
Feature Based Retargeting of Parameterized Geometry

Karan Singh
Dept. of Computer Science,

University of Toronto
karan@dgp.toronto.edu

Hans K. Pedersen
Metris

hp@metris.com

Venkat Krishnamurthy
Metris

vk@metris.com

Abstract

This paper presents an approach for mapping

layouts of parametric surface patches to a target 3D
geometry. Its main contribution is to facilitate the
feature based placement of an arbitrary network of
patches, assuring that both boundaries and parametric
flow conform to features of the target shape. The
technique, referred to as dynamic templates, describes
the algorithms and interface of a reverse engineering
system, Paraform, that integrates techniques relying
on a judicious choice of automation and user guided
tools. Our approach is based on a novel use of
constrained optimization for the fairing of structured
surface grids, where grid points can be unconstrained
in 3D or constrained to lie within the parameter space
of curves, surfaces, or other geometry. We present our
results as case studies in large industrial workflow
problems, involving the reuse of geometric data.

1. Introduction

While the literature on surface fitting to 3D data is
extensive, the problem of mapping a given surface
patch layout between two similar data sets has received
little attention. This is a common and tedious problem
since numerous industrial workflows require repeated
fitting of patches to models that geometrically
resemble each other. Work and time is wasted because
this coherence is ignored, leading to longer product
cycles, production costs, and time-to-market overhead.
The approach described in this paper has been
commercially used by hundreds of industrial clients
since 2000. Our customer base is varied and range
from automotive design to manufacturing and
entertainment. Although the underlying workflows are
very different, all areas have benefited from the reuse
of patch layouts. For articulated models used in motion
pictures, patch layouts can be reused from character to
character. For a line of similar plastic toys, a mould
layout can be mapped quickly from the outside to the
inside of a shell and also from toy to toy. In

automotive design, model changes from year to year
are typically minor and incremental, and large savings
are to be gained by reusing the CAD parts.
Although the broad and rapid adaptation of dynamic
templates in reverse engineering leaves little doubt that
the general paradigm is useful, we make no claim that
our solution is the only one. Rather, the main
contribution of this paper is to point to an important,
hitherto overlooked problem in research literature with
immediate and important applications.
Fundamentally, our problem statement is to design and
reuse parameterizations that conform to feature based
constraints, while leaving ultimate control in the hands
of the user. Related work can be divided into 2 main
categories: feature based parametric mapping
techniques and surface fitting.

1.1 Feature based parametric mapping

In image morphing, the objective is to transform one
image smoothly into a similar image such that
corresponding features line up. Beier and Neely’s
solution [4] provided an intuitive UI for matching pairs
of hand drawn points and line segments in the two
images, whereupon the morphing was computed
automatically. Similar feature based systems for 3D
shape metamorphosis have been proposed [19] (see [9]
for an excellent survey of both 2D and 3D morphing).
Closely related to image morphing is the problem of
aligning textures with the geometric features of a
surface in 3D. Litwinowicz and Miller demonstrated
the first interactive feature based texture placement
system for the case where a parameterization is
provided for the target surface [25].
In general, however, the target surface may not have a
suitable parameterization, and the problem of
constructing or improving an existing uv-mapping has
attracted increasing interest. Bennis et al. [5] presented
a user guided optimization technique for placing seams
across a parametric surface. A large body of
subsequent work presented techniques for constructing
3D mesh parameterization and optimization techniques

for controlling distortion within them [8],[12],[15],
[18],[26]. Gu et al. [11] and Levy et al. [23]
independently developed algorithms for automatic
generation of strategically placed seams, thus
presenting the first automatic techniques for addressing
the tradeoff between seams and distortion. More
recently Alliez et al. [3] describe an approach to
remesh geometry using a curvature field and Levy [21]
describes an approach based on the global
parameterization of a mesh that decouples the
geometric properties of the mesh from the parametric
structure of the mesh representing the shape.
While many of these techniques allow the user to
specify feature based constraints very elegantly
[18],[22],[23], they all focus on generating any suitable
parameterization and thus offer no guarantees for the
topological consistency of patch layout between
different models. Recently, this problem of generating
consistent parameterizations has been addressed in the
context of mesh morphing [17] and mesh signal
processing [27], the latter of which applied automatic
feature detection on each of the two meshes in a
preprocessing step. Using automatic derivation of a
shared base mesh, it is guaranteed that the two atlases
are topologically equivalent (these methods [10],[28]
are thus refinements of the idea pioneered by Kent et
al. in [14]).
In summary, a large body of varied literature spanning
image morphing, texture mapping, and
parameterization techniques share the unifying
objective of generating a 2D function that optimally
matches certain 3D features. It is interesting to observe
that the evolution of 3D parameterization methods over
the past decade have resulted in several recent
approaches that conceptually are closely related to
Beier and Neely’s image morphing work [4]: given a
pair of surfaces, identify their shared features and map
one to the other automatically. While all of the above
approaches are closely related, they are divided into
two schools with respect to automation versus user
interaction in the identification of features. This is a
fundamental political decision that is critical for the
choice of algorithms, data structures and interface. It is
our belief that there is no right and wrong answer: no
solution fits every application perfectly and it is pivotal
to understand and analyze a wide variety of workflows
in order to develop a broadly useful application.
To motivate the fundamental approach to be described
in the remainder of this paper, we observe that a
critical insight underlying the success of Beier and
Neely’s image morphing approach [4] was that
morphing involves a degree of aesthetics that is
difficult to quantify mathematically. In such cases,
taking advantage of domain expertise from an

experienced user is often preferable. To illustrate this
point, although a plethora of vision and image
processing algorithms have been proposed for
extracting the types of features that Beier and Neely
outlined with hand drawn line segments, practically all
image morphing systems are still heavily based on user
interaction.
Years of product research and collaboration with
industrial partners led us to this conclusion: there exist
situations where a fully automated mapping of the
patch layout is desirable (for the parameterization of
vast libraries of legacy mesh data, for example), but in
the vast majority of observed workflows, domain
expertise is critical for generating a useful patch
layout. Just like the quality of an image morph is
difficult to quantify, the quality of a surfaced model is
most often a subjective measure, whether the shape is a
movie character, a set of dental braces, a line of toys,
or a car body. We thus strive towards a fully
automated solution but acknowledge the importance of
an expert user and therefore, integrate user control into
the design of our proposed solution.

1.2 Surface Fitting

An additional objective of our system is that the
parameterization must be fitted to an unstructured data
set. This data set may often be incomplete and noisy.
The vast literature on surface fitting is not immediately
applicable to our problem since existing techniques are
not readily suited to the reuse of surface layouts
relying on the domain knowledge from expert users.
Recently, Litke et al. [24] used quasi-interpolation to
fit subdivision surfaces to 3D shapes. Although the
goal of this work is very different, it is related in that it
involves repositioning a surface layout to different
target geometry. Our system uses NURBS for
commercial reasons, but the ideas presented here could
just as well be used with subdivision surfaces.
In other recent work, Weiss et al. [34][35][36]
developed a variety of intelligent fitting techniques that
makes clever use of geometry analysis to guide the
fitting. For certain sub-problems, this work goes
further than ours, although it differs philosophically in
that automation is given higher priority than data reuse
and interactive user guidance.
Perhaps most closely related is the approach for fitting
textured meshes representing human faces to images
by Blanz et al. [7]. This approach incorporated
intelligent high level domain knowledge into an
automatic fitting technique. It is thus a highly
specialized formulation of our general problem
statement; unfortunately it only works for faces and

1. The curves and springs are detached from the
source mesh, creating a template of space objects.

only if color information is available. Thus, such an
application would only be applicable by a small subset
of our target user base. 2. The template is aligned with the target mesh.
Recently, Zwicker et al.[37] proposed fitting the uv
parameters directly to the point cloud. Since points-to-
polygons software already is widely used in reverse
engineering industry, however, it is reasonable to
assume that a mesh representation is already available.
The mesh connectivity information allows efficient
and easy fitting of a structured grid as proposed by
Krishnamurthy et al. [16]. Their spring data structure
was limited in that every sample in the 2D grid had to
lie on the mesh. We lift this restriction with a
generalized fitting technique that allows sample points
to lie on the mesh, float freely in space, and transition
freely between these two states as part of an
optimization process.

3. The template is mapped to the target mesh.
Section 2.1and 2.2 will describe the first two steps,
while section 2.3-2.5 will address the third.

2.1 Template creation (detachment)

Removing the point-on-surface constraint for one or
more face-points of a patch layout on an underlying
mesh turns it into a template. The unconstrained points
are called space-points. Our system provides a detach
operation, allowing an entire or part of a patch layout
or individual face-points to be detached from an
underlying mesh, thus creating a template.

Levin [18] solves an interesting complementary
problem to ours where the target mesh (a subdivision
surface) is altered to interpolate a network of curves
that are not on the mesh. Levin assumes the existence
of a mapping between the curves and vertex paths on
the mesh, a problem that is addressed in this paper.

Operations like mesh face deletion, that destroy local
parameterization, also result in points of a fitted patch
layout constrained to the deleted faces being turned
into space-points. Parts of the patch layout defined
entirely by these space-points become templates.
Further, when fitting a patch layout to meshes with
noisy or missing data, it is often useful to detach a few
points of a curve or spring where data is unreliable
(see Figure 1, 7c,d). Curves and springs consisting of
both space and face points are referred to as hybrid
objects.

1.3 Overview

Section 2 presents dynamic templates, our approach to
the feature based mapping of a parametric patch layout
to target geometry. Section 3 illustrates the template
approach with a range of real industrial applications,
followed by conclusions drawn in section 4.

2 Dynamic templates

The terminology and data structures in this paper are
an extension of those used by Krishnamurthy and
Levoy [16]. Face-points are 3D points constrained to
lie on the faces of an underlying mesh. A face-point
curve is a piecewise linear curve connecting face-
points, while a spring-mesh is a regular 2D grid of
face-points. A spring-mesh is bounded by four
boundary curves and its primary purpose in this paper
is to capture the parametric structure of the network of
curves defining a patch layout. A patch layout in this
paper is simply a collection of topologically connected
curves and springs. Templates are thus patch layouts
that capture a representative parametric structure and
seams for a class of objects. At a high level, dynamic
templates can be seen as a combination of automated
Beier-Neely style morphing and scattered data fitting.
More specifically, patch layouts are mapped from one
mesh to another in three steps:

Figure 1. Detach transforms face-points (black) to
space-points (grey). Templates may also be created by
operations on meshes such as mesh face deletion.

2.2 Alignment

Before the template objects can be mapped to the
target mesh, a rough alignment is usually necessary,
since it affects the proximity based mapping
constraints that we compute in section 2.4. We thus
require a rough affine placement of the template object
relative to the target mesh, after which we use standard
iterative closest point based fitting techniques [6][31]
to fine tune the alignment automatically. Models with a
skeletal armature, such as those seen in Figure 6 can be
automatically aligned by transforming the template
skeleton to the target skeleton and deforming the
template geometry using a skinning algorithm [1].

2.3 Template attachment

To map a template to the target mesh, our system
provides a variety of tools.
Projections. If a low distortion mapping exists
between the template and the target mesh, a projection
can be a simple and computationally efficient solution:
the space points within the template are simply
projected onto the target mesh. shows a planar
projection of a curve network. In this case, the result
appears reasonable in areas where the projection does
not introduce excessive distortion. The stretching seen
near the corners, however, is a fundamental limitation
of this approach. In general, we have found projection
useful, primarily, as a local operation in regions where
both the template and target mesh are very similar.

anar
projection of a curve network. In this case, the result
appears reasonable in areas where the projection does
not introduce excessive distortion. The stretching seen
near the corners, however, is a fundamental limitation
of this approach. In general, we have found projection
useful, primarily, as a local operation in regions where
both the template and target mesh are very similar.

Figure 2

Figure 2.a) Curves before projection b) after projection. Figure 2.a) Curves before projection b) after projection.

Closest-point. For more complex shapes, such as a car
body, many simple projections may be required. As a
more practical alternative, a “snap” command,
allowing a set of template objects (or individual
control points within these) to be mapped to the closest
point on the target mesh, is supported. In cases where
the template can be reasonably well aligned with the
target mesh, this method produces good results.

Closest-point. For more complex shapes, such as a car
body, many simple projections may be required. As a
more practical alternative, a “snap” command,
allowing a set of template objects (or individual
control points within these) to be mapped to the closest
point on the target mesh, is supported. In cases where
the template can be reasonably well aligned with the
target mesh, this method produces good results.

Figure 3. a) Two space curves. b) After snap. Figure 3. a) Two space curves. b) After snap.

Figure 3 shows an example use of snap. Note how the
lower curve, which is closest to the surface in Figure
3a), is mapped smoothly to the mesh, while the other
has an abrupt kink after the snap (see Figure 3b). The
figure thus shows both the strength and a fundamental
limitation of the heuristic. Given a space point, a k-d
tree is employed to compute the closest point on the
target mesh [29]. We have found a combination of

vertex and face k-d trees to be useful. Having the
trade-off between efficiency (vertex trees) and
precision (face trees) is important when dealing with
target meshes consisting of several million polygons.

Figure 3 shows an example use of snap. Note how the
lower curve, which is closest to the surface in Figure
3a), is mapped smoothly to the mesh, while the other
has an abrupt kink after the snap (see Figure 3b). The
figure thus shows both the strength and a fundamental
limitation of the heuristic. Given a space point, a k-d
tree is employed to compute the closest point on the
target mesh [29]. We have found a combination of

vertex and face k-d trees to be useful. Having the
trade-off between efficiency (vertex trees) and
precision (face trees) is important when dealing with
target meshes consisting of several million polygons.
Heuristic mapping techniques such as these can be
helpful in certain cases, but they are generally labor
intensive and do not represent a cohesive and general
solution. We will now turn to the fitting technique that
forms the foundation for our approach.

Heuristic mapping techniques such as these can be
helpful in certain cases, but they are generally labor
intensive and do not represent a cohesive and general
solution. We will now turn to the fitting technique that
forms the foundation for our approach.

2.4 Feature-based automated fitting 2.4 Feature-based automated fitting

Analogous to the line pairs used to demark features in
[4], our system provides two types of primitives:
anchors representing point-to-point correspondences,
and curve constraints representing pairs of matching
curves. Conceptually, the only difference in the user
interface is that working in 3D allows us the luxury of
displaying the source and target models in the same 3D
window without much visual clutter. This makes it
easier to follow the progress of the fitting process
interactively and intervene, if desired, to edit feature
constraints: For complex or large data sets, it is easy to
forget a feature correspondence, and it would be
frustrating for the user to have to start from scratch;
thus we opt not to use a fully automatic batch fitting.

Analogous to the line pairs used to demark features in
[4], our system provides two types of primitives:
anchors representing point-to-point correspondences,
and curve constraints representing pairs of matching
curves. Conceptually, the only difference in the user
interface is that working in 3D allows us the luxury of
displaying the source and target models in the same 3D
window without much visual clutter. This makes it
easier to follow the progress of the fitting process
interactively and intervene, if desired, to edit feature
constraints: For complex or large data sets, it is easy to
forget a feature correspondence, and it would be
frustrating for the user to have to start from scratch;
thus we opt not to use a fully automatic batch fitting.

Anchors. An anchor is specified by clicking on points
on the template objects and the target mesh.
Alternatively, any number of anchors can be computed
automatically (using the projection and closest-point
operators described in section 2.3). Parameters control
the spacing between anchors along curves or within
springs. Once an anchor is created, its end points can
be dragged interactively along the constraining entities
(curves, springs, or meshes, in our case).

Anchors. An anchor is specified by clicking on points
on the template objects and the target mesh.
Alternatively, any number of anchors can be computed
automatically (using the projection and closest-point
operators described in section 2.3). Parameters control
the spacing between anchors along curves or within
springs. Once an anchor is created, its end points can
be dragged interactively along the constraining entities
(curves, springs, or meshes, in our case).
Curve constraints. A curve constraint is specified by
positioning two anchors between the two pairs of
curve end-points. We automatically detect when a
topologically valid correspondence between a surface
and a space curve exists and the resulting constraint is
visualized as a pair of dashed lines between the curves
(see Figure 4b). Thus, an automatic analysis of the
patch layouts is running in the background while the
user is editing anchors, and curve constraints pop up
and disappear based on the current topology. In the
implementation, care must be taken to discard curve
constraints that would lead to non-manifold patch
configurations or ambiguities of patch orientation.

Curve constraints. A curve constraint is specified by
positioning two anchors between the two pairs of
curve end-points. We automatically detect when a
topologically valid correspondence between a surface
and a space curve exists and the resulting constraint is
visualized as a pair of dashed lines between the curves
(see Figure 4b). Thus, an automatic analysis of the
patch layouts is running in the background while the
user is editing anchors, and curve constraints pop up
and disappear based on the current topology. In the
implementation, care must be taken to discard curve
constraints that would lead to non-manifold patch
configurations or ambiguities of patch orientation.
As in [23], we utilize a “black box” feature detection
module to automatically generate curves on the target
mesh. More specifically, our application provides
extensive functionality for extraction of various types
of blends (constant or varying radius).

As in [23], we utilize a “black box” feature detection
module to automatically generate curves on the target
mesh. More specifically, our application provides
extensive functionality for extraction of various types
of blends (constant or varying radius).

Figure 9 shows the base of a statue. The color coding
in 6a marks feature regions (concave, convex, and flat)
computed from the principal curvatures of the mesh.
Using this information, positions, types, and
parameters are inferred automatically (the details of
this algorithm are beyond the scope of this paper). The
near-circular curves at the top of the base (Figure 6b)
were generated this way. These curves represent the
centerlines of the blends. In Figure 6c, four anchors
have been positioned, the two top ones forming a
curve constraint with a segment of the feature curve.
As the spring is mapped to the surface, the space curve
is mapped exactly to the feature. Note that the resulting
spring covers the hole in the mesh; how this is
accomplished will be described in section 2.5. Note
that although the curve in this example lies on the
mesh, it is often convenient to operate with theoretical
curves when working with blends, in particular the
limit curve as the blend radius approaches 0. Dynamic
templates are compatible with both constrained and
space curves.

Figure 4. Curve constraints. a) No curve constraint. b)
Curve constraint established. c) Partial wrap with curve
constraint. d) After fusion of constrained curves.

We now describe the patch layout optimization or
“wrap” algorithm. The algorithm combines anchors
and curve constraints with the optimization of the 2D
parameterization and 3D geometric attributes of the
patch layout, into a single energy minimizing equation.

2.5 Patch layout optimization (“wrap”)

Using constrained optimization to fit a uv-mapping to
a mesh is a well studied problem. A number of
proposed energy functions offer tradeoffs between
stretching, shearing etc. Our algorithm is designed to
allow any algorithm posed as an energy function, such

as conformal maps [8], to be incorporated into the
overall patch layout optimization. Unfortunately,
however, existing techniques only allow a mapping to
be fitted where the target mesh is defined. The reality
of reverse engineering is that meshes obtained by 3D
acquisition techniques almost always are imperfect. In
particular, holes in under sampled areas, missing or
“jaggy” data near boundaries, and localized noise are
common artifacts. Existing methods rely on an
intermediate mesh editing step (in particular hole
filling and smoothing) before the fitting can take place.
Such a workflow is inefficient and wasteful, and it
offers no guarantees that the edited regions resemble
the physical object (note that while this loss of
accuracy may not be an issue for entertainment
applications, it is critical for most industrial
manufacturing and design workflows.) Furthermore, it
ignores the fact that, for many manufacturing and
design applications, exact CAD data is typically
available in the very areas where the scanning process
produces artifacts: boundaries and features of
manufactured parts are typically constrained by 3D
curves and 2D primitives; constraints expressed in
terms of curves floating freely in space.
The “wrap” algorithm is thus an energy optimization
method that fits a template patch layout to a target
mesh with the following properties:
• Satisfy point anchor and curve constraints.
• Conform to regions of reliable target mesh data.
• Cap holes in mesh data and ignore noisy mesh data.
The algorithm implementation is an extension of the
method described in [16]: we solve the non-linear
optimization problem formulated above by reducing
each shape or parameter constraint into a set of
resulting forces on the patch layout points, which are
moved subject to the forces iteratively. In addition to
the parameter forces Ffair and Farc described in [16] for
face-points, we add shape and constraint based forces
Ftp and Fcon for space-points and a force Ffold to convert
back and forth between face-points and space-points.
The resultant force Fresult on any point is given by:
 Fresult= α*Ffair+ β*Farc + γtp*Ftp+ γcon*Fcon+ γfold*Ffold,
where α, β, γtp ,γcon ,γfold as in [16] are scalar multipliers
to control the relative magnitude of forces. The new
forces Ftp , Fcon and Ffold only apply to space-points.
Every iteration, a point is displaced by Fresult in 3D for
a space-point and projected on the mesh along Fresult
for a face-point as in [16].
Ftp is a shape-based 3D thin-plate force that ensures
the unconstrained regions of the fitted surface conform
to the curvature at the boundaries of the mesh, while
Ffair and Farc minimize parametric distortion in both
constrained and unconstrained areas of the surface.

Fcon is a constraint force ||Pc-P|| that attracts a point P
that is anchored or part of a curve constraint towards
its constraint point Pc (P is attracted to a corresponding
point Pc on a curve constraint based on arc-length).
Ffold is a folding force that attracts a space-point that is
incident to at least one face-point to the target mesh.
Ffold measures the local shape deformation between
constrained and unconstrained regions of the patch
layout. Figure 5 shows a hybrid curve with face-point,
Pseed, incident to a space point, Pfoldable. Marching along
the mesh in the direction obtained by projecting the
offset vector to the tangent plane yields a new face
point, Pfolded. Ffold represents the quaternion rotation of
(Pseed -Pfoldable) to (Pseed -Pfolded) such that γfold*Ffold is a
fractional rotation of Pfoldable towards Pfolded.
We now address how and when points change state
from face-points to space-points and vice-versa.
Moving face-points to space. A face-point is updated
by moving it from face to face along the mesh [16].
During this process, if the point moves to a boundary
face, the mesh constraint is lifted.
Moving space-points to the target mesh. During the
iteration process if the constraint distance ||Pc-P|| falls
below a threshold, the point P is moved to Pc and its
state changed from a space-point to a face-point.
Similarly, if the angle between vectors (Pseed -Pfoldable)
and (Pseed -Pfolded) falls within a given tolerance, Pfoldable
is moved to Pfolded and its state changed from a space-
point to a face-point. If a hole is encountered while
marching along the surface, Pfolded is obtained by
moving in the direction of the tangent vector to the
projected curve (ie. Pfolded will float in space). Since
only space-points incident to at least one face-point are
folded, the anchor and curve constraint points of a
patch layout change state to face-points first. These
points then propagate other face-points by folding.

P

P

P

foldable

folded

seed

d

�y�����yyyyy
Mesh

Curve

d

α�
�
�

Figure 5. Space-point, face-point result after folding.

The angle tolerance parameter determines how
conservative the folding proceeds: if the tolerance is
high, many points will be folded during each iteration,
likely resulting in excessive noise. If it is too low, no
points will be folded. In our implementation, this
consideration is hidden from the user using a simulated

annealing technique, automatically raising or lowering
the tolerance based on how many points are folded, in
each iteration.The shape deformation heuristic could
be implemented in other ways; the key idea is simply
to augment the parameter and shape optimization step
with a force that captures this optimization criteria.

3 Results

We have dealt with an increasingly diverse set of
workflows and practical applications of dynamic
templates such as patch layout reuse during industrial
design iterations, re-meshing of objects to conform to a
given mesh topology and morphing characters. To
illustrate our results we pick two case studies, the first
from industrial design and the second from film and
entertainment, to emphasize the generality of our
overall approach.

3.1 Automotive Design

The conceptual design phase in automotive design involves
many transitions between the physical and digital
manifestations of a model. Design iterations with
incremental changes are common due to the high cost of
dramatically altering a model.
Figure shows typical changes that would be part of a design
iteration. Figure 10a shows a scanned mesh of the front
quarter of a car with a set of feature curves and
corresponding surfaces. Figure 10b shows the mesh after it
has been remodeled. Four different types of changes are
indicated. The first and largest is a precise shortening of the
fender as a result of a scale operation (seen as the slight
offset between template and mesh in insert Figure 10b-i. The
second is a rounding of the depression in the fender resulting
from smoothing a clay model (Figure 10b-ii). The third is the
incremental addition of surface detail such as the tubular
structure in the middle of the fender (Figure 10b-iii). Also
note the hole on the headlight that could represent deleted
surface detail or an artifact of the scanning process (Figure
10b-iv). Figure 10c) shows the result of a simple snap
operation (using the k-d tree containing mesh faces (see
section 0) for maximum accuracy). Note that the snap only
alters the patches that change as a result of the mesh
modification. Also note the satisfactory results of snapped
templates in the altered regions around the fender and
headlight, as long as the amplitude of the modifications to
the mesh is small. Finally, Figure 10d shows how allowing
points to migrate off the surface, causes points stuck around
the hole in the headlight significantly improves the surface
quality of the reused patch layout. The workflow shown here
is representative of the iterations involved in an automotive
design change – iterations that typically take weeks or
months and are extremely costly.
Figure 11 shows a more advanced use of hybrid spring
optimization. We emphasize that the mesh (shown in

Figure 11a) deliberately was chosen for its poor quality
and numerous artifacts to demonstrate the robustness
of hybrid springs. Specifically, it contains substantial
noise, small holes and cracks, and larger holes present
in the actual part. Figure 11b-c) shows a single hybrid
spring fitted to the entire mesh. First, a space spring
was created the top of the model. Using strategically
placed anchors, part of the spring was wrapped to the
upper part of the mesh. The boundary curves were then
moved to their final position (see Figure 11b), causing
the remaining parts of the spring to wrap onto the mesh
like a rubber sheet. Notice how the spring covers all
holes smoothly and how the parameterization is natural
even in highly distorted areas. The final spring is
shown in Figure 11c). Note that it was downsampled
from an original 2,048x2,048 resolution to make the
iso-parameter lines stand out clearly in the image.
Although the entire session took nearly one hour using
our current system, no existing automatic algorithm
known to us would have yielded the same quality
parameterization. Until such automation becomes
feasible, hybrid springs presents a new way to
approach highly challenging surfacing tasks.

3.2 Entertainment

We typically encounter organic forms in entertainment
applications. Commonly used workflows involve the
data reuse of a given patch layout for the geometric
skin of an entire cast of characters. Figure 6a shows a
3D mesh acquired by a full body scanner. The
objective of this case study is to map the surfaced
model (Figure 6b) to the target (Figure 6d). The
workflow presented here is analogous to that used for
several 3D morphing sequences in the motion picture
“X-Men” [13]. Another major reason for reuse of
patch layout on characters is that topology specific
skinning, setup and animation developed for one
character can also be reused on others.
The first step is to detach the surface network, creating
a template. The template corresponding to Figure 6b is
seen in Figure 6c. Since this is a complex model with
considerable detail in the face and feet regions, the
template will be mapped in two stages: first, the
detailed regions will be mapped with user guidance
and second, the torso, arms, and legs will be
automatically attached using curve constraints.
The face and feet are aligned manually with the target
mesh (see Figure 7b). Note that the feet are
deliberately scaled bigger than the feet of the target
mesh. This is for visual clarity to make it easier to see
and align the anchors shown in 7c-d. The
anchors are computed automatically. The user can then

make fine adjustments, adding or deleting anchors
interactively.

Figure 6. a) Original mesh. b) Original surfaced mesh.
c) Template. d) Target mesh. e) Fitted template.

Figure

Figure 7 a) Template without face and shoes. b) Target
mesh with face and shoe templates aligned. c) Close-
up of face (with anchors). d) Close-up of shoes (with
anchors).

Once the anchors are in place, the wrap algorithm
automatically maps the template to the target mesh.
Figure 12 shows snapshots of the display taken while
wrapping the right foot of the model.
Figure 12a shows the template, which has the shape of
the original mesh (Figure 12a).
Figure 12b shows the state after a few iterations, where
the anchors have started moving towards the mesh. In
Figure 12c, the anchors have reached the mesh and the
curves and springs have begun the wrapping process.
Figure 12d and
Figure 12e show further progress and a few springs
(shown in blue) are now finished surface objects.

Figure 12f shows the result after wrapping. The total
time for wrapping the face and feet was 20 seconds
(2GHz Pentium IV CPU, nVIDIA GeForce 2 card).
With the most detailed regions in place, the next step is
to map the large part of the template corresponding to
the body. Figure 13a) shows the differences between
the template and target geometries.
Articulated figures, possibly in different poses, are
aligned well by deforming the template based on the
affine transforms that map the skeleton of the template
to that of the target mesh 13b). Curve constraints are
used to line up the seams between the template and the
already surfaced head and feet 13c+d).
The total time for the mapping between Figure 13b and
Figure 13e was 35 minutes: 34 minutes on alignment
operations and anchor editing on the face and feet and
1 minute for the wrap algorithm. A further 20 minutes
was spent on post-editing to generate a patch layout of
the quality that would take an experienced user up to a
day to create from scratch.

Figure 8. Mirroring example. a) Venus head model . b)
One half surfaced. c) Mirrored template with curve
constraints. d) Result of wrapping. e) Result after fixing
one patch that the crosses plane of symmetry.

Also notable is the reuse of surfacing data on the same
model, whereby only half of near symmetric models
need be surfaced. The other half is created by mapping
the surfaced half as a mirrored template, using the
plane of symmetry as a curve constraint. An example
of this is shown in Figure 8. This workflow is
commonly in both entertainment and design
applications. The patch layout also illustrates why

automated techniques such as [24] need to be
augmented by user expertise to capture the flow of
geometry. Capturing geometric flow in a model is
essential if the model is to be animated. We capture
user expertise here by not only using the patch layout
connectivity of the template as in [24] but the patch
layout geometry of a manually surfaced model with
similar geometric flow.

4 Conclusion

This paper presents an approach for mapping layouts
of parametric surface patches to a target 3D geometry.
The final aim of our work is to automate as far as
possible the feature-based placement of a patch layout,
assuring both boundary and internal parametric flow
along features of the target geometry. At the same time
we acknowledge an element of aesthetic and domain
expertise that is best left under user control. We,
therefore, provide simple user interactive control over
various stages of the mapping process, allowing the
user a choice of automation or manual intervention.
Our algorithm has evolved over the past three years
since its commercial deployment and its current
presentation is a robust general technique that is
applicable to various workflows and relatively
insensitive to incomplete and noisy target geometry.
We hope this paper will stimulate research interest in
this new area with important industrial applications.
As stated in the introduction, many other solutions to
the overall problem as well as its subproblems could be
envisioned. Exploring such alternative approaches is
an interesting area for future work. Especially
interesting is more advanced use of feature extraction:
by analyzing the target mesh and the patch layout,
more correspondences could be computed
automatically, which would further reduce the
interactive workload. It is doubtful that a fully
automatic approach could ever completely replace an
experienced user, but the more intelligence and
automation that can be integrated in the retargeting
process, the better.

References

[1] Allen B., Curless B., Popovic Z. Articulated Body Deformation

From Range Scan Data. Proceedings of SIGGRAPH 02.
Computer Graphics Proceedings, Annual Conference Series,
pp. 612-619.

[2] Alliez, Pierre and Mathieu Desbrun. Progressive Compression
for Lossless Transmission of Triangle Meshes. Proceedings of
SIGGRAPH 2001. Computer Graphics Proceedings, Annual
Conference Series. pp. 195-202, 2001.

[3] Alliez, P. Cohen-Steiner D., Devillers O., Levy B. and Desbrun
M. Anisotropic Polygonal Remeshing. Proceedings of
SIGGRAPH 2003. Computer Graphics Proceedings, pp. 485-
493, 2003.

[4] Beier, Thaddeus and Shawn Neely. Feature-based Image
Metamorphosis. Computer Graphics (Proceedings of
SIGGRAPH 92). 26 (2), pp. 35-42, 1992.

[5] Bennis, Chakib, Jean-Marc Vézien, Gérard Iglésias, André
Gagalowicz. Piecewise surface flattening for non-distorted
texture mapping. Proceedings of SIGGRAPH 91. Computer
Graphics Proceedings. pp. 237-246, 1991.

[6] Besl, P. and N. McKay. A Method for Registration of 3-D
Shapes. Trans. PAMI, Vol. 14, No. 2, 1992.

[7] Blanz, Volker and Thomas Vetter. A Morphable Model for the
Synthesis of 3D Faces. Proceedings of SIGGRAPH
99. Computer Graphics Proceedings, Annual Conference
Series. pp. 187-194, 1999.

[8] Matthias, E., DeRose T., Duchamp T. Hoppe H., Lounsbery M.
and Stuetzle W. Multiresolution Analysis of Arbitrary Meshes.
Proceedings of SIGGRAPH 95. Computer Graphics
Proceedings, Annual Conference Series. pp. 173-182, 1995.

[9] Gomez, Jonas, Bruno Costa, Lucia Darsa and Luiz Velho.
Warping & Morphing of Graphical Objects. Morgan Kaufmann
Publishers; ISBN: 1558604642. January 1999.

[10] Gotsman, Craig, Gu Xianfeng and Sheffer Alla. Fundamentals
of spherical parameterization of meshes. SIGGRAPH
03. Computer Graphics pp. 358-363, 2003.

[11] Gu, Xianfeng, Steven J. Gortler, Hugues Hoppe. Geometry
Images. ACM Transactions on Graphics 26 (3). pp. 355-361.
2002.

[12] Guskov, Igor, Wim Sweldens, Peter Schroeder. Multiresolution
Signal Processing for Meshes. Proceedings of SIGGRAPH 99.
Computer Graphics Proceedings, pp. 325-334. 1999.

[13] Kaufman, Debra. “Simply Marvel-ous”, Computer Graphics
World, August 2000.

[14] Kent, James R., Wayne E. Carlson and Richard E. Parent.
Shape transformation for polyhedral objects. Computer
Graphics (SIGGRAPH 92). 26 (2), pp. 47-54, 1992

[15] Khodakovsky, Andrei, Peter Schröder and Wim Sweldens.
Progressive Geometry Compression. Proceedings of
SIGGRAPH 2000. Computer Graphics Proceedings, pp. 271-
278, 2000.

[16] Krishnamurthy, Venkat and Marc Levoy. Fitting Smooth
Surfaces to Dense Polygon Meshes. SIGGRAPH 96. Computer
Graphics Proceedings, pp. 313-324, 1996.

[17] Lee, Aaron, David Dobkin, Wim Sweldens and Peter Schröder.
Multiresolution Mesh Morphing. Proceedings of SIGGRAPH
99. Computer Graphics Proceedings, Annual Conference
Series. pp. 343-350, 1999.

[18] Lee, Aaron W. F., Wim Sweldens, Peter Schröder, Lawrence
Cowsar and David Dobkin. MAPS: Multiresolution Adaptive
Parameterization of Surfaces. Proceedings of SIGGRAPH
98. Computer Graphics Proceedings, pp. 95-104, 1998.

[19] Lerios, Apostolos, Chase D. Garfinkle and Marc Levoy.
Feature-Based Volume Metamorphosis. Proceedings of
SIGGRAPH 95. Computer Graphics Proceedings, Annual
Conference Series. pp. 449-456, 1995.

[20] Levin, Adi. Interpolating Nets of Curves by Smooth
Subdivision Surfaces. Proceedings of SIGGRAPH 99.
Computer Graphics Proceedings, pp. 57-64.

[21] Lévy, Bruno. Dual Domain Extrapolation. Proceedings of
SIGGRAPH 2003. Computer Graphics Proceedings, Annual
Conference Series. pp. 364-369, 2003

[22] Lévy, Bruno. Constrained Texture Mapping for Polygonal
Meshes. Proceedings of SIGGRAPH 2001. Computer Graphics
Proceedings, Annual Conference Series. pp. 417-424, 2001

[23] Lévy, Bruno, Sylvain Petitjean, Nicolas Ray, Jérome Maillot.
Least Squares Conformal Maps for Automatic Texture Atlas
Generation. ACM Transactions on Graphics. 21 (3). pp. 362-
371. 2002.

[24] Litke, N., A. Levin, P. Schroeder. Fitting Subdivision Surfaces.
IEEE Visualization 2001, pp 319-324.

[25] Litwinowicz, Peter and Gavin Miller. Efficient Techniques for
Interactive Image Placement. Proceedings of SIGGRAPH 94.
Computer Graphics Proceedings, pp. 119-122, 1994.

[26] Maillot, Jérôme, Hussein Yahia, Anne Verroust. Interactive
Texture Mapping. Proceedings of SIGGRAPH 93. Computer
Graphics Proceedings, Annual Conference Series. pp. 27-
34, 1993

[27] Praun, Emil, Wim Sweldens and Peter Schröder Consistent
Mesh Parameterizations. Proceedings of SIGGRAPH
2001. Computer Graphics Proceedings, Annual Conference
Series. pp. 179-184, 2001.

[28] Praun, Emil and Hughes Hoppe. Spherical Parameterization
and Remeshing. Proceedings of SIGGRAPH 2003. Computer
Graphics Proceedings, Annual Conference Series. pp. 340-
349, 2003.

[29] Preparata, Franco P. and Michael Ian Shamos. Computational
Geometry: An Introduction. Springer Verlag, ISBN:
0387961313, January 1991.

[30] RapidForm. INUS Technology Inc., 2001.

[31] Rusinkiewicz, Szymon and Marc Levoy. Efficient Variants of
the ICP Algorithm. 3rd International Conf. on 3D Digital
Imaging and Modeling (3DIM), 2001.

[32] Sander, Pedro V., John Snyder, Steven J. Gortler and Hugues
Hoppe. Texture Mapping Progressive Meshes.
Proceedings of SIGGRAPH 2001. Computer Graphics
Proceedings, pp. 409-416, 2001.

[33] Sederberg, Thomas W. and Eugene Greenwood A physically
based approach to 2D shape blending. Computer Graphics
(Proceedings of SIGGRAPH 92). 26 (2), pp. 25-34, 1992.

[34] Varady, T., P. Benko, G. Kos, G. Renner, V. Weiss.
Segmentation and Surface Fitting in Reverse Engineering. In
Machining Impossible Shapes. Eds. G. Ollling, B. K. Choi, R.
B. Jerard, IFIP TC5 WG5.3, Kluwer Academic, 1999, pp. 167-
172.

[35] Weiss, V. Reverse Engineering Free-Form Shapes. PhD
Dissertation. Geometric Modeling Studies, GML 2000/2,
Computer and Automation Research Institute, Budapest, 2000.

[36] Weiss, V., L. Andor, G. Rennder, T. Varady. Advanced Surface
Fitting Techniques. Computer Aided Geometric Design. 2002.

[37] Zwicker, Matthias, Mark Pauly, Oliver Knoll and Markus
Gross. Pointshop 3D: An Interactive System for Point-Based
Surface Editing. ACM Transactions on Graphics 26 (3). pp.
322-329. 2002.

Figure 9. Wrap: a) Mesh with feature map. b)
Automatically extracted blend centerlines. c) Space
spring with anchors before mapping. d) Spring fully
wrapped onto the mesh.

Figure 11 a) Mesh. b) Mesh + Spring. c) Hybrid spring.

Figure 12.The wrap algorithm: intermediate steps.

 Figure 10 a) Car model with patch layout. b) After edits
to the mesh. c) After snap. d) After detach and relax of
spring samples near the hole.

Figure 13. a) Partially surfaced target mesh with the
remaining template superimposed. b) After local
orientation of articulations. c) Curve constraints
between neck and face components. d) Curve
constraints between legs and feet.

	1. Introduction
	Feature based parametric mapping
	Surface Fitting
	1.3 Overview

	Dynamic templates
	2.1 Template creation (detachment)
	2.2 Alignment
	2.3 Template attachment

	2.4 Feature-based automated fitting
	2.5 Patch layout optimization \(“wrap”\)

	3 Results
	3.1 Automotive Design
	3.2 Entertainment

	4 Conclusion
	References

