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Abstract 

 
This paper presents an approach for mapping 

layouts of parametric surface patches to a target 3D 
geometry. Its main contribution is to facilitate the 
feature based placement of an arbitrary network of 
patches, assuring that both boundaries and parametric 
flow conform to features of the target shape. The 
technique, referred to as  dynamic templates, describes 
the algorithms and interface of a reverse engineering 
system, Paraform, that integrates techniques relying 
on a judicious choice of automation and user guided 
tools. Our approach is based on a novel use of 
constrained optimization for the fairing of structured 
surface grids, where grid points can be unconstrained 
in 3D or constrained to lie within the parameter space 
of curves, surfaces, or other geometry. We present our 
results as case studies in large industrial workflow 
problems, involving the reuse of geometric data.  
 
1. Introduction 
 
While the literature on surface fitting to 3D data is 
extensive, the problem of mapping a given surface 
patch layout between two similar data sets has received 
little attention. This is a common and tedious problem 
since numerous industrial workflows require repeated 
fitting of patches to models that geometrically 
resemble each other. Work and time is wasted because 
this coherence is ignored, leading to longer product 
cycles, production costs, and time-to-market overhead.  
The approach described in this paper has been 
commercially used by hundreds of industrial clients 
since 2000. Our customer base is varied and range 
from automotive design to manufacturing and 
entertainment. Although the underlying workflows are 
very different, all areas have benefited from the reuse 
of patch layouts. For articulated models used in motion 
pictures, patch layouts can be reused from character to 
character. For a line of similar plastic toys, a mould 
layout can be mapped quickly from the outside to the 
inside of a shell and also from toy to toy. In 

automotive design, model changes from year to year 
are typically minor and incremental, and large savings 
are to be gained by reusing the CAD parts.  
Although the broad and rapid adaptation of dynamic 
templates in reverse engineering leaves little doubt that 
the general paradigm is useful, we make no claim that 
our solution is the only one. Rather, the main 
contribution of this paper is to point to an important, 
hitherto overlooked problem in research literature with 
immediate and important applications.  
Fundamentally, our problem statement is to design and 
reuse parameterizations that conform to feature based 
constraints, while leaving ultimate control in the hands 
of the user. Related work can be divided into 2 main 
categories: feature based parametric mapping 
techniques and surface fitting.  
 
1.1 Feature based parametric mapping 
 
In image morphing, the objective is to transform one 
image smoothly into a similar image such that 
corresponding features line up. Beier and Neely’s 
solution [4] provided an intuitive UI for matching pairs 
of hand drawn points and line segments in the two 
images, whereupon the morphing was computed 
automatically. Similar feature based systems for 3D 
shape metamorphosis have been proposed [19] (see [9] 
for an excellent survey of both 2D and 3D morphing).  
Closely related to image morphing is the problem of 
aligning textures with the geometric features of a 
surface in 3D. Litwinowicz and Miller demonstrated 
the first interactive feature based texture placement 
system for the case where a parameterization is 
provided for the target surface [25].  
In general, however, the target surface may not have a 
suitable parameterization, and the problem of 
constructing or improving an existing uv-mapping has 
attracted increasing interest. Bennis et al. [5] presented 
a user guided optimization technique for placing seams 
across a parametric surface. A large body of 
subsequent work presented techniques for constructing 
3D mesh parameterization and optimization techniques 



for controlling distortion within them [8],[12],[15], 
[18],[26]. Gu et al. [11] and Levy et al. [23] 
independently developed algorithms for automatic 
generation of strategically placed seams, thus 
presenting the first automatic techniques for addressing 
the tradeoff between seams and distortion. More 
recently Alliez et al. [3] describe an approach to 
remesh geometry using a curvature field and Levy [21] 
describes an approach based on the global 
parameterization of a mesh that decouples the 
geometric properties of the mesh from the parametric 
structure of the mesh representing the shape. 
While many of these techniques allow the user to 
specify feature based constraints very elegantly 
[18],[22],[23], they all focus on generating any suitable 
parameterization and thus offer no guarantees for the 
topological consistency of patch layout between 
different models. Recently, this problem of generating 
consistent parameterizations has been addressed in the 
context of mesh morphing [17] and mesh signal 
processing [27], the latter of which applied automatic 
feature detection on each of the two meshes in a 
preprocessing step. Using automatic derivation of a 
shared base mesh, it is guaranteed that the two atlases 
are topologically equivalent (these methods [10],[28] 
are thus refinements of the idea pioneered by Kent et 
al. in [14]).  
In summary, a large body of varied literature spanning 
image morphing, texture mapping, and 
parameterization techniques share the unifying 
objective of generating a 2D function that optimally 
matches certain 3D features. It is interesting to observe 
that the evolution of 3D parameterization methods over 
the past decade have resulted in several recent 
approaches that conceptually are closely related to 
Beier and Neely’s image morphing work [4]: given a 
pair of surfaces, identify their shared features and map 
one to the other automatically. While all of the above 
approaches are closely related, they are divided into 
two schools with respect to automation versus user 
interaction in the identification of features. This is a 
fundamental political decision that is critical for the 
choice of algorithms, data structures and interface. It is 
our belief that there is no right and wrong answer: no 
solution fits every application perfectly and it is pivotal 
to understand and analyze a wide variety of workflows 
in order to develop a broadly useful application. 
To motivate the fundamental approach to be described 
in the remainder of this paper, we observe that a 
critical insight underlying the success of Beier and 
Neely’s image morphing approach [4] was that 
morphing involves a degree of aesthetics that is 
difficult to quantify mathematically. In such cases, 
taking advantage of domain expertise from an 

experienced user is often preferable. To illustrate this 
point, although a plethora of vision and image 
processing algorithms have been proposed for 
extracting the types of features that Beier and Neely 
outlined with hand drawn line segments, practically all 
image morphing systems are still heavily based on user 
interaction.  
Years of product research and collaboration with 
industrial partners led us to this conclusion: there exist 
situations where a fully automated mapping of the 
patch layout is desirable (for the parameterization of 
vast libraries of legacy mesh data, for example), but in 
the vast majority of observed workflows, domain 
expertise is critical for generating a useful patch 
layout. Just like the quality of an image morph is 
difficult to quantify, the quality of a surfaced model is 
most often a subjective measure, whether the shape is a 
movie character, a set of dental braces, a line of toys, 
or a car body. We thus strive towards a fully 
automated solution but acknowledge the importance of 
an expert user and therefore, integrate user control into 
the design of our proposed solution.  
 
1.2 Surface Fitting 
 
An additional objective of our system is that the 
parameterization must be fitted to an unstructured data 
set. This data set may often be incomplete and noisy.  
The vast literature on surface fitting is not immediately 
applicable to our problem since existing techniques are 
not readily suited to the reuse of surface layouts 
relying on the domain knowledge from expert users.  
Recently, Litke et al. [24] used quasi-interpolation to 
fit subdivision surfaces to 3D shapes. Although the 
goal of this work is very different, it is related in that it 
involves repositioning a surface layout to different 
target geometry. Our system uses NURBS for 
commercial reasons, but the ideas presented here could 
just as well be used with subdivision surfaces.  
In other recent work, Weiss et al. [34][35][36] 
developed a variety of intelligent fitting techniques that 
makes clever use of geometry analysis to guide the 
fitting. For certain sub-problems, this work goes 
further than ours, although it differs philosophically in 
that automation is given higher priority than data reuse 
and interactive user guidance. 
Perhaps most closely related is the approach for fitting 
textured meshes representing human faces to images 
by Blanz et al. [7]. This approach incorporated 
intelligent high level domain knowledge into an 
automatic fitting technique. It is thus a highly 
specialized formulation of our general problem 
statement; unfortunately it only works for faces and 



1. The curves and springs are detached from the 
source mesh, creating a template of space objects. 

only if color information is available. Thus, such an 
application would only be applicable by a small subset 
of our target user base. 2. The template is aligned with the target mesh. 
Recently, Zwicker et al.[37] proposed fitting the uv 
parameters directly to the point cloud. Since points-to-
polygons software already is widely used in reverse 
engineering industry, however, it is reasonable to 
assume that a mesh representation is already available. 
The mesh connectivity information allows efficient 
and easy fitting of a structured grid as proposed by 
Krishnamurthy et al. [16]. Their spring data structure 
was limited in that every sample in the 2D grid had to 
lie on the mesh. We lift this restriction with a 
generalized fitting technique that allows sample points 
to lie on the mesh, float freely in space, and transition 
freely between these two states as part of an 
optimization process. 

3. The template is mapped to the target mesh. 
Section 2.1and 2.2 will describe the first two steps, 
while section 2.3-2.5 will address the third.  
 
2.1 Template creation (detachment) 
 
Removing the point-on-surface constraint for one or 
more face-points of a patch layout on an underlying 
mesh turns it into a template. The unconstrained points 
are called space-points. Our system provides a detach 
operation, allowing an entire or part of a patch layout 
or individual face-points to be detached from an 
underlying mesh, thus creating a template.  

Levin [18] solves an interesting complementary 
problem to ours where the target mesh (a subdivision 
surface) is altered to interpolate a network of curves 
that are not on the mesh. Levin assumes the existence 
of a mapping between the curves and vertex paths on 
the mesh, a problem that is addressed in this paper. 

Operations like mesh face deletion, that destroy local 
parameterization, also result in points of a fitted patch 
layout constrained to the deleted faces being turned 
into space-points. Parts of the patch layout defined 
entirely by these space-points become templates.  
Further, when fitting a patch layout to meshes with 
noisy or missing data, it is often useful to detach a few 
points of a curve or spring where data is unreliable 
(see Figure 1, 7c,d). Curves and springs consisting of 
both space and face points are referred to as hybrid 
objects. 

 
1.3 Overview 
 
Section 2 presents dynamic templates, our approach to 
the feature based mapping of a parametric patch layout 
to target geometry. Section 3 illustrates the template 
approach with a range of real industrial applications, 
followed by conclusions drawn in section 4. 

 

 

  

2 Dynamic templates 
  

The terminology and data structures in this paper are 
an extension of those used by Krishnamurthy and 
Levoy [16]. Face-points are 3D points constrained to 
lie on the faces of an underlying mesh. A face-point 
curve is a piecewise linear curve connecting face-
points, while a spring-mesh is a regular 2D grid of 
face-points. A spring-mesh is bounded by four 
boundary curves and its primary purpose in this paper 
is to capture the parametric structure of the network of 
curves defining a patch layout. A patch layout in this 
paper is simply a collection of topologically connected 
curves and springs.  Templates are thus patch layouts 
that capture a representative parametric structure and 
seams for a class of objects. At a high level, dynamic 
templates can be seen as a combination of automated 
Beier-Neely style morphing and scattered data fitting. 
More specifically, patch layouts are mapped from one 
mesh to another in three steps: 

Figure 1. Detach transforms face-points (black) to 
space-points (grey). Templates may also be created by 
operations on meshes such as mesh face deletion.  
 
2.2 Alignment 
 
Before the template objects can be mapped to the 
target mesh, a rough alignment is usually necessary, 
since it affects the proximity based mapping 
constraints that we compute in section 2.4. We thus 
require a rough affine placement of the template object 
relative to the target mesh, after which we use standard 
iterative closest point based fitting techniques  [6][31] 
to fine tune the alignment automatically. Models with a 
skeletal armature, such as those seen in Figure 6 can be 
automatically aligned by transforming the template 
skeleton to the target skeleton and deforming the 
template geometry using a skinning algorithm [1].  



2.3 Template attachment  
 
To map a template to the target mesh, our system 
provides a variety of tools.  
Projections. If a low distortion mapping exists 
between the template and the target mesh, a projection 
can be a simple and computationally efficient solution: 
the space points within the template are simply 
projected onto the target mesh.  shows a planar 
projection of a curve network. In this case, the result 
appears reasonable in areas where the projection does 
not introduce excessive distortion. The stretching seen 
near the corners, however, is a fundamental limitation 
of this approach. In general, we have found projection 
useful, primarily, as a local operation in regions where 
both the template and target mesh are very similar.  
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Figure 2.a) Curves before projection b) after projection. Figure 2.a) Curves before projection b) after projection. 
  
Closest-point. For more complex shapes, such as a car 
body, many simple projections may be required. As a 
more practical alternative, a “snap” command, 
allowing a set of template objects (or individual 
control points within these) to be mapped to the closest 
point on the target mesh, is supported. In cases where 
the template can be reasonably well aligned with the 
target mesh, this method produces good results.  
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target mesh, this method produces good results.  

Figure 3. a) Two space curves. b) After snap. Figure 3. a) Two space curves. b) After snap. 
  
Figure 3 shows an example use of snap. Note how the 
lower curve, which is closest to the surface in Figure 
3a), is mapped smoothly to the mesh, while the other 
has an abrupt kink after the snap (see Figure 3b). The 
figure thus shows both the strength and a fundamental 
limitation of the heuristic. Given a space point, a k-d 
tree is employed to compute the closest point on the 
target mesh [29]. We have found a combination of 

vertex and face k-d trees to be useful. Having the 
trade-off between efficiency (vertex trees) and 
precision (face trees) is important when dealing with 
target meshes consisting of several million polygons.  

Figure 3 shows an example use of snap. Note how the 
lower curve, which is closest to the surface in Figure 
3a), is mapped smoothly to the mesh, while the other 
has an abrupt kink after the snap (see Figure 3b). The 
figure thus shows both the strength and a fundamental 
limitation of the heuristic. Given a space point, a k-d 
tree is employed to compute the closest point on the 
target mesh [29]. We have found a combination of 

vertex and face k-d trees to be useful. Having the 
trade-off between efficiency (vertex trees) and 
precision (face trees) is important when dealing with 
target meshes consisting of several million polygons.  
Heuristic mapping techniques such as these can be 
helpful in certain cases, but they are generally labor 
intensive and do not represent a cohesive and general 
solution. We will now turn to the fitting technique that 
forms the foundation for our approach. 
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2.4 Feature-based automated fitting 2.4 Feature-based automated fitting 
  
Analogous to the line pairs used to demark features in 
[4], our system provides two types of primitives: 
anchors representing point-to-point correspondences, 
and curve constraints representing pairs of matching 
curves. Conceptually, the only difference in the user 
interface is that working in 3D allows us the luxury of 
displaying the source and target models in the same 3D 
window without much visual clutter.  This makes it 
easier to follow the progress of the fitting process 
interactively and intervene, if desired, to edit feature 
constraints: For complex or large data sets, it is easy to 
forget a feature correspondence, and it would be 
frustrating for the user to have to start from scratch; 
thus we opt not to use a fully automatic batch fitting. 
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Anchors. An anchor is specified by clicking on points 
on the template objects and the target mesh. 
Alternatively, any number of anchors can be computed 
automatically (using the projection and closest-point 
operators described in section 2.3). Parameters control 
the spacing between anchors along curves or within 
springs. Once an anchor is created, its end points can 
be dragged interactively along the constraining entities 
(curves, springs, or meshes, in our case). 

Anchors. An anchor is specified by clicking on points 
on the template objects and the target mesh. 
Alternatively, any number of anchors can be computed 
automatically (using the projection and closest-point 
operators described in section 2.3). Parameters control 
the spacing between anchors along curves or within 
springs. Once an anchor is created, its end points can 
be dragged interactively along the constraining entities 
(curves, springs, or meshes, in our case). 
Curve constraints. A curve constraint is specified by 
positioning two anchors between the two pairs of 
curve end-points. We automatically detect when a 
topologically valid correspondence between a surface 
and a space curve exists and the resulting constraint is 
visualized as a pair of dashed lines between the curves 
(see Figure 4b). Thus, an automatic analysis of the 
patch layouts is running in the background while the 
user is editing anchors, and curve constraints pop up 
and disappear based on the current topology. In the 
implementation, care must be taken to discard curve 
constraints that would lead to non-manifold patch 
configurations or ambiguities of patch orientation.  
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As in [23], we utilize a “black box” feature detection 
module to automatically generate curves on the target 
mesh. More specifically, our application provides 
extensive functionality for extraction of various types 
of blends (constant or varying radius). 
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Figure 9 shows the base of a statue. The color coding 
in 6a marks feature regions (concave, convex, and flat) 
computed from the principal curvatures of the mesh. 
Using this information, positions, types, and 
parameters are inferred automatically (the details of 
this algorithm are beyond the scope of this paper). The 
near-circular curves at the top of the base (Figure 6b) 
were generated this way. These curves represent the 
centerlines of the blends. In Figure 6c, four anchors 
have been positioned, the two top ones forming a 
curve constraint with a segment of the feature curve. 
As the spring is mapped to the surface, the space curve 
is mapped exactly to the feature. Note that the resulting 
spring covers the hole in the mesh; how this is 
accomplished will be described in section 2.5. Note 
that although the curve in this example lies on the 
mesh, it is often convenient to operate with theoretical 
curves when working with blends, in particular the 
limit curve as the blend radius approaches 0. Dynamic 
templates are compatible with both constrained and 
space curves. 

Figure 4. Curve constraints. a) No curve constraint. b) 
Curve constraint established. c) Partial wrap with curve 
constraint. d) After fusion of constrained curves. 
 
We now describe the patch layout optimization or 
“wrap” algorithm. The algorithm combines anchors 
and curve constraints with the optimization of the 2D 
parameterization and 3D geometric attributes of the 
patch layout, into a single energy minimizing equation.  
 
2.5 Patch layout optimization (“wrap”) 
 
Using constrained optimization to fit a uv-mapping to 
a mesh is a well studied problem. A number of 
proposed energy functions offer tradeoffs between 
stretching, shearing etc. Our algorithm is designed to 
allow any algorithm posed as an energy function, such 

as conformal maps [8], to be incorporated into the 
overall patch layout optimization. Unfortunately, 
however, existing techniques only allow a mapping to 
be fitted where the target mesh is defined. The reality 
of reverse engineering is that meshes obtained by 3D 
acquisition techniques almost always are imperfect. In 
particular, holes in under sampled areas, missing or 
“jaggy” data near boundaries, and localized noise are 
common artifacts. Existing methods rely on an 
intermediate mesh editing step (in particular hole 
filling and smoothing) before the fitting can take place. 
Such a workflow is inefficient and wasteful, and it 
offers no guarantees that the edited regions resemble 
the physical object (note that while this loss of 
accuracy may not be an issue for entertainment 
applications, it is critical for most industrial 
manufacturing and design workflows.)  Furthermore, it 
ignores the fact that, for many manufacturing and 
design applications, exact CAD data is typically 
available in the very areas where the scanning process 
produces artifacts: boundaries and features of 
manufactured parts are typically constrained by 3D 
curves and 2D primitives; constraints expressed in 
terms of curves floating freely in space. 
The “wrap” algorithm is thus an energy optimization 
method that fits a template patch layout to a target 
mesh with the following properties: 
• Satisfy point anchor and curve constraints. 
• Conform to regions of reliable target mesh data. 
• Cap holes in mesh data and ignore noisy mesh data.  
The algorithm implementation is an extension of the 
method described in [16]: we solve the non-linear 
optimization problem formulated above by reducing 
each shape or parameter constraint into a set of 
resulting forces on the patch layout points, which are 
moved subject to the forces iteratively. In addition to 
the parameter forces Ffair and Farc described in [16] for 
face-points, we add shape and constraint based forces 
Ftp and Fcon for space-points and a force Ffold to convert 
back and forth between face-points and space-points.  
The resultant force Fresult on any point is given by: 
 Fresult= α*Ffair+ β*Farc + γtp*Ftp+ γcon*Fcon+  γfold*Ffold, 
where α, β, γtp ,γcon ,γfold as in [16] are scalar multipliers 
to control the relative magnitude of forces. The new 
forces Ftp , Fcon and Ffold only apply to space-points.  
Every iteration, a point is displaced by Fresult in 3D for 
a space-point and projected on the mesh along Fresult 
for a face-point as in [16]. 
Ftp is a shape-based 3D thin-plate force that ensures 
the unconstrained regions of the fitted surface conform 
to the curvature at the boundaries of the mesh, while 
Ffair and Farc minimize parametric distortion in both 
constrained and unconstrained areas of the surface.  



Fcon is a constraint force ||Pc-P|| that attracts a point P 
that is anchored or part of a curve constraint towards 
its constraint point Pc (P is attracted to a corresponding 
point Pc on a curve constraint based on arc-length). 
Ffold is a folding force that attracts a space-point that is 
incident to at least one face-point to the target mesh.  
Ffold measures the local shape deformation between 
constrained and unconstrained regions of the patch 
layout. Figure 5 shows a hybrid curve with face-point, 
Pseed, incident to a space point, Pfoldable. Marching along 
the mesh in the direction obtained by projecting the 
offset vector to the tangent plane yields a new face 
point, Pfolded. Ffold represents the quaternion rotation of 
(Pseed -Pfoldable) to (Pseed -Pfolded) such that  γfold*Ffold is a 
fractional rotation of Pfoldable towards Pfolded. 
We now address how and when points change state 
from face-points to space-points and vice-versa. 
Moving face-points to space. A face-point is updated 
by moving it from face to face along the mesh [16]. 
During this process, if the point moves to a boundary 
face, the mesh constraint is lifted. 
Moving space-points to the target mesh. During the 
iteration process if the constraint distance ||Pc-P|| falls 
below a threshold, the point P is moved to Pc and its 
state changed from a space-point to a face-point. 
Similarly, if the angle between vectors (Pseed -Pfoldable) 
and (Pseed -Pfolded) falls within a given tolerance, Pfoldable 
is moved to Pfolded and its state changed from a space-
point to a face-point. If a hole is encountered while 
marching along the surface, Pfolded is obtained by 
moving in the direction of the tangent vector to the 
projected curve (ie. Pfolded will float in space). Since 
only space-points incident to at least one face-point are 
folded, the anchor and curve constraint points of a 
patch layout change state to face-points first. These 
points then propagate other face-points by folding.  

P
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Figure 5. Space-point,  face-point result after folding. 

The angle tolerance parameter determines how 
conservative the folding proceeds: if the tolerance is 
high, many points will be folded during each iteration, 
likely resulting in excessive noise. If it is too low, no 
points will be folded. In our implementation, this 
consideration is hidden from the user using a simulated 

annealing technique, automatically raising or lowering 
the tolerance based on how many points are folded, in 
each iteration.The shape deformation heuristic could 
be implemented in other ways; the key idea is simply 
to augment the parameter and shape optimization step 
with a force that captures this optimization criteria. 
 
3 Results 
 
We have dealt with an increasingly diverse set of 
workflows and practical applications of dynamic 
templates such as patch layout reuse during industrial 
design iterations, re-meshing of objects to conform to a 
given mesh topology and morphing characters. To 
illustrate our results we pick two case studies, the first 
from industrial design and the second from film and 
entertainment, to emphasize the generality of our 
overall approach.  
 
3.1 Automotive Design 
 
The conceptual design phase in automotive design involves 
many transitions between the physical and digital 
manifestations of a model. Design iterations with 
incremental changes are common due to the high cost of 
dramatically altering a model.  
Figure  shows typical changes that would be part of a design 
iteration. Figure 10a shows a scanned mesh of the front 
quarter of a car with a set of feature curves and 
corresponding surfaces. Figure 10b shows the mesh after it 
has been remodeled. Four different types of changes are 
indicated. The first and largest is a precise shortening of the 
fender as a result of a scale operation (seen as the slight 
offset between template and mesh in insert Figure 10b-i. The 
second is a rounding of the depression in the fender resulting 
from smoothing a clay model (Figure 10b-ii). The third is the 
incremental addition of surface detail such as the tubular 
structure in the middle of the fender (Figure 10b-iii).  Also 
note the hole on the headlight that could represent deleted 
surface detail or an artifact of the scanning process (Figure 
10b-iv). Figure 10c) shows the result of a simple snap 
operation (using the k-d tree containing mesh faces (see 
section 0) for maximum accuracy). Note that the snap only 
alters the patches that change as a result of the mesh 
modification. Also note the satisfactory results of snapped 
templates in the altered regions around the fender and 
headlight, as long as the amplitude of the modifications to 
the mesh is small. Finally, Figure 10d shows how allowing 
points to migrate off the surface, causes points stuck around 
the hole in the headlight significantly improves the surface 
quality of the reused patch layout. The workflow shown here 
is representative of the iterations involved in an automotive 
design change – iterations that typically take weeks or 
months and are extremely costly. 
Figure 11 shows a more advanced use of hybrid spring 
optimization. We emphasize that the mesh (shown in 



Figure 11a) deliberately was chosen for its poor quality 
and numerous artifacts to demonstrate the robustness 
of hybrid springs. Specifically, it contains substantial 
noise, small holes and cracks, and larger holes present 
in the actual part. Figure 11b-c) shows a single hybrid 
spring fitted to the entire mesh. First, a space spring 
was created the top of the model. Using strategically 
placed anchors, part of the spring was wrapped to the 
upper part of the mesh. The boundary curves were then 
moved to their final position (see Figure 11b), causing 
the remaining parts of the spring to wrap onto the mesh 
like a rubber sheet. Notice how the spring covers all 
holes smoothly and how the parameterization is natural 
even in highly distorted areas. The final spring is 
shown in Figure 11c). Note that it was downsampled 
from an original 2,048x2,048 resolution to make the 
iso-parameter lines stand out clearly in the image. 
Although the entire session took nearly one hour using 
our current system, no existing automatic algorithm 
known to us would have yielded the same quality 
parameterization. Until such automation becomes 
feasible, hybrid springs presents a new way to 
approach highly challenging surfacing tasks. 
 
3.2 Entertainment 
 
We typically encounter organic forms in entertainment 
applications. Commonly used workflows involve the 
data reuse of a given patch layout for the geometric 
skin of an entire cast of characters. Figure 6a shows a 
3D mesh acquired by a full body scanner. The 
objective of this case study is to map the surfaced 
model (Figure 6b) to the target (Figure 6d). The 
workflow presented here is analogous to that used for 
several 3D morphing sequences in the motion picture 
“X-Men” [13]. Another major reason for reuse of 
patch layout on characters is that topology specific 
skinning, setup and animation developed for one 
character can also be reused on others.  
The first step is to detach the surface network, creating 
a template. The template corresponding to Figure 6b is 
seen in Figure 6c. Since this is a complex model with 
considerable detail in the face and feet regions, the 
template will be mapped in two stages: first, the 
detailed regions will be mapped with user guidance 
and second, the torso, arms, and legs will be 
automatically attached using curve constraints. 
The face and feet are aligned manually with the target 
mesh (see Figure 7b). Note that the feet are 
deliberately scaled bigger than the feet of the target 
mesh. This is for visual clarity to make it easier to see 
and align the anchors shown in 7c-d. The 
anchors are computed automatically. The user can then 

make fine adjustments, adding or deleting anchors 
interactively. 

 
Figure 6. a) Original mesh. b) Original surfaced mesh. 
c) Template. d) Target mesh. e) Fitted template. 
 

Figure 

Figure 7 a) Template without face and shoes. b) Target 
mesh with face and shoe templates aligned. c) Close-
up of face (with anchors). d) Close-up of shoes (with 
anchors). 
 
Once the anchors are in place, the wrap algorithm 
automatically maps the template to the target mesh.  
Figure 12 shows snapshots of the display taken while 
wrapping the right foot of the model.  
Figure 12a shows the template, which has the shape of 
the original mesh (Figure 12a).  
Figure 12b shows the state after a few iterations, where 
the anchors have started moving towards the mesh. In  
Figure 12c, the anchors have reached the mesh and the 
curves and springs have begun the wrapping process.  
Figure 12d and  
Figure 12e show further progress and a few springs 
(shown in blue) are now finished surface objects.  



Figure 12f shows the result after wrapping. The total 
time for wrapping the face and feet was 20 seconds 
(2GHz Pentium IV CPU, nVIDIA GeForce 2 card). 
With the most detailed regions in place, the next step is 
to map the large part of the template corresponding to 
the body. Figure 13a) shows the differences between 
the template and target geometries. 
Articulated figures, possibly in different poses, are 
aligned well by deforming the template based on the 
affine transforms that map the skeleton of the template 
to that of the target mesh 13b). Curve constraints are 
used to line up the seams between the template and the 
already surfaced head and feet 13c+d).  
The total time for the mapping between Figure 13b and 
Figure 13e was 35 minutes: 34 minutes on alignment 
operations and anchor editing on the face and feet and 
1 minute for the wrap algorithm. A further 20 minutes 
was spent on post-editing to generate a patch layout of 
the quality that would take an experienced user up to a 
day to create from scratch. 

Figure 8. Mirroring example. a) Venus head model . b) 
One half surfaced. c) Mirrored template with curve 
constraints. d) Result of wrapping. e) Result after fixing 
one patch that the crosses plane of symmetry. 
 
Also notable is the reuse of surfacing data on the same 
model, whereby only half of near symmetric models 
need be surfaced. The other half is created by mapping 
the surfaced half as a mirrored template, using the 
plane of symmetry as a curve constraint. An example 
of this is shown in Figure 8. This workflow is 
commonly in both entertainment and design 
applications. The patch layout also illustrates why 

automated techniques such as [24] need to be 
augmented by user expertise to capture the flow of 
geometry. Capturing geometric flow in a model is 
essential if the model is to be animated. We capture 
user expertise here by not only using the patch layout 
connectivity of the template as in [24] but the patch 
layout geometry of a manually surfaced model with 
similar geometric flow.   
 
4 Conclusion 
 
This paper presents an approach for mapping layouts 
of parametric surface patches to a target 3D geometry. 
The final aim of our work is to automate as far as 
possible the feature-based placement of a patch layout, 
assuring both boundary and internal parametric flow 
along features of the target geometry. At the same time 
we acknowledge an element of aesthetic and domain 
expertise that is best left under user control. We, 
therefore, provide simple user interactive control over 
various stages of the mapping process, allowing the 
user a choice of automation or manual intervention. 
Our algorithm has evolved over the past three years 
since its commercial deployment and its current 
presentation is a robust general technique that is 
applicable to various workflows and relatively 
insensitive to incomplete and noisy target geometry. 
We hope this paper will stimulate research interest in 
this new area with important industrial applications.  
As stated in the introduction, many other solutions to 
the overall problem as well as its subproblems could be 
envisioned. Exploring such alternative approaches is 
an interesting area for future work. Especially 
interesting is more advanced use of feature extraction: 
by analyzing the target mesh and the patch layout, 
more correspondences could be computed 
automatically, which would further reduce the 
interactive workload. It is doubtful that a fully 
automatic approach could ever completely replace an 
experienced user, but the more intelligence and 
automation that can be integrated in the retargeting 
process, the better. 
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Figure 9. Wrap: a) Mesh with feature map. b) 
Automatically extracted blend centerlines. c) Space 
spring with anchors before mapping. d) Spring fully 
wrapped onto the mesh. 

Figure 11 a) Mesh. b) Mesh + Spring. c) Hybrid spring. 

Figure 12.The wrap algorithm: intermediate steps.  
 

 
  Figure 10 a) Car model with patch layout. b) After edits 
to the mesh. c) After snap. d) After detach and relax of 
spring samples near the hole. 

Figure 13. a) Partially surfaced target mesh with the 
remaining template superimposed. b) After local 
orientation of articulations. c) Curve constraints 
between neck and face components. d) Curve 
constraints between legs and feet.  
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