points that serve as points of attachment of muscles where forces resulting from

muscle actuation can be applied. (see Figure 39).

e Wrinkles are handled well by local functional control. They may be generated
by changing the blend function shape of the polyhedral vertices of the skin

primitives along crease lines (see Figure 41).

Various levels of sophistication loosely based on the physical and anatomical charac-
teristics of real humans are described above. More importantly, however, they capture

the visual manifestations of human figure animation.

Function shape change

at vertices 1,2,3 causing
implicit surface to wrinkle
inwards

Threshold

; Surface of primitive
Blend Function at given thresold, W

Figure 41: Wrinkles using local function control

The computational loop is like that described by Gascuel [20] and Singh [57]. The
given forces and torques in the system are applied to the implicit function primitives

and other objects of the system. Based on these forces, rigid body transformations,
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such as updation of the skeletal posture, are carried out. The implicit function based
deformable model is then applied. The implicit functions in the environment are
updated and the implicit surfaces representing the human figure and other objects
are displayed. New forces and torques in the system are then generated from the new
function values (like muscle actuation) as well as forces such as reaction and friction
calculated from collision contact surfaces.

To summarize then, the physical characteristics of objects are separated into two
components (see Figure 38b). The first involves the animation of the figure as an
articulated rigid body based on the skeletal posture. The implicit function primitives
are individually manipulated using simple affine transformations. Further, techniques
such as FFDs [14] or JLDs [37] that can deform individual polyhedral primitives are
applied at this stage. This stage thus includes all transformations that are not implicit
function based. The implicit functions primitives then interact with one another and
with other implicit functions in the environment, spawning ghost functions to model

blends and collision deformations and other physically based deformations.
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Figure 42: Animated Arm animated with Selective Blending:1

Figure 43: Animated Arm with Selective Blending:2



CHAPTER V

Texture Based Wrinkle Model for Skin and
Clothing

Wrinkles and creases on skin and clothing go a long way in enhancing the realism
of animated human figure models in virtual environments. Physical modeling and
animation techniques for the wrinkling process, though effective, are too complex
to achieve the real-time requirements of most VR applications. In this chapter we
address the detection, formation and propagation of wrinkles for computer generated
human figures in virtual environments.

Our wrinkle model allows the synthesis of wrinkled textures for skin and tight fit-
ting clothing in a semiautomatic and interactive fashion. The wrinkles in a region are
controlled by parameters extracted from the real human such as the skeletal posture
or facial cues. Wrinkle formation is carried out by a combination of texture morph-
ing and displacement of the underlying wireframe. Textures representing wrinkled
and unwrinkled extremes are registered on the geometric wireframe and pixel level
blending is employed on the textured polygons. The texture vertices of polygons
on the two textures need not be spatially identical, justifying the use of the term
texture morphing instead of simple texture blending. This model contributes simple

techniques for synthesizing and animating skin and cloth textures for virtual humans.

121



122

We first propose a general model for the synthesis of wrinkles on textures. The

animation of these wrinkles is accomplished in real-time by a combination of texture

morphing and geometric wireframe displacement. Specific assumptions are made to

tailor this model separately for wrinkles on the face, skin and tight fitting apparel.

WRINKLE SYNTHESIS
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WRINKLE ANIMATION l,

Human Figure Model,  \yrinkle control
Registered Textures Parameters
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Displacment Map /

Texture Morphing and
Wireframe Displacement
for animated wrinkles

Figure 44: Wrinkle Synthesis and Animation Overview

Color textures for skin and garments are obtained in pieces and registered on the

geometric wireframe. Wrinkled cloth textures may be similarly obtained and reg-

istered. This process of correlating separately obtained cloth textures representing

extremes of deformation of the cloth or skin is a cumbersome task. Further the user

would like more control over deformation parameters of wrinkles and creases. For

this purpose we present a wrinkle model that captures its essential characteristics.

Wrinkles described by the user in this fashion can be interactively used to generate

a displacement map that synthesizes wrinkles on unwrinkled textures with intuitive
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control over its characteristics. This makes the registering of textures with desired
deformed shapes simple and efficient. Once the wireframe model and the textures
have been obtained and correspondence established, an empirical correlation is in-
teractively obtained between the human figure parameters and the resultant texture.
The resultant texture is a morph between the synthesized wrinkled and unwrinkled
textures. Further the displacement map that is responsible for wrinkled texture syn-
thesis is used to displace the vertices of the wireframe model to enhance the realism
of wrinkles. An overview of this system is shown in Figure 44.

Section 1 emphasizes the aspects of the human figure model our wrinkle model is
built on. Section 2 presents a model for the synthesis of wrinkles on textures. Special
assumptions are then made to tailor the model for facial and cloth wrinkles. Section
3 describes the interactive correlation of the morph between textures and skeletal

animation in the case of clothing and facial parameters in the case of facial lines.

5.1 Synthesis of the Human Figure Wireframe Model

As described in Chapter IV, wireframe parts corresponding to various limbs are ob-
tained, as may be conveniently sought using a Cyberware scanner [44]. These parts
are then fitted together using implicit function techniques. Results of this approach
are shown on a polygonized elbow (see Figure 55a). Laser scanned faces yield a
wireframe structure that is adapted to the somatic characteristics of faces. Regions

of high resolution correspond to parts that move a lot during facial animation (see

Figure 55b).
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Textures for skin and clothing are also obtained and registered by the Cyberware
scanner (see Figure 50). Texture for the polygonized region may be obtained by
blending between two textures as shown in Figure 55a. This provides a wireframe
prototype representing the human in some prespecified skeletal posture.

Obtaining wrinkled clothing textures resulting from bent limbs using a Cyberware
scanner is a difficult task. This is due to the deviation from a generally cylindrical
shape and occlusion due to the folds of the garment. Artificially constructing realistic
wrinkles on the cloth to be digitized is both time consuming and difficult to control.
The wrinkles are unstable and thus have to be pinned or sewn together. Further, there
is a lack of local control making small changes in the wrinkled appearance difficult.
Another technique for photographing wrinkled textures is to place the wrinkled cloth
on a flat surface and photograph it using a camera mounted overhead. This approach
still suffers from the above problems, but to a lesser extent. Further, clothing like
sleeves may have to be taken apart at the seams in order to lay it out flat and the
approach is not efficient, if one wishes to construct a number of clothes from different
textures.

Synthesizing wrinkles on textures using a computer dispenses with the large prob-
lem of correspondence between textures that are independently obtained. The print,
seams, buttons, zippers and such make the problem of correspondence both essential
and cumbersome for clothing. Equally important is the positioning of the eyes, nose,
mouth, distinguishing marks and other such features on a facial texture on which

facial wrinkles are desired.
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The next section, therefore, addresses the problem of user controllable wrinkle

synthesis on unwrinkled cloth textures.

5.2 Synthesis of Wrinkles

Kunii addresses wrinkle formation on garments [31]. The advantages of using proper-
ties of wrinkle formation when animating complex garments, as opposed to a general
cloth animation approach are stressed. Singularity theory is used to analyze the
shape of garment wrinkles. Modeling primitives comprise characteristic branching
and vanishing points with associated contours. We use similar characteristic primi-
tive shapes. Wrinkle formation in Kunii’s approach is carried out by solving an energy
minimization problem while preserving metric invariance. Environmental effects can
be incorporated into the solution of this problem. In our approach a static wrinkle
specification is used to synthesize a wrinkled texture. Animation is achieved by mor-
phing between the original and the wrinkled texture. The wrinkle specification is also

used to displace the geometric wireframe skin during animation.
5.2.1 Wrinkle Specification

We first specify a wrinkle or crease in clothing by defining a characteristic shape of the
wrinkle. The shape is represented as a parametric 2D curve specified by a number
of control points as in Figure 45. Each control point also has values that specify
attributes of the wrinkle, such as intensity, in the proximity of that control point.
Attribute values and the size of the wrinkle are normalized to represent a characteristic

shape (see Figure 45). A taxonomy of characteristic wrinkle shapes is built. A
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characteristic shape may be created interactively using a graphic editor. Alternatively,
we can isolate the skeletal shape of a photographed wrinkle by edge detection and
assign intensity weights based on wrinkle gradient values (see Figure 49). The shape

is normalized automatically.

S DR 7

Control Points with
intensity attribute

Figure 45: Characteristic Wrinkle Shapes

A synthesized wrinkle is then an instance of a characteristic shape with the fol-

lowing parameters:

e Wrinkledness: Determines the pseudo-random deviation from the characteristic

shape.

e Thickness: Defines the extent of deformation of the texture around the charac-

teristic wrinkle shape.
e Intensity: Defines the depth of the furrows and ridges of the wrinkle shape.

e Spatial Transform: Transforms the normalized characteristic shape to a com-

mon space where the wrinkled texture is synthesized.
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A number of wrinkle instances, specified interactively, are then used to generate
a displacement map. Implicit surface techniques are used in the generation of the

displacement map.
5.2.2 Wrinkled Texture Synthesis

For the purpose of displacement map synthesis we construct an offset surface density
map around each wrinkle with the transformed characteristic shape as the skeleton

S. The offset primitive corresponding to the wrinkle is constructed as follows:

1. The normalized characteristic shape is first deformed based on the wrinkledness
factor. This is done by suitably jittering the control points of the articulated
skeletal shape. This skeletal shape S is then spatially transformed to a common

space where the displacement map is synthesized.
2. The thickness parameter controls the radius r of the offset surface.

3. The intensity parameter scales the intensity (implicit function) values appro-

priately.

A 2D displacement map is then calculated by evaluating the summed displacement
contributions due to the wrinkles at each pixel of the map. For any pixel P of the

map, the displacement contribution of a wrinkle is computed as follows:
1. The point () on S with the shortest euclidean distance to P is computed.

2. The wrinkle contributes to the displacement at P only if it is within radius R

of the wrinkle, [P — Q| < r.
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Figure 46: Implicit Function Primitive

3. The intensity attribute value of the characteristic shape at () is obtained as an
interpolation of the attribute values of the two closest control points between

which it lies. Let this value be ig.

4. The displacement contribution of the wrinkle is then intensityxig*f(|P—Q|/r),
where intensity is the user controlled parameter of the wrinkle instance and f

a density function as in Figure 46.

This primitive shape formulation is well suited to facial wrinkles. Cloth wrinkles
often form in a series of ridges and valleys connected together [31]. The offset primitive
above models the beginning of a ridge well. Valleys may be modeled by wrinkle
instances with negative intensities.

Alternatively, the semicircular cap at the end of a wrinkle shape can be replaced
by the curve shapes as in Figure 48. The intensity computation procedure for a point

where the closest point to the skeleton is an end point can be performed as follows:



129

Intensity Hap
using 4 wrinkle
primitives

Synthesized Texture

Figure 47: Displacement (Intensity) Map Synthesis

1. Compute the intercepts of the point on the two corresponding curves modeled

as explicit cubic polynomials (see Figure 48).

2. The displacement contribution is then intensity *ig * f(d;) * f(d,), where d,
and d, are corresponding distance ratios of the point from the axes to the curve

intercepts.

First order continuity at the axes where the computation procedure differs is ensured
by the properties of the function f. This provides more intuitive control over the
shape of a valley.

The unwrinkled texture is then mapped onto a flat surface. The displacement
map is used to displace the surface appropriately. The displaced (wrinkled) surface

subsequently rendered provides a wrinkled texture. The lighting conditions are kept



130

Intensity contribution at
P= Intensity*iC*f(dx)*f(dy)

Q _c_ [ _
R / T dy=yly’

dx=x/x'

Figure 48: Augmented Implicit Primitive

close to those expected in the virtual world application. The user has precise and
intuitive control over the shape, size, number and extent of wrinkles (see Figure 47,49).

Wrinkled cloth textures often exhibit occlusion as a result of large and deep wrin-
kles. A high intensity displacement map can cause enough motion of the texture to
lose precise correspondence with the unwrinkled texture. Thus, there is a tradeoff
between perfectly matched textures and the extent to which the wireframe can be
displaced. The surface detail of facial wrinkles is much finer. In this case the gra-
dient of the displacement map may be used as a bump map to perturb the surface
normals across the polygons of the mesh [7]. The textures in this case remain in
perfect correspondence as the geometric surface of the mesh remains the same (see

Figure 50).

5.3 Animation of Wrinkles

Animation of wrinkles is a two step process. The first step deals with control of the
wrinkling process, which generates wrinkle specifications that lead to the display of

the wrinkled figures in the second step.
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Figure 49: Wrinkled Cloth Texture Synthesis and Animation

Figure 50: Wrinkled Facial Texture Synthesis
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5.3.1 Wrinkle Detection

In virtual environments, control may be computer generated or based on the motion
of a real human as in the case of virtual space teleconferencing. We assume the
formation and disappearance of wrinkles is based solely on motion local to the region
being wrinkled. Thus motion cues for different textures are specific to the region of
the human figure to which they are applied.

Joint angle values of the skeletal posture are used to control the wrinkling of
clothing. Posture computation in a virtual space teleconferencing system is in itself a
nontrivial task [44]. The wrinkle model assumes correct posture computation of the
underlying skeletal structure to some reasonable level of accuracy.

Facial wrinkles may be parametrically controlled for computer generated figures.
Tracking a real human face is a much harder problem. In VISTEL all facial parameters
are derived from simple real-time image processing of the real human face. Wrinkles
on the forehead for instance are controlled well by the relative positions of the two
eyebrows and the hairline. Wrinkles around the eyes are controlled by the opening

and closing of eyelids.
5.3.2 Wrinkle Generation

Animation of the wireframe model based on motion of the underlying skeletal struc-
ture is carried out using a hybrid model [58]. The wireframe skin is deformed using
an implicit function model. Additionally Free Form Deformations animate the torso,

joint local deformation operators are used for the hands [58] and marker tracking is
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used for facial animation [44].

The quarternion based rotation angle across joints is used to control a color tex-
ture morph between two extremes of cloth textures. This is coupled with additional
displacements to the geometric wireframe around the joints and regions where cloth
animation occurs based on the corresponding displacement map. The vertices of the
wireframe in these regions are displaced along their vertex normal. The extent of
displacement is controlled by both the displacement map and the joint angle used
to control the texture morph (see Figure 49). Correspondences between angle value,
wireframe displacements and morph are interactively manipulated to realize satisfac-
tory realism during animation.

Rationale for employing both a texture morph and wireframe displacement is the

following:

e Clothes being only finitely elastic, shift in position on the body on wrinkle
formation. This is hard to capture by a simple displacement of the geometric
position of the wireframe. This may, however, be accomplished by varying the
texture vertices during animation of the body. This can be seen in Figure 49b,

where the sleeve is pulled up on the bent arm.

e The clothes are not explicitly modeled geometrically. The displacements from
the displacement map, therefore, need to be attenuated so as to maintain con-
tinuity with the skin and to prevent wireframe consistency problems due to
self-collisions. Thus one needs to couple the displacements with a morphed

wrinkled texture so as to accentuate the appearance of the wrinkles.
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e Synthesizing wrinkled textures may be done in a more realistic fashion as it is
a precomputation step. It is also independent of the resolution of the human

figure wireframe, as opposed to displacement of the wireframe itself.

e The displacements to the actual wireframe are carried out so as to prevent

wrinkle silhouettes from looking unnatural (see Figure 49).

The facial wrinkles are similarly animated as texture morphs between two extreme
textures. These wrinkles are fine surface detail with respect to the geometry of the
face. The morph, therefore, need not be accompanied by surface displacement (as

shown by the realistic profile in Figure 51). In this way we can limit the resolution

of the facial wireframe.

Figure 51: Facial Animation and Profile

This chapter has thus provided techniques for the synthesis and propagation of
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wrinkles on skin and clothing. The approach enhances the visual realism of the human

figure in virtual environments at a minimal computational overhead.



CHAPTER VI

Virtual Space Teleconferencing System:
Implementation

This chapter describes the application of the techniques developed in the previous
chapters to the synthesis and animation of human figures in a virtual space telecon-
ferencing system.

In recent years, communication between humans at distant locations has increased
in importance due to the trend toward more collaboration and the increasing time,
energy, and expense necessary for transportation. The concept of Virtual Space
Teleconferencing (VISTEL) aims at an environment where teleconference participants
at different sites can feel as if they are all at one site, allowing them to hold meetings
and work cooperatively. In Virtual Space Teleconferencing, models of the participants
at each site are created in a computer generated 3D image of a virtual world. The
participants’ movements are reproduced by deforming the human models according
to the detected movements of the actual participants. The virtual world is rendered
on a 3D display at each site so that the participants experience the feeling of meeting
each other within a common space. The principal advantages of this concept over

current video conferencing systems are improved interpersonal communication and
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the capability of co-operative manipulation of the virtual world. Further, the volume
of information transmitted between sites is small, which has a significant impact on
the time lag due to data transmission.

To achieve natural, smooth communication among the participants, it is necessary
to realistically reproduce their movements in real-time. In Virtual Space Teleconfer-

encing, real-time reproduction of human motion is carried out in three steps:

1. detecting human motion at the originating site,

2. sending data regarding the detected motion through transmission channels to

all of the other sites, and

3. animating the human models using the transmitted data at each receiving site.

Section 6.1 provides an overview of the VISTEL setup. Section 6.2 deals with
the detection of the skeletal motion of the real humans using magnetic sensors and
data gloves. Section 6.3 describes the tracking of facial expressions using cameras and
markers. Section 6.3 provides details on the implementation of the implicit function
based human figure model described in Chapter IV. Section 6.4 discusses animation
of facial and cloth wrinkles based on the model presented in Chapter V. Section 6.5
applies the concepts developed in Chapter II for realistic grasping of virtual objects

by human figures.

6.1 System Overview

An experimental system for Virtual Space Teleconferencing for three participants has

been constructed at ATR Communication Systems Research Laboratories. Figure 52
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shows a two person teleconference scene, where persons A and B are at Sites A
and B, respectively. At Site A, for example, the 3D image of person B is placed
in an artificially created virtual space (cooperative work space). The virtual space,
including the image of person B, is rendered on the 3D display at Site A so that
person A can work cooperatively with person B. The system is currently configured

for 3 people.

Figure 52: Virtual Space Teleconferencing

SGI (Onyx, Reality Engine) machines perform graphics processing and display
at each site. the reality engines have hardware support for color texture mapping
and pixel level a-blending. The 3D human image in a synthesized virtual space is
rendered on a V-shaped 70x2-inch stereoscopic display. The participants wear LCD

shutter glasses for stereo viewing.
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The facial expressions of a participant are detected by a workstation (Iris 4D340/VGX)

at that site. Images are acquired by a color video camera attached to a helmet worn
by the participant. These images are thresholded by a chroma keyer to detect green
tape marks. Images from another video camera trained on the eye are thresholded
by a level keyer for gaze and blink detection. The tracking process based on the
processed images is then carried out by the workstation. Posture computation em-
ploys 4 Fastrak magnetic sensors (head, chest and wrists) and cyber gloves on each
participant.

Motion and other facial information acquired at each site is sent to the others
through the EtherNet. The skeletal parameters and virtual world information are
used to animate the computer generated human figures using the implicit function
deformable model. The skeletal and facial parameters also drive the wrinkle model
that determine the mapping of color textures on the wireframe geometry of each
human figure. An overview of this can be seen in Figure 53.

Microphones and speakers are present at the sites so that participants can com-
municate by voice. To synchronize the voices with the images, delay equipment is
used on the acoustic line between the two sites with the time delay being set at 0.2
in the current implementation.

To illustrate the power of collaborative work, participants can grasp and manipu-
late computer generated objects in the virtual world. A speech recognition program
allows participants to position and deform these objects based on a vocabulary of

object transformation commands in Japanese.
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The virtual world is currently refreshed at 8 frames per second. The implicit
function based human figure model running as an application at an isolated site, runs

in real time.

6.2 Skeletal Posture Computation

The skeleton of human figures in VISTEL is approximated as an articulated rigid
body. The skeleton as such has no explicit geometry. Bones that are important in
their contribution to the visual appearance of the skin surface (see Section 4.1), are
modeled using implicit functions. The elbow and knee cap, for example, are modeled
as analytic spheres. An exception to the articulated rigid body approximation is
made at the shoulder, where the collar bone is capable of expanding and contracting.
This is the solution proposed by the Thalmanns [36] to account for the shift in the
center of the shoulder joint for different angles of the arm at the joint.

We use a number of assumptions and heuristics to greatly reduce the number of
degrees of freedom (DOFs) possessed by our skeletal model. Typical teleconference
scenarios deal with the participants sitting around a conference table. We thus assume
that only a sitting/standing motion needs to be reconstructed below the waist. We
further assume that the feet remain fixed to the floor. The skeletal model adopted is
shown in Figure 54.

The spine is modeled using a number of segments (currently 8). Experimental
measurements and heuristics are used to distribute motion over the spinal segments.

This allows us to model the entire spine using 6 DOFs at the top of the spine with
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Figure 54: Skeletal Model of the Human Figure

respect to the base of the spine at the waist. The type of motion (sitting/standing)
below the waist is simple and the same for both legs. The rotation of the hip joint is
incorporated into the base of the spine. We also assume that the orientation base of
the hip remains constant with respect to the virtual world. Motion below the waist
is thus reduced to 2 DOFs, one each at the knee and ankle. Each arm is modeled
with 7 DOFs. The shoulder is a 3 DOF joint, the elbow a 1 DOF joint and the wrist
is modeled with 3 DOFs. The neck has 3 DOF's with respect to the top of the spine,
which ends at the base of the neck. The position of the shoulder joint relative to
the base of the neck is determined by the collar bone. This bone varies in length
based on the orientation of the shoulder with respect to the torso. An experimental

correlation between the orientation of the shoulder and the length of the bone is
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made for realistic results [36]. Each hand is modeled as an articulated rigid body
with every finger possessing 3 digits with 1 DOF each attached to a rigid palm. The
human figure, excluding the hands, is thus skeletally modeled using 25 DOFs.

Image processing could be useful for motion detection in this system due to its
passive nature. It is, unfortunately, difficult to achieve real-time detection of human
body motion using existing computers and current image processing algorithms. In
addition, most image processing methods are not sufficiently robust for teleconfer-
encing applications. Therefore, alternatives using sensors and Cyber-gloves are used
in the current implementation.

Four Fastrak sensors are attached to top of the head, top of the torso and to the
two wrists. Each sensor returns 6 DOF position and orientation information at a rate
of 60Hz.

The positioning of the trackers in this manner makes posture tracking from head
to toe a simple inverse kinematic task using the 12 DOF's obtained from the sensors
on the torso and head. Each arm has one DOF more than the 6 DOFs obtained
from the wrist sensor. An energy minimization approach is adopted to solve this
underconstrained system [42]. A more robust solution that involves tracking the
skeletal posture rather than recomputing it is being studied. This would make use of
the high rate at which the sensors return position and orientation information. The
hand gesture is computed directly from values returned by the cyber gloves worn by

the participant.
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6.3 Facial Expression Tracking

For real-time detection of facial expressions, thirteen tape marks are pasted to a
participant’s face. The positions of the tape marks correspond to the facial muscles
that strongly affect changes in facial expressions. The marks are then tracked in
the images acquired by a video camera positioned in front of the face. To facilitate
tracking, the color green, which is very different from faces’ natural color, is used
for the marks. Green pixels are extracted from the face images by a chroma keyer.
The position of a mark is obtained from the centroid of the candidate pixels for the
marks. In the current implementation, the participant wears a helmet with mounted
cameras to enable stable tracking.

Another video camera is attached to the helmet in order to detect gaze directions
and blinks of the eye. In the current implementation, only one eye is observed. The
images are processed in a manner similar to the tape marks. The gaze and blinks of
the unobserved eye are assumed to be symmetric.

The results of the tracked markers are used to move the nodes of the wire-frame
model of the face. The wire-frame deformation is based on motion rules which are
defined in advance. These rules are based on the actions of facial muscles described
in the Facial Action Coding System [16].

The results of detecting gaze and blinks of the eye determine the orientation of
the eyeballs and the movement of the eyelids, respectively. Facial wrinkles on the
forehead are animated using the technique based on texture morphing in Chapter V.

Figure 51a,b show wrinkles of increasing intensity on the forehead in correspondence
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with the eyebrows being raised.

6.4 Polymesh Human Figures and the Implicit function Based
Model

Synthesis of polymesh models of real humans is a nontrivial problem. Various re-
construction methods, using sculpted models, range data, photographic images have
been proposed [47]. In our approach a number of polymesh parts corresponding to
various limbs are obtained using a Cyberware Color 3D digitizer [44]. These parts
are then fitted together, which may be done by lofting between the end contours
of segments. We choose, however, to blend the parts using the polyhedral implicit
function primitive definitions of Chapter III. This better preserves the overall length
and shape of the limbs. Further, control over the region of the blend can help auto-
matically attenuate glitches and noise in the scanned data that often results at the
fringes.

Results are shown on a polygonized elbow in Figure 55a. The upper and lower
digitized limbs are treated as point-setblob primitives and blended together at the
elbow. A user controllable region is then defined within which the blended point-
setblobs are repolygonized using the algorithm developed in Section 3.3.4. The color
texture (skin and clothing) for the polygonized region is an appropriate blend of
the textures for the two limbs as shown in Figure 55a. This provides a polymesh
prototype representing the human in some prespecified skeletal posture. Complexity
of the human figures (see Figure 12a) is approximately 10000 vertices.

The implementation of the implicit function based human figure model described
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Figure 55: Human Figure Wireframe Synthesis

in Chapter IV, treating the limbs as point-setblobs, would require regions of primitive
interaction to be re-polygonized every frame. For models of the complexity above, the
computational efficiency currently falls short of the real-time requirements. Chapter
IT, however, provides us with a technique by which implicit function based models
can be applied to polymesh objects. The human figures are, therefore, embedded in
23 simple implicit primitive shapes such as spheres and sphylinders (see Figure 12a).
The implicit model is constructed hierarchically, in an object oriented fashion, mak-
ing the fitting of other polymesh objects as well as the introduction of new implicit
primitive shapes, a simple task. Additional analytically defined implicit primitives
model bones and muscles as described in Chapter IV. These implicit primitives de-
form the underlying polymesh model in real-time by causing the polymesh vertices

to track an implicit surface defined by the implicit function primitives. The model
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is computationally efficient and performs collision detection and all physical defor-
mations with a worst case time complexity that is linear in the number of polymesh
vertices of the environment (see Section 2.4.2).

Figure 3 shows the elbow region after rigid component transformation and its sub-
sequent deformable component transformation. Spherical primitives modeling skele-
tal elbows cause the elbow to protrude in the bent arm and precise crease formation
may be seen. The deformable component computation using a Regula Falsi-Newton

Raphson approach typically takes 2-3 iterations per vertex.
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—afl— & Deformation

4
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Figure 56: Human Figure Animation

Existing polymesh based muscle and skin modeling techniques may easily be in-
tegrated with the rigid component in our implementation. As an example, FFDs [14]

on the spine animate the torso (see Figure 12b,56).
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6.5 Cloth Animation

The overview of the system for cloth and facial animation effects is shown in Figure 44.
Unwrinkled textures are photographed as in Figure 8a or laser scanned as in Figure 50.
Wrinkled cloth textures may be either photographed or synthesized on the unwrinkled
cloth textures (See Figure 49a). Wrinkled texture synthesis requires the synthesis of a
displacement map (See Figure 47). Wrinkle primitives for the construction of this map
can be either interactively drawn as in Figure 47, or obtained by image processing a
wrinkled photograph as in Figure 49a. The unwrinkled and wrinkled textures are then
automatically mapped and interactively manipulated on the wireframe model as in
Figure 57. Figure 57 also shows the mapping of a wrinkled shirt texture (synthesized
on an unwrinkled cyberscanned texture) on the torso wireframe of a human figure.

The results of the mapping during animation of the wireframe may also be viewed
simultaneously, making texture registration a simple process. Texture and displace-
ment interpolation can also be interactively controlled here. Texture morphing is
carried out by using the pixel blending hardware supported by the SGI (Reality En-
gine) machines. Figure 49b shows wrinkle formation on a bending arm. Note the
upward motion of the sleeve as the arm bends exposing the wrist and the wrinkled
appearance on the silhouette resulting from wireframe displacement.

The order in which the wireframe deformations on the human figure due to the
implicit function based model and due to the wrinkle model are applied is important.
The wrinkle model deformations are independent of the human figures interaction

with the virtual world. It must, therefore, be applied to the figure before the implicit
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function based deformation model, which addresses the interaction of the figure with
the environment. Applying the wrinkle model before the implicit function based
model, however, introduces a new problem. The displaced wireframe vertices due
to the wrinkles are at different spatial positions from the ones at which they were
calibrated (see Section 2.3.1). Thus the implicit function based model will tend to
flatten out the wrinkles by driving the displaced vertices to the positions at which
they were calibrated. This can be solved be recalibrating the wireframe after the
wrinkle model has been applied.

A computationally cheaper solution is based on the following observation. The
problem of wrinkles flattening out is only present in regions where the human figure
does not interact with the environment. In other regions, such as where an arm
collides with another object, the wrinkles on the sleeve should be deformed anyway,
as dictated by the implicit functions. Only wrinkled regions where environmental
interaction is absent need to be left untouched. In the implementation in Section 2.5,
vertices of the wireframe whose defining implicit primitives do not interact with other
implicit function primitives are not deformed. This is perfectly in accordance with
the deformable model. We simply do the same for the vertices after they are displaced
by the wrinkle model. Note that now some vertices that are displaced by the wrinkle
model will not lie on the implicit surface at threshold 7" for the human figure. We
do, however, get all the visual and environmentally related properties of the human

figure that we desire. This is the solution adopted in the current implementation.
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6.6 Object Grasping: Constraint Satisfaction

The virtual space teleconferencing system allows participants to grasp and manipu-
late objects in the virtual world. The distance computations between the implicit
primitives embedding the objects and the participant’s hand are used to determine
proximity to the object. Proximity and the degree of bend in the fingers of the hand
determine whether an object has been grasped. To make the grasp realistic the virtual
hand’s position and orientation is adjusted with respect to the object being grasped.
This is done by aligning the hand parallel to an axis at a precomputed distance for a
given object. A number of axes are constructed as potential directions along which
an object can be grasped. For a given axis an average distance of the palm from the
axis is calculated based on the size of the object. As an example a typical axis for an
object like a glass is the cylindrical axis and the radius of the glass is the precomputed
distance. The hand is aligned with the axis which requires the minimum change is
position and orientation of the hand.

The constraint satisfaction and collision model of Chapter II between the hand
and the object then cause the hand to deform so that it precisely grasps the object
without penetrating it. In this scenario a constraint contact surface between the hand
and object is desired. This implementation, therefore, does not use the sphylinders

that limit the deformations along an axis.



CHAPTER VII

Conclusion

To summarize, this thesis develops an implicit function based human figure model.
The model addresses issues involved in the modeling and animation of human figures
in VR applications. Methods that allow an integrated application of implicit function
and B-rep based techniques are presented. These solutions are applied to the realistic

real-time animation of human figures in a virtual space teleconferencing system.

7.1 Contributions

7.1.1 Implicit Function based Virtual World Model

Firstly, we provided a generalized framework for modeling and animating deformable
objects and external forces in a virtual world using implicit functions. Implicit func-
tions are an elegant an efficient way to model interaction between objects and forces
in an environment. Ghost functions allow the modeling of complex dynamic behavior
efficiently and intuitively. The model can also be treated kinematically, the dynamics
simulated by simple user defined parameters. A method for constraint satisfaction
built on previous work in collision detection and deformation was fitted into the gen-

eral framework. The constraint satisfaction is novel and has many advantages over

152



153

existing approaches. It is an integrated collision and constraint satisfaction model for
deformable objects. Like the implicit function deformable model it is analytic and
the deformations are theoretically precise. The deformations are also local allowing
arbitrary constraint graphs between objects and even multiple constraints between
the same pair of objects. The implicit function model for deformable objects thus pro-
vides us with a new framework catered to the modeling and interaction of objects and
forces in complex virtual worlds. Collisions and constraints, which are quintessential

to many virtual world applications are handled exceptionally well within this model.
7.1.2 Merging B-rep and Implicit Function Technology

On studying possible representations for computer generated human figures, we found
that B-rep and implicit surface representations have advantages that are complemen-
tary. We thus developed techniques that allow complete flexibility in using B-rep or
implicit surface representations for objects. This was done in two ways.

The first allows implicit functions to approximate an object modeled as a B-rep.
Changes to the implicit functions manifest themselves by deforming the boundary
representation of the object. In this approach the object surface has an explicit
boundary representation at all times. Such an object can be efficiently displayed.
Implicit function techniques can be applied to the object by modifying the implicit
function approximating the object surface. A shortcoming of this apporach is that
the quality of the results are dependent on the accuracy with which the implicit
function approximates the B-rep object. Further, transmitting topology changes of

the implicit function to the B-rep object surface is non-trivial.
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The second technique provides an analytic implicit function definition for an ob-
ject modeled as a B-rep. As an example implicit function primitive definitions are
specified for polyhedral objects. We provide ways by which local control over parts of
the primitive is easy to specify. Tesselation of implicit surfaces makes it possible to
go back and forth between implicit surface and B-rep representations for an object.
This is an excellent technique for incrementally sculpting objects. As the object sur-
face representation in this technique is no longer explicit it suffers from the display
inefficiences of general implicit surfaces. Efficient display techniques for implicit sur-
faces are therefore, presented, especially those constructed with polyhedral implicit
primitives.

The user can use either of the above two approaches to employ both B-rep and im-
plicit function techniques. The choice depends on the degree of precision of modeling

and animation, and the rendering efficiency desired.
7.1.3 Human Figure Model

We present a new human figure model, where implicit functions model bones, muscle
and skin. The model fits into our implicit function based framework for the virtual

world. The model is visually realistic and has physical and anatomical interpretations.

7.1.4 Wrinkle Synthesis and Animation

We also describe a technique for the synthesis of wrinkled textures. Wrinkles on skin
and clothing are animated by texture morphing and wireframe displacement of the

human figure in real-time.
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7.1.5 Virtual Space Teleconferencing

Finally, the techniques developed above were integrated and illustrated by a real-
time implementation of human figures in a virtual space teleconferencing system.
Virtual space teleconferencing in itself is a novel concept. Its primary advantages
over traditional video teleconferencing are enhanced interaction between participants,
the capability to collaboratively manipulate the virtual environment and the greatly

reduced bandwidth requirements.
7.1.6 Summary of Contributions

Briefly the salient features and contributions of this thesis are as follows:

1. A generalized framework for modeling and animating objects and external forces
in a virtual world using implicit functions. The model is general, computa-
tionally efficient and can be viewed purely kinematically or with a physical

interpretation.

2. A method for constraint satisfaction between deformable objects built on pre-
vious work in collision detection and deformation [20]. The constraints are
satisfied as local deformations to the objects. The user has excellent control
over the extent and nature of the deformations. Arbitrary constraint graphs

are trivially supported.

3. A technique by which objects with a polyhedral definition can be embedded in
a hierarchy of implicit functions. The implicit functions can then deform the

polyhedral definition of the object.
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. Implicit surface primitive shape definitions for polyhedral objects. These defi-

nitions unify the two object representation methods.

. Efficient display techniques for implicit surfaces, especially those constructed

with polyhedral implicit primitives.

. Efficient geometric computations for analytic primitive shapes like cone-spheres,

which are useful for human figure animation.

. A new human figure model, where implicit functions model bones, muscle and
skin. The model fits into our implicit function based framework for the virtual
world. It is the only model that currently handles self-collisions of the human

figurely precisely.

. A technique for the synthesis of wrinkled textures. Wrinkles on skin and clothing
are animated by texture morphing and wireframe displacement of the human
figure in real-time. The approach provides visually realistic results for complex
garments and is the only technique that currently supports animation of tight-

fitting clothing in real-time.

. Finally, the techniques developed above are integrated and illustrated by a
real-time implementation of human figures in a futuristic virtual space telecon-

ferencing system.
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7.2 Evaluation of results

The implementation of the presented concepts shows their effectiveness both in terms
of computation speed and the degree of realism obtained. The separation of the physi-
cal characteristics of objects into rigid and deformable components, works particularly
well for human figures. The model handles self-collisions of the body and skeletally
based deformations elegantly. The ability to apply implicit function techniques in
general to existing polygon based data is an important advantage of our approach.
It can unify and be integrated with existing polygon based or implicit surface based
modeling and animation systems.

The approach achieves linear time complexity in terms of number of object vertices
for collision detection and handling, which is important when dealing with complex
virtual worlds [51].

The synthesis of static wrinkled textures using our approach produce reasonably
realistic results. This can be seen by comparing the photographed wrinkled textures in
Figure 49a and their synthesized counterparts. As a result a number of cloth textures
can be quickly synthesized with far better control over wrinkles and creases than can
be achieved by actually manipulating the fabric. The simple synthesis of perfectly
corresponding textures for different facial expressions as in Figure 50 obviates the
manual labor of establishing a correspondence between these textures.

The results of color texture morphing coupled with wireframe displacement are
shown to improve the realism of human figure models in a virtual space teleconferenc-

ing system. While the results are by no means physically accurate they do enhance
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realism with minimal computational expense.

7.3 Future Research

This thesis leaves scope for furture work in a number of directions.

The implicit function based virtual world model, though well defined, is only a
loose specification of how objects and forces in a virtual world interact. A collision
handling and constraint satisfaction approach was built on this model. There is great
scope for modeling and simulating physical phenomena using the implicit function
model. Ghost functions also show great promise as sculpting tools for incremental
object modeling. Intuitive shape transformations can easily be effected and controlled
using ghost functions.

Work may also be done on improving the manner by which implicit functions fit
and deform underlying polymeshes. The underconstrained nature of the deformable
component mapping of polymesh vertices may cause surface consistency problems.
A dense human figure polymesh and the radial nature of the limbs and primitives
causes simple displacements along vertex normals to give good results without vertices
bunching together or diverging abnormally. Incorporation of techniques such as that
of Witkin [67], that adaptively subdivide and coalesce the polymesh in real time, are
subject to current research. There is scope for future work on construction and fitting
of primitives to the polymesh. Poor fitting primitives may result in very close objects
being deformed to abut at the implicit model contact surface. For VISTEL and

other applications where visual realism dominates over spatial accuracy (we assume
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a tolerable inaccuracy in the transition from real to virtual space), the above artifact
does not pose a problem. Using a greater number and more complex primitives
improves the fit but degrades implicit function and bounding volume intersection
computation efficiency. An empirical tradeoff between a better fit and computation
efficiency should therefore, be taken into consideration.

Many techniques for improving the efficiency of rendering implicit surfaces in
general and polyhedral implicit primitives in particular have been presented in this
thesis. Future work in this area can generalize these techniques to higher order surface
patch primitives. Tesselation of polyhedral primitives is a problem with great scope
for parallelization.

Further work can be done to incorporate dynamic aspects [31] into our wrinkle
model so as to be able to better control the texture morphing process by possibly
incorporating intermediate synthesized wrinkle textures. The wrinkle model thus far
has only been applied to fine facial detail. Further work needs to be done before the
wrinkle model can be successfully applied to parts of the face where the deformations
are large. The model can also be applied in the image processing domain to simulate
aging on existing facial images.

The implicit function based human figure model presented does not address the
layers of hair and clothing explicitly. In this thesis they are simply color textures
that are mapped onto the skin surface. Modeling and animating realistic hair is still
a largely unsolved problem and most approaches involve complex physical methods.

Future research on the dynamic uses of textures to animate close cropped hair may be
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profitable. While the wrinkle model addresses tight-fitting cloth animation well, loose-
fitting garments such as skirts need an explicit geometric model. An integrated cloth
animation system that involves aspects of our wrinkle model and other approaches
[35][65] that handle loose-fitting garments well, is envisioned.

The overall goal of this thesis was to build a model for interactive virtual worlds
in which realistic human figures as synthetic actors are an integral part. We have but

taken a step in this direction.



APPENDIX A

Useful Implicit Primitives

Some comments concerning notation are in order. In the calculations that follow, a
bar over a vector variable indicates normalization of the vector. For example, X is
the unit vector in the direction of X. Upper case letters are used to denote vectors;
lower case letters are used to denote scalars. The dot product operation is denoted by

".7s the cross product operation is denoted by '®’.

A.1 Spheres

Spheres are defined by a center point C' and a radius . The methods for computing
the object functions which are dependent on the geometry of the primitive are given

below.
A.1.1 Calculate Distance Ratio and Normal

Given the object information and a point P, the distance ratio is the ratio of the

distance between the point and the center to the radius of the sphere. distanceratio =

P-C|
—.

Given the object information and a point P, the normal is the normalized vector

N from the center of the sphere to the point: N = P — C (see Figure 58).
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A.1.2 Calculate Y-Extent

Given the object information, the Y-Extent can be calculated by forming the highest
and lowest planes whose normals are in the YZ plane and which pass through the
origin. In order to find the plane, the YZ projection of the plane (a line) and the
sphere (a circle) is used. Points P1 and P2 are found on the lines through the origin
tangent to the circle such that the line joining P1, C' and P2 is perpendicular to the
line from the origin to C. The y coordinates of P1, P2 give the scanline extent when

projected onto the picture plane (see Figure 58).

1. V=<1,00>C
2. k=—"C

sqri(|C|2—r2)

3. Pl=C+kV,P2=C—kV

Figure 58: SPHERE: Normal, Y-Extent Calculation
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A.1.3 Calculate X-Extent

For spheres, calculating the X-extent is similar to the Y-extent. A given scanline
defines a plane in eye-space. The intersection of the plane, with unit normal N, and

the sphere in eye-space is a circle of center C' and radius 7’ (see Figure 59).
1. s=C-N
2.C"=C-5sN
3. ' = sqrt(r? — s?)
4. calculate X-extent using C’, 7’

A.1.4 Calculate Z-Extent

For each pixel of each scanline covered by the sphere, the points of intersection of
the ray with the sphere, I1 and /2, can be computed, given a unit ray through the
pixel, RAY . Calculation of a midpoint, MIDP, allows for breaking the extent into

two monotonic depth spans (see Figure 59).
1. d=C"- RAY
2. MIDP = dRAY

3. middist = |C — MIDP)|

(used in calculating monotonic z-spans)
4. m = sqrt(r'* — |C' — MIDP?)

5. I1 = (d— m)RAY, I2 = (d + m)RAY
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Figure 59: SPHERE: X-Extent, Z-Extent Calculation
A.2 Sphylinders

Sphylinders are finite extent cylinders with hemispheres capping both ends. They are
useful for modeling a variety of shapes, especially longitudinal ones. A sphylinder is
defined by two center points, C'1 and C2, and a radius r (see Figure 60). The line

segment, between C1 and C2 will be referred to as the center axis.
A.2.1 Calculate Distance Ratio and Normal

Given the object information and a point P, the distance ratio is computed as in the
case of the sphere, if the closest point on the center axis to P is one of the end points.
If the closest point to P, call it P’, is interior to the center axis, then the distance
ratio is calculated as the ratio of the distance between P and P’ to the radius of the

sphylinder. The normal is the normalized vector N from P’ to P (see Figure 60):

1. PP=Cl+(P-C1)-(C2—C1)(C2 — C1).

PP
0= .
T

2. distanceratt
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3. N=P - P
A.2.2 Calculate Y-Extent

The Y-extent is calculated by computing the Y-extent of its end spheres and returning

their combined Y-extent (see Figure 60).

Figure 60: SPHYLINDER: Normal, Y-Extent Calculation

A.2.3 Calculate X-Extent

The X-extent, unlike the Y-extent, can either be delimited by the spheres or by the
cylinder. The X-extents of the scanline-plane with the capping spheres are calculated.
If the plane does not intersect the spheres, the X-extent of the scanline-plane (with
normal N) and the infinite cylinder is computed as follows. Note that in eye-space a
scanline-plane passes through the origin. It is assumed that C1 is below the scanline-

plane with no loss of generality.

1. Y'=Ng (C2-Cl)
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2. X'=Y'®QN

. . .
. majorarts = —m————
3. maj C2—C)N|

4. minoraxis =r

5. C'=C1+ % * (C2 — C1) (see Figure 61)

6. The intersection ellipse is defined by center, C’, major and minor axes of sym-
metry, X' and Y’, and their magnitudes,majorazxis and minorazxis. Transform
the origin to the local frame defined by axes of symmetry of the intersection
ellipse centered at C’ and solve the quadratic equation for the tangent points
to the ellipse. The tangent points transformed back form the X-extent with the

cylinder (see Figure 62).

A.2.4 Calculate Z-Extent

As is the case with the sphere, the Z-extents of the sphylinder can be broken into
monotonic segments. The closest point on the ray to the sphylinder’s defining line
is determined and the Z-extent is broken into the two segments at that point. The
ray need only be intersected with the components of the sphylinder that define the
surface of intersection in the scanline-plane. Thus the following check on X-extent

definition can be made (see Figure 63):

e Single defining component: Intersect ray with that component.

e Sphere and cylinder definitions: Intersect ray with that sphere and the cylinder

and take the extremes.
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Figure 61: SPHYLINDER: X-Extent Calculation
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Figure 62: 2D Ellipse Tangent, Ray Intersection Calculation
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e Spheres’ definitions: Intersect ray with both spheres and the cylinder and take

the extremes.

The ray infinite cylinder intersection can be computed efficiently by using the 2D
intersection ellipse information above to transform the ray and calculate the 2D ray
ellipse intersection. A special case where the scanline plane is parallel to the sphylin-

der axis is handled as follows.

l.d=C1-Y"

2. d' = \/r2— (C1-N).

3 ldkd)

. miyy are distances of intersection along RAY.

Figure 63: Ray Intersections: A) Cylinder-Cylinder B) Sphere-Cylinder C,D) Sphere-
Sphere
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A.3 Cone-Sphere

Cone-Spheres are a generalization of sphylinders in which the spherical segments on
either end have unequal radii and the connecting surface is a truncated cone instead
of a cylinder; interior radii are linear interpolations of the end radii. The cone is
defined so that the surface has first order continuity at the junction between the cone
and spherical segments. This means that the spherical segments at either end are
only hemispheres in the case that degenerates to a sphylinder. Cone-spheres are also
useful for modeling a variety of shapes, especially articulated animate figures.
Cone-Spheres are defined by two center points, C'l and C2, and two correspond-
ing radii, r1 and r2. Using the above information, the following is computed (see

Figure 64):

r2—rl )
|C2—C1]|

e 0 =cos!(
.« C21=(C2=C1)
° 00201—021*%

A.3.1 Calculate Distance Ratio and Normal

Given the object information and a point P, the distance ratio, dist-ratio, and normal,

N, computation is as follows (see Figure 64):

1. PP=P—-C0

2. t' = (\/\P’P — (P'- C21)?)cotant
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3.t=P -C21 +1t

4. N=P —tx(C21

t' xsec20

5. dist-ratio= ;

A.3.2 Calculate Y-Extent

The Y-extent, as in the case of the sphylinder, is the combined extent of the end

spheres.

c21

Figure 64: CONE-SPHERE: Normal, Y-Extent Calculation

A.3.3 Calculate X-Extent

The X-extent can either be delimited by the spheres or by the cone. The X-extents
of the scanline-plane with the capping spheres are calculated. If the plane does not
intersect the spheres the X-extent of the scanline-plane with the semi-infinite cone is

computed as follows:
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1. ¢ = cos™ (X" - C21) (see Figure 65)
2. The conic of intersection is determined as follows:

e Ellipse : ¢ > 90° — 0
e Hyperbola: 0 < ¢ <=90°— 6

e Parabola : ¢ =0°

3. Axes of symmetry ,X’ and Y’, and, in the case of ellipse and hyperbola, inter-

section point, C’, are calculated as in the case of the sphylinder.

The 3 cases are now treated individually for clarity, though some of the computation

may overlap. The computations are similar to those used for sphylinders.

e ELLIPSE

— t=|C"— C0| * cosb

_ - ! _ t
distC'P1 = o5(6=)

M po . —t
distC'P2 = o5 (670)

— P1=C"—distC'P1x X'

— P2=C"+distC'P2x X'

— MIDPp = P42

— majorazis = |MIDP — P1|
— ¢ = (MIDP - (") - C21

— MIDP' =C"+t' xC21
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— rMIDP' = |MIDP' — CO| % cotant
— d=sqrt(|]MIDP — C'* — t”?)

— minoraxis = sqrt(rMIDP"? — d?)

Solve for X-extent of the ellipse of intersection defined by the axes of symmetry

centered at M IDP' as in the case of the sphylinder.
e HYPERBOLA

— Calculate P1 as for ellipse

— The general equation of a hyperbola symmetric about positive X-axis, pass-
ing through the origin is :
y? = a?2? — 2abx. The defining constants a, b are obtained by computing
points (1,y1) and (2, y2) on the hyperbola and solving the linear equations

to get

2 :1/22—2>i<yl2

a 2

22 _4xyl?
ab = 2=l

— y12,y2? are computed as follows (see Figure 65):
f Q=Pl+1xX'
* Q'=C0+ ((Q—C0)-C21)C21
x Q' =|Q — CO|cotand

* yI? =rQ”? - |Q — Q'?
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* 122 is calculated similarly by a distance of 2 along X'

— We thus obtain the definition of the intersection hyperbola with axes

X' Y, constants a2, ab and local origin P1.

— Tangent calculations after transforming the origin to local space results in
a quadratic equation. One of the solutions of this equation will lie within

the bounds of the truncated cone (see Figure 66).

X

Figure 65: Hyperbolic Intersection of Cone/Plane

e PARABOLA

—d=(N-CO0)tanb

— P1=C0+d*xC21+ (N-CO)N
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El

Figure 66: 2D Hyperbola Tangent, Ray Intersection Calculation

— The general equation of a parabola symmetric about positive X-axis, pass-
ing through the origin is :
y? = a?z. The defining constant a is obtained by computing point (1, y1)

on the parabola giving a? = y12.
— y12 = ((d + 1) * cotanh)? — (N - C0)?

— We thus obtain the definition of the intersection parabola with axes X', Y’,

constant a? and local origin P1.

— Tangent calculations after transforming the origin to local space results in
a quadratic equation of whose solutions one will lie within the bounds of

the truncated cone.
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A.3.4 Calculate Z-Extent

Z-Extent calculation is similar to that of the sphylinder. The ray intersection for the
infinite cylinder component (accomplished by a 2D ray, intersection ellipse, intersec-
tion), however, must be replaced for the infinite cone component by 2D intersection
with the appropriate conic of intersection the definition of which is made once for the

scan-line, while computing X-Extents.

A.4 Rounded Polygons

Rounded Polygons are defined by a list of vertices C', .., C}, defining a planar polygon
and a radius r (see Figure 67). For the most part all the computation is done by
treating the rounded polygon as n sphylinders with consecutive vertices forming the
two centers and a radius r, within appropriate bounds. Care should be taken not to

repeat the computation for the region common to two adjacent sphylinders.

X

Figure 67: ROUNDED POLYGON: Normal, Y-Extent Calculation
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Further computation is required for the case when the surface normal and Z spans
are specified by the polygon plane. Let N be the normal to the plane. Given a
point P for which the plane defines the normal and distance ratio, the normal is NV

. For a RAY whose Z spans are defined by the plane the

and dist-ratio = w

(Cl-N):I:T
RAY-N °

distances of intersection along RAY are



APPENDIX B

Shape transformation using Polyhedral implicit
primitives

A simple way of effecting shape change between implicit primitives in general is
to interpolate the shape weights of two or more appropriately superposed implicit
primitives. This has been shown for existing analytically defined primitives. The
same technique gives good results with polyhedral primitives (See Figure 69).

The definition of a polyblob also provides a measure of shape change. Surfaces
that are generated by a threshold value varying from 1 to 0 display a shape transfor-
mation from S to V for the primitive. Thus we can effect a transformation between
two polymeshes by making one S and the other V' for a polyblob, positioning them
appropriately and interpolating the threshold value (See Figure 68,70).

Because the interior polymesh can be arbitrary in edge-vertex topology as well
as conventional surface topology, the polyhedral-based implicit surface provides a
way to interpolate between a star-shaped polyhedron (that is, star-shaped relative
to the internal polymesh) and a polyhedron with arbitrary edge-vertex connectivity,
arbitrary genus and even an arbitrary number of component polyhedrons. This is

illustrated in two dimensions in Figure 68, with a square transforming into 3 circles.
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Most polygon-based methods for shape-change cannot handle objects of arbitrary
genus [29],[48]. Approaches which in some way utilize the volume of the objects, such
as that being proposed here and PIPs [27], tend to be able to handle a wider variety

of objects elegantly.

Without Blending

Figure 68: Shape Transformation by threshold interpolation

Some observations regarding these approaches are the following:

e The approach using a single polyblob requires that one polymesh S, lies entirely
within the other, V. This would appear to impose a relative size restriction on
the polyhedra. However, given two polyhedra of roughly the same size, we can
scale one to lie entirely within the other. Then for varying threshold values the

composite primitive can be scaled appropriately so that the threshold extremes
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result in the original size of the polyhedra. Intermediate surfaces will be at scale
values between the two extremes. Suppose S is scaled by a factor of sc to lie

within V. Scaling the composed implicit primitive by (= — 1) * threshold + 1

r
achieves the desired effect.

The shape transformation generated by replacing the roles of S and V' between
two polymeshes, do not in general yield the same results. This can be viewed
as a shortcoming or a bonus, in that two different transformations may be

chosen from. Note, however, that instances of the same object yields an identity

transform.

Sharp edges resulting from functional discontinuities at Voronoi boundaries for
polyblobs may be softened if desired using the same blend solution presented

for point-setblobs. This is shown in Figure 68.

The shape transformation is observed to have an ease in ease out nature. This
is due to the shape of the density function used. Control over the interpolation
may be achieved by modifying the density function or better still by spline
interpolation of the shape weight or threshold value, for the two approaches

respectively.
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Figure 69: Shape Change by shape weight interpolation

Figure 70: Shape Change by threshold value interpolation



APPENDIX C

Example Ghost functions

C.1 Modeling the relative rigidity of objects

In Gascuel’s formulation both colliding objects are considered equally flexible. The
special case of collision of a flexible body with a rigid one is also discussed [20]. For
a flexible object j colliding with a rigid object 7 this is accomplished by imparting j
with a ghost function G;(P) = 2T — F;(P) — F;(P) in the interpenetration zone. A
similar function is used for prop;. The gradient property in Figure 4 must be changed
to VPROP,(P) = —V(F;(P) + F;(P)), so as to maintain first order continuity of the
implicit surface of object j across the interpenetration-propagation zonal boundary.

For equally flexible objects the gradient constraint is VPROP;(P) = —VF;(P),
which translates easily to the single variable functions as propi(t) = —f!(t), where
fi(t) = T. The case with a rigid object does not follow in the same fashion due to
the presence of F;(P))

We first extend these two cases to model the continuum of rigidity of colliding
objects, relative to each other.

Let w € [0,1] be the rigidity of object 7 with respect to object j. The value w = 0

corresponds to a rigid object 7 and w = 1 to a rigid object 7. w = 0.5 is the case of
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equally flexible objects. Without loss of generality let w € [0,0.5] as the roles of i

and 7 may be interchanged. The functions in the interpenetration zone are:
e G;(P)=2w(T — F;(P))
o Gi(P)= (T = F;(P)) + (1 = 2w) x (T - fi(P))

The ghost functions above reduce to those presented in Gascuel for the special cases
w = 0 and w = 0.5. We now address the functions for the propagation zone. g; =
2w * prop; in the propagation zone where prop; has the properties in Figure 4. For

G; we would like to satisfy VPROP;(P) = —V(F;(P) + (1 — 2w) = F;(P)). This

prop)(t)N; (P) _ — [} ()N;(P) + (1-2w) f{(H)Ni(P) g
. .

can be simplified for distance surfaces to : — L
J J [

Simplified prop)(t) = — f1(t) + (1 — 2w) f!(£) = (N;(P).N;(P))

Ti

The angle between the two normal vectors depends on the surface geometry of the

objects and the extent of interpenetration of the colliding objects th (See Figure 71).

_ r? —I—'r]? —(ri+rj—th)?

T'iTj

For the configuration shown in Figure 71, N;(P).N;(P)

C.2 Temporal elastic effects

We make use of the temporal parameter to modify the collision deformation ghost
function imparted [20] to model viscoelastic and plastic objects in Figure 14c. While
the objects collide the ghost function is as described in [20]. The ghost function
remains static at the point of maximum penetration for a plastic object. Viscoelas-

ticity can be modeled by a ghost function that lags behind its imparting object on

9 N;(P) denotes the normalized normal vector to the isosurface of implicit function F; on which
point P lies.
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Object i

Object j

Figure 71: Computing the gradient value for the PROP function

separation. Further multiplication by various decay functions of time can simulate

arbitrary stress-strain characteristics of deformable objects.

C.3 Directional Force Fields

Environmental forces such as gravity, winds, shearing and compressive forces maybe
visually simulated by constructing ghost functions for deformable objects. Directional
forces like winds can be modeled as a ghost function G(P) = F(P) * f((P-N) —d),
where f is a polynomial function and N, d define a plane perpendicular to the direction
of the force passing through the deformable object. F'(P) is the implicit function for
the object. As an example, for f(u) = c¢xu, where ¢ is a constant, the function causes
the object to deform inward on one side and outward on the other side of the plane.
Multiplying f by F' takes care of continuity properties and the object boundary. The

result is an empirical deformation in the direction of the force. This can be seen in
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Figure 72 where the solid lines indicate the implicit objects. The realm of influence
of the spherical implicit function is shown dotted in Figure 72a and the dashed lines
show an implicit surface of the spherical object at a threshold value greater than
that of the object. In Figure 72a a deformable sphere is perfectly juxtaposed to a
rigid corner. In Figure 72b the sphere is deformed based on two ghost functions
simulating wind (against the wall) and gravity (acting downward), causing the object
to penetrate the floor and wall. Collision ghost functions imparted by the floor and

the wall are now added to the sphere to get the result shown in Figure 72c.

A: No ghost functions B: Wind, Gravity ghosts C: Collision ghost

Figure 72: Ghost Function Deformations

Compressive forces acting inward on a deformable object can be modeled as a
ghost function as above, defining G(P) = —F(P)* f(|P— P'|/r), where f is a density
function as in Figure 1 and P’,r define an attractor and region of influence of the
force. Expansive forces, like gas pressure in a balloon can be modeled as the negative

of the above compressive force.
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