
Volume 0 (1981), Number 0 pp. 1–11 COMPUTER GRAPHICS forum

SketchSoup: Exploratory Ideation using Design Sketches

R. Arora1,2,3 and I. Darolia2 and V. P. Namboodiri2 and K. Singh1 and A. Bousseau3

1DGP Lab, University of Toronto, Canada
2Department of Computer Science, IIT Kanpur, India

3GraphDeco team, Inria Sophia-Antipolis, France

(a) Input sketch images (b) Registration (top) and
interpolation space (bottom)

(c) Warping (top) and non-
uniform blending (bottom)

(d) Oversketching (e) Augmenting the interpolation
space

Figure 1: SketchSoup takes an unstructured set of sketches as input, along with a small number of correspondences (shown as red dots) (a),
registers the sketches using an iterative match-warp algorithm harnessing matching consistency across images ((b), top), and embeds the
sketches into a 2D interpolation space based on their shape differences ((b), bottom). Users can explore the interpolation space to generate
novel sketches, which are generated by warping existing sketches into alignment((c), top), followed by spatially non-uniform blending ((c),
bottom). These interpolated sketches can serve as underlay to inspire new concepts (d), which can in turn be integrated into the interpolation
space to iteratively generate more designs (e). (Some sketches courtesy Spencer Nugent.)

Abstract
A hallmark of early stage design is a number of quick-and-dirty sketches capturing design inspirations, model variations, and
alternate viewpoints of a visual concept. We present SketchSoup, a workflow that allows designers to explore the design space
induced by such sketches. We take an unstructured collection of drawings as input, along with a small number of user-provided
correspondences as input. We register them using a multi-image matching algorithm, and present them as a 2D interpolation
space. By morphing sketches in this space, our approach produces plausible visualizations of shape and viewpoint variations
despite the presence of sketch distortions that would prevent standard camera calibration and 3D reconstruction. In addition,
our interpolated sketches can serve as inspiration for further drawings, which feed back into the design space as additional
image inputs. SketchSoup thus fills a significant gap in the early ideation stage of conceptual design by allowing designers to
make better informed choices before proceeding to more expensive 3D modeling and prototyping. From a technical standpoint,
we describe an end-to-end system that judiciously combines and adapts various image processing techniques to the drawing
domain – where the images are dominated not by color, shading and texture, but by sketchy stroke contours.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
Algorithms

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

1. Introduction

The early ideation stage of conceptual design is dominated by
rapidly drawn freehand sketches whereby designers externalize
their imagination into an evolving design (Figure 2). Such sketches
are sparse and focus on capturing the essence of the shape being de-
signed. They allow designers to quickly create and communicate a
mental design space to peers and clients, by expressing model vari-
ations in the drawings and by showing different viewpoints; often
leaving regions of the drawing ambiguous and subject to interpre-
tation [ES11]. Automatically turning this mental design space into
a computationally explicit one is the important but largely unad-
dressed problem for which we present our solution – SketchSoup
(Figure 1).

Figure 2: Designers explore the shape of a concept by drawing
many variations from different viewpoints. Drawing by Spencer Nu-
gent on sketch-a-day.com

Design exploration at the ideation stage has great significance
as it can catch and avoid design problems that are costly later in
the design pipeline. Yet, while post-ideation conceptual model-
ing has been well studied [NISA07, BBS08, SBSS12, XCS∗14],
there is little research, barring tools for architectural drawing
[DXS∗07, PKM∗11], that supports the earlier ideation stage of the
design process. Conceptual modeling tools require the designer to
follow drawing principles and create simplified vector sketches,
slowing down a designer and distracting from the central ideation
goal of exploring a design space quickly.

Our sketches are dominated by many imperfect and often in-
complete strokes – an artifact of the efficiency with which they
are executed – and further convey the early and unfinished na-
ture of the design. Vectorizing and lifting these sketches into 3D
for the purpose of constructing a 2D design space is thus both
difficult [OK11, BC13] and unnecessary. While crystallized prod-
uct design concepts can be represented by a cleaned-up network
of sketched strokes with coherent geometric properties [XCS∗14],
this is not an assumption we can make of arbitrary drawings at the

ideation stage. Moreover, ideation and early concept drawings are
often executed on paper, as and when inspiration strikes, necessitat-
ing the need for handling raster inputs. However, image-based mod-
eling and rendering techniques designed for natural [CDSHD13] or
even cartoon-like images [RID10] are not directly applicable. Un-
like natural images, ideation sketches are sparse, with only a small
minority of pixels providing information for image matching. Such
sketches are also noisy, and may represent inaccurate or inconsis-
tent projections of a depicted shape, confounding view calibration
methods such as structure-from-motion [SSS06]. Model variations
depicted in sketches further requires estimating non-rigid transfor-
mations between the sketches.

Our contribution is the first approach to enable the interactive
exploration of the continuous design space induced by a collec-
tion of rough ideation sketches. Smooth view and shape transitions
help understand the relationships between different design alter-
natives [HR07], and the interpolated drawings can serve either as
design alternatives themselves or as inspirational underlays for the
creation of new concepts.

From a technical standpoint, SketchSoup is enabled by the care-
ful design of an end-to-end solution that accounts for properties
of design sketches to successfully perform sketch filtering, regis-
tration, warping and blending. We employ a multi-image match-
ing algorithm to identify the common features present in sev-
eral sketches while neglecting the strokes that are specific to each
sketch. Designers can optionally refine these matches. We then
exploit this information to guide both image warping and image
blending. In particular, we propose a novel image blending scheme
that adjusts the contribution of the strokes according to the num-
ber of images where they appear: strokes that are present in many
sketches are persistent throughout interpolation, while strokes that
are only present in one sketch disappear quickly. This scheme re-
duces ghosting artifacts when creating novel sketches from existing
ones. Finally, we embed the sketches in a 2D interpolation space us-
ing multi-dimensional scaling, where the relative distance between
the sketches reflects their similarity as measured by their motion
field magnitude. When dealing with multi-view sketches, motion
due to shape variation is typically smaller in magnitude than that
due to changes of viewpoints. The embedding thus provides a plau-
sible estimate of relative camera positions, which gives designers
the illusion of performing small rotations of the object in 3D.

2. Related Work

Our approach brings together the areas of sketch-based modeling
and image-based rendering. We briefly discuss these two domains
in the context of SketchSoup.

Sketch-based modeling and interpolation. Sketch based mod-
eling systems aim at creating consistent 3D models from draw-
ings [OSSJ09]. Multi-view approaches adopt an iterative workflow
where users progressively sketch strokes over existing or transient
surfaces [NISA07, BBS08]. Single-view algorithms strive to esti-
mate a complete 3D model from a clean vector drawing [XCS∗14].
We see our approach as a preliminary step for sketch-based mod-
eling by allowing designers to explore a range of design concepts
using rough unstructured preparatory drawings in 2D, well before

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

attempting to model anything in 3D. Sketch-based 3D modelers
also assume and construct a unique and definitive 3D shape repre-
sentation for any sketch, while our method is meant to iteratively
explore a collective of variations on a design concept, from which
to select one or more to take forward along the design pipeline.

Our approach is closer in spirit to drawing interpolation meth-
ods. In particular, Rivers et al. [RID10] describe a system to pro-
duce view interpolations from cartoon drawings that resemble ours.
However, their method relies on vector drawings that are deformed
by the user in each keyframe, which implicitly provides perfect
correspondences. We also share the motivation of Baxter and An-
jyo [BA06], who introduce a doodle space to create new drawings
by interpolating a few examples. However, their system takes, as
input, vector drawings executed using the same drawing sequence,
which makes their stroke-matching algorithm inapplicable to the
rough bitmap sketches we target. Similarly, the later system by
Baxter et al. [BBA09] only registers the outer boundary of 2D
shapes, while we also register inner strokes. Our goal is also re-
lated to the one of Shao et al. [SLZ∗13] who interpret sketches of
objects composed of articulated parts. Here again, user intervention
is necessary to model the object with simple geometric shapes. We
instead strive to interpolate between 2D sketches without requir-
ing any explicit 3D reconstruction. Our approach thus shares natu-
ral similarities with the problem of 2D cartoon registration and in-
betweening [SDC09, WNS∗10, XWSY15], such as the concept of
alternating between feature matching and shape-preserving regular-
ization to warp one image onto another [SDC09]. However, while
successive keyframes of cartoon animations have many features in
common, we aim at registering design sketches that have similar
content overall but different details at the stroke level. Finally, one
of the applications enabled by SketchSoup is to generate morphed
sketches that designers can use as underlays to draw new concept.
This use of underlays as guidance is similar in spirit to the Shadow-
Draw system [LZC11], although we aim at registering and morph-
ing a small number of user-provided sketches rather than blending
a large number of roughly aligned photographs.

Image-based rendering and morphing. Image-based rendering
methods vary wildly in terms of their target input complexity
[LH96, CW93, CDSHD13]. Our method is most comparable to ap-
proaches which use implicit geometric information, that is, 2D cor-
respondences between images [SD96]. Our work is also greatly in-
spired by the PhotoTourism system [SSS06] that provides inter-
active view interpolation as a way to explore unstructured photo-
collections of touristic sites. Similarly, our system offers a novel
way to experience the design space captured by an unstructured set
of sketches. However, while PhotoTourism exploits structure-from-
motion to register photographs of a static scene, we face the chal-
lenge of registering line drawings that contain variations of view-
points, shapes, and even styles. We thus share the motivation of Xu
et al. [XWL∗08] and Averbuch-Elor et al. [AECOK16] who reg-
ister and order multiple photographs of similar objects to create
animations of animal motion and view and shape transitions re-
spectively. However, while Xu et al. and Averbuch-Elor et al. select
a subset of images to form a smooth 1D animation path, we seek
to order all the provided drawings over a 2D interpolation space.
In addition, they only register the outer boundaries of the objects,

while our algorithm also builds correspondences between interior
parts.

Recent methods have improved on the classical morphing
technique by computing dense correspondences using optical
flow [MHM∗09], or by computing a half-way image for better
alignment [LLN∗14]. However, these techniques rely on pixel
neighborhoods to compute dense motion fields over natural im-
ages, which is poorly suited to sparse line drawings where many
neighborhoods look alike. Our approach instead builds upon a re-
cent multi-image matching algorithm [ZJLYE15], which we adapt
to work well with sketch input.

3. Registering Concept Sketches

High quality morphing requires high quality correspondences be-
tween images. However, design sketches contain many sources of
variations that make this requirement a challenge: they are drawn
from different viewpoints, they represent slightly different shapes,
and they are often polluted with decorative lines and hatching.

Fortunately, all the sketches in a collection represent a similar
object. The key to the success of our system is to leverage the re-
dundancy offered by all the sketches to be robust to the variations
specific to each sketch. In particular, we build on the concept of
cycle consistency, as introduced in related work on shape and im-
age matching [NBCW∗11,ZKP10,ZJLYE15]. This concept can be
summarized as follow: if point p in sketch Si matches point q in
sketch S j, and if point q in sketch S j matches point r in sketch Sk,
then by transitivity point p should also match point r. Cycle con-
sistency offers a way to detect high quality matches, as well as to
improve low quality matches by replacing them with better candi-
dates through transitivity.

Our approach follows the general methodology of the FlowWeb
algorithm [ZJLYE15], which optimizes an initial set of matches by
iterating three steps:

1. Cycle-consistency score. For each pair of images, for each
match, count how many other images confirm the match as part
of a consistent cycle.

2. Cycle-consistency improvement. For each pair of images, for
each match, replace it with an alternative if it increases its cycle-
consistency score.

3. Spatial propagation. For each pair of images, update the
matches by propagating information from high quality matches
to their low-quality spatial neighbors.

We refer the interested reader to [ZJLYE15] for a detailed descrip-
tion of the FlowWeb algorithm. We now describe how we tailored
this algorithm to the specifics of design sketches.

3.1. Sketch pre-processing

Hatching removal. Our goal is to build correspondences between
the sketch lines that represent contours and surface discontinuities.
However, these lines are often polluted by repetitive hatching lines
that convey shading and shadows. As a pre-process, we blur out
hatching lines by applying the rolling guidance filter [ZSXJ14], a

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

Figure 3: The rolling guidance filter prevents sketch details like
hatching (left) from contributing to the sketch’s inferred shape by
selectively blurring them out (right).

filter that has been specifically designed to remove repetitive tex-
tures in images while preserving other details like contours. Fig-
ure 3 shows the effect of this filter on a sketch.

Contour thinning and sampling. The original FlowWeb algo-
rithm is designed to compute dense correspondence fields between
natural images. However, concept sketches are predominantly com-
posed of sparse contours rather than dense shading and texture
areas. We thus designed our algorithm to build sparse correspon-
dences between point samples distributed along the contours of the
drawing. Since contours can have varying thickness and sketchy-
ness, we first locate their centerline by applying a small blur fol-
lowed by non-maximum suppression and hysteresis thresholding.
This filtering is similar in spirit to the Canny edge detector, except
that we process the image intensity rather than its gradient since
the contours in the drawing already represent the edges we want to
thin.

We then distribute candidate
point matches over the sketch
by sampling the thinned con-
tours. Our implementation gener-
ates point samples using a uni-
form grid of cell size 10×10 pix-
els. For each cell, we first try to
find contour junctions by detect-
ing Harris corners [HS88]. For

cells with no such junctions, a sample is positioned on the edge
pixel closest to the center (if any). On the left, we show the re-
sulting sampling on a typical sketch. This subsampling increases
processing speed by allowing the later use of a warping mesh that
is coarser than the image resolution. Nevertheless, alternative warp-
ing approaches based on dense regularization [SMW06, NNRS15]
could alleviate the need for sub-sampling.

3.2. Initializing the matches

Given two sketches represented as sets of points distributed along
the contours, our goal is now to find, for each point in one sketch,
the most similar point in the other sketch. Similar to prior work
[XWL∗08,CCT∗09], we use shape context [BMP02] as a local de-

scriptor to measure similarity between points in different sketches.
This descriptor encodes a log-polar histogram of the points around
the point of interest. Shape contexts are intrinsically invariant to
translations. They are easily made scale invariant by normalizing
all radial distances by the mean distance between the n2 point pairs
in the shape. Moreover, the coarse histogram representation makes
shape contexts robust against small geometric perturbations, occlu-
sions, and outliers typical of concept sketches.

Since shape contexts are histogram-based distributions, the cost
of matching two points is computed with a χ

2 test. In order to
take local appearance into account, we augment the shape con-
text cost with a patch appearance cost computed as the Gaussian
weighted intensity difference between small (9× 9 pixels) patches
around the two points. Following Belongie et al. [BMP02], we lin-
early combine the two costs, and then use a bipartite matching al-
gorithm known as the Hungarian algorithm [Mun57] to compute
the best matching between the two point sets. Further, to avoid
strong distortions, we only keep spatially local matches by prun-
ing out matches where the source and target points are farther than
dmin(h,w)/10e pixels from each other, where h and w are the
height and width of the sketch respectively. While we also exper-
imented with other descriptors (SIFT, SSD) and found them less
reliable than shape context, many alternatives exist such as recent
deep-learned features.

3.3. Computing and improving cycle consistency

Given an initial set of matches between all pairs of sketches, we
build on the FlowWeb algorithm to improve the matches by en-
couraging cycle consistency.

Cycle-consistency score. We denote T pq
i j the motion vector be-

tween point p in sketch Si and its matching point q in sketch S j.
The cycle-consistency score C(T pq

i j) denotes the number of other
sketches Sk that confirm this match by transitivity, up to a small
error tolerance ε

C̃(T pq
i j) = card{Sk 6∈ {Si,S j}

∣∣ ‖T pq
i j − (T pr

ik +T rq
k j)‖< ε,r ∈ Sk}.

(1)
We fix ε to 0.02×max(h,w) pixels in our implementation.

Note that we only consider cycles formed by triplets of images.
While higher degree cycles could be considered, 3-cycles have been
shown sufficient while remaining tractable [ZJLYE15].

Cycle-consistency improvement. Once each match has been as-
signed a consistency score, the second step of the FlowWeb algo-
rithm is to improve the matches by replacing them with alternatives
that have a higher score. These alternatives are found by transitiv-
ity. Given a match T pq

i j , the algorithm considers all other sketches
Sk 6∈ {Si,S j} and any alternative matching point q′ with motion

vector T pq′

i j = T pr
ik +T rq′

k j . The score of an alternative match is given
by the number of sketches Sl 6∈ {Si,S j,Sk} that confirm both seg-

ments T pr
ik and T rq′

k j . If the alternative match obtains a higher score

then T pq
i j is replaced by T pq′

i j .

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

3.4. Propagation with shape-preserving warp

The last step of the algorithm is to propagate information from
the high-quality matches to their low-quality neighbors, where we
identify high-quality matches as the ones with a consistency score
greater than 2. The original FlowWeb algorithm works on dense,
pixel-wise correspondences and relies on a consistency-weighted
Gaussian filter to propagate motion vectors in image space. How-
ever, such a filtering approach does not impose any regularization
on the resulting motion field, which in our experience can result in
strong distortions. We thus propose to perform spatial propagation
using an iterative matching/warping scheme similar to the as-rigid-
as-possible registration algorithm of Sýkora et al. [SDC09].

Consider a pair of sketches, we first embed the point samples
of the first sketch into a triangular warping mesh. We then warp
the mesh using the high quality matches as guidance, subject to
a regularization term that seeks to preserve the shape of the mesh
triangles. This warp aligns the first sketch to be closer to the second
one. We finally use the warped sketch to update the Shape Context
descriptor of each sample and to update the low-quality matches
by running the Hungarian algorithm with these new descriptors, as
described in Section 3.2. We repeat this process for 3 iterations.

Various strategies for shape preserving warps have been de-
scribed in image morphing and image-based rendering [ZCHM09,
LGJA09, SDC09]. We follow the formulation of [LGJA09], which
minimizes an energy functional composed of two terms:

E = wcEc +wsEs. (2)

The first term tries to satisfy sparse correspondence constraints,
while the second term penalizes strong distortions. Note that while
we rely on a triangle mesh to compute these two terms, alterna-
tive meshless methods [SMW06, NNRS15] could also be used to
generate a dense regularized propagation.

Correspondence constraints. In our context, we set the corre-
spondence constraints as the set of matches P that have a consis-
tency score greater or equal to 2. For each such match T pq

i j ∈P , we
have a point p in sketch Si and a corresponding point q in sketch
S j. The warp should, therefore, satisfy Wi j(p) = q†. Let the tri-
angle in which p is contained be formed of the vertices (u,v,w)
and let α(p),β(p),γ(p) be the barycentric coordinates of p w.r.t
the triangle. The least-squares energy term for the correspondence
constraint is therefore

Ec(p) = C̃(T pq
i j)‖(α(p)u,β(p)v,γ(p)w)−q‖2, (3)

where we weight each match by its consistency score C̃(T pq
i j).

Points with cyclic consistency less than 2 are weighted by their
combined shape context and intensity score normalized to [0,1],
ensuring that such matches have a lower level of influence. We sum
this energy term over all matches T pq

i j ∈ Pi.

† Wi j(p) and T pq
i j both represent the motion vector at point p – while Wi j(p)

encodes the motion of sketch Si towards S j for all pixels, T pq
i j encodes the

motion of the sparse point set.

Triangle shape constraints. Consider a mesh triangle t = (u,v,w)
and attach a local orthogonal frame to it: {v−u,R90(v−u)}, where
R90 is a counterclockwise rotation by 90 degrees. Assume that u is
the origin of the frame. Now, in the frame, v is simply (1,0) and
let w = (a,b). To preserve the shape of this triangle, we need to
ensure that the transformation it goes through is as close as pos-
sible to a similarity transformation. Thus, we try to ensure that
the local frame remains orthogonal and the coordinates of the ver-
tices remain the same. The energy to express this constraint, with
(u′,v′,w′) denoting the warped coordinates of the triangle, is

Es(t) = ‖w′− (u′+a(v′−u′)+b(R90(v
′−u′)))‖2. (4)

We sum this energy term over all triangles of the mesh.

Energy minimization. All the energy terms are quadratic, and the
system of equations is overdetermined. This results in a standard
least-squares problem which we solve with QR decomposition. In
our experiments, we set wc = 5 and ws = 6.

3.5. User guidance

The algorithm described above converges to high-quality matches
for simple, similar sketches. However, real-world sketches contain
many variations of shape, viewpoint and line distribution which can
disturb automatic matching. We improve accuracy by injecting a
few user-provided correspondences in the algorithm, typically 3 to
5 annotations per image. The user only needs to provide correspon-
dences between the most representative sketch and other sketches.
We use these to automatically assign cycle-consistent correspon-
dences to all other sketch pairs using transitivity.

We keep the user-provided correspondences fixed during all
steps of the algorithm, and assign them the highest possible consis-
tency score of N− 2 (N is the number of input sketches) to ensure
that they impact other matches during cycle-consistency improve-
ment and spatial propagation.

4. Blending Concept Sketches

Once all sketches are registered, we interpolate them using warp-
ing and blending. While applications involving images with simi-
lar appearance and topology, such as image-based rendering [CD-
SHD13] and natural image morphing [LLN∗14] are served reason-
ably well by uniform alpha-blending, blending concept sketches
from disparate sources proves more challenging as misaligned
strokes produce severe ghosting.

We first describe how we compute a generalized warp function
from one sketch to a combination of other sketches. We follow up
with a description of our blending method, and the user interface to
control it. All these computations are performed in real-time.

4.1. Generalized warping function

Consider the N sketches input to the system, S1,S2, . . . ,SN . The
registration algorithm generates a family of pairwise warp func-
tions W = {Wi j},1≤ i, j ≤ N, such that applying the function W i j

on a pixel p ∈ Si moves it towards its matched position in S j.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

To move sketch Si in-between multiple sketches S j=1..N , we fol-
low [LWS98] that computes a generalized warp function as a linear
combination of the pairwise warps

Ŵi(p) =
N

∑
j=1

c jWi j(p),

where the contribution weights c1,c2, . . . ,cN satisfy ci ∈ [0,1], and
∑ci = 1. The interpolated sketch is given by the application of Ŵi
on Si, denoted as Ŵi •Si. We compute the generalized warp func-
tion for all the sketches in real time so that users can interactively
explore the interpolation space and create arbitrary combinations
of sketches.

4.2. Consistency weighted non-linear alpha blending

Analogous to the warping weights ci which determine the shape
of the interpolated sketch, one can define blending weights
α1,α2, . . . ,αN to combine the color information of the warped
sketches. The appearance of the resulting interpolated image S is
determined as

S =
N

∑
i=1

αi(Ŵi •Si).

Existing work on image blending often choose αi to be the same as
ci. In order to reduce the ghosting caused by this simple function,
we modify it to allow for non-uniform blending across the image
space, and to vary αi as a non-linear function of ci. The idea is
to follow linear alpha-blending for sketch contours that have good
matches, but to quickly suppress contours that have poor matches
as the contribution weight of their parent sketch decreases.

We utilize the combination of two sigmoid-like functions to
achieve this. We first define the matching confidence of pixels sam-
pled in Section 3.1 using their cyclic consistency.

conf(p ∈ Si) =
1

N−2

N

∑
j=1

c j×C̃(T pq
i j),

where p is matched to q in S j , and 1/(N− 2) is the normalization
factor. This confidence score is then propagated to all other pixels
via linear interpolation (see Figure 4a). Our blending function for a
pixel p in Si is defined as

αi(p,ci,k) =

{ m1
1+exp(−a(p,k)×(ci−2/3)) +n1 if i = argmax j(c j)

m2
1+exp(−a(p,k)×(ci−2/3)) +n2 otherwise,

where a(p,k) = (conf(p))−k. The values m1, n1, m2, and n2 are
fixed such that αi(p,0,k) = 0, αi(p,1,k) = 1, and both the cases of
the function evaluate to 2/3 at ci = 2/3. The non-linearity of the
blending function results in images with the highest contribution
ci = max j(c j) contributing more strongly to the final image ap-
pearance as compared to standard alpha blending. In addition, the
non-uniformity of the function in image space ensures that well-
matched regions smoothly transition into other images, while re-
gions with poor matching “pop” in and out of existence based on
which image has a high contribution.

The parameter k ∈ [0,5] is controlled by using a slider in our in-
terface. This allows the user to choose between mimicking alpha

blending at one extreme (k = 0), and drawing contours predom-
inantly from the image contributing the most to the interpolated
shape at the other extreme (k = 5). The resulting difference in the
interpolated image can be observed in Figure 4b. Finally, we nor-
malize the contrast of the interpolated image to avoid contrast os-
cillation during interactive navigation.

(a) S and con f (S) (b) Varying the blending parameter k

Figure 4: Visualizing the spatial distribution of matching confi-
dence over a sketch (a), with brighter regions depicting higher
matching confidence; and an example to show the impact on blend-
ing as the parameter k increases from left to right (b). Notice that
the poorly matched regions such as those with texture but no con-
tours disappear first.

4.3. User interface

We present the user with a planar embedding of the sketches, which
represents a 2D interpolation space. The embedding is computed
using metric multi-dimensional scaling [CC00] on average spatial
distance between pairwise sketch correspondences. The average
distance between any two sketches Si and S j is given by

di j =
1
2

(
∑p∈Si

‖Wi j(p)− p‖2

|Si|
+

∑q∈S j
‖W ji(q)−q‖2

|S j|

)
.

The embedding places similar sketches close to each other on the
plane. Users can also invert the embedding about either axis, or
switch the two axes with each other if they feel those variants rep-
resent a more natural orientation. When the sketches are very sim-
ilar in shape but differ in viewpoint, the arrangement gives an ap-
proximation of the 3D camera positions of the sketch viewpoints,
as illustrated in Figure 11 (cars, planes). Exploration of the de-
sign space then gives the impression of 3D-like rotations around
the concept, as shown in the accompanying video.

For rendering, we compute a Delaunay triangulation of the em-
bedding. The contribution of each sketch is determined by the tri-
angle under the user’s mouse pointer. The sketches corresponding
to the three vertices of this triangle contribute according to the
barycentric coordinates of the point, while all other sketches have
zero contribution. We also provide an alternate interface in which
a user can simply choose the contributions of the sketches by ma-
nipulating sliders, one for each sketch. This interface also allows
the user to turn off the blending equation, and use color informa-
tion from a single sketch of her choice. While the interpolation
space helps understand the relationship between various sketches,
the slider-based interface gives users full control on which sketches
they want to combine. Using either interface, a user can save the
current interpolation at any time and oversketch it using traditional
or digital methods to initiate the next design iteration with an aug-
mented design space.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

5. Evaluation

We now compare our algorithmic components with alternative so-
lutions designed for other types of images than sketches. We pro-
vide animated comparisons of morphing sequences as supplemen-
tal material.

Figure 5 shows the matches produced by the original FlowWeb
algorithm and by our adaptation. Since the original FlowWeb was
designed to build dense correspondences between natural images,
it also attempts to match points in the empty areas of the drawings.
For the sake of visualization, we only show the matches where both
points lie on a stroke, while we remove all other matches, which
contain one or more point in an empty area. This visualization re-
veals that our algorithm obtains more stroke-to-stroke matches, and
of higher quality than the matches found by the original algorithm.

Source sketch Target sketch [ZJLYE15] Ours

Figure 5: Matches obtained by the original FlowWeb algorithm,
compared to our adaptation for sketches. Notice the improvement
in quality as well as quantity of stroke-to-stroke matches.

Figure 6 compares our approach with our implementation of
the registration algorithm of Sýkora et al. [SDC09]. While similar
in spirit, our algorithm is customized for design sketches by us-
ing the ShapeContext descriptor, by sampling feature points along
strokes rather than over the entire image, and by using FlowWeb
for cycle consistency between multiple images. These different in-
gredients yield a better alignment of the design sketches overall.
We also show the effect of applying a dense registration algo-
rithm [GKT∗08] after aligning the sketches. This post-process was
used with success by Sýkora et al. to refine the registration of car-
toon images that mostly differed in pose but shared similar details.
In contrast, the design sketches we target often contain very dif-
ferent pen strokes and as such cannot be aligned with sub-pixel
accuracy. The resulting local distortions are especially noticeable
on animated sequences since this post-process is applied on a per-
frame basis, which produces temporal artifacts (please refer to the
accompanying video). In cases where sketches have minor shape
differences, this post-process can be helpful (Figure 7), but still
leads to loss of interactivity and temporal artifacts (see accompa-
nying video). While their method does not explicitly support user
guidance, we augmented it to take advantage of user specified cor-
respondences, if available. Similar to our own algorithm, we en-
force these correspondences across all iterations.

Figure 6 also provides a comparison of our method with the
recent halfway-domain morphing algorithm [LLN∗14] using the
same user-provided correspondences. Similarly to the original
FlowWeb algorithm, the halfway-domain morphing builds dense
correspondences between the images, which often yields erroneous
matches between stroke pixels and empty areas, as also illustrated
in the accompanying video. In contrast, our method ensures that

stroke samples match to other stroke samples, up to the shape-
preserving regularization.

Finally, all the above algorithms have been developed for match-
ing and morphing pairs of images, and it is unclear how to general-
ize them to multiple images.

6. Results

We have applied our approach on a number of real-world design
sketches. Figure 11 shows the planar embeddings we obtain for sev-
eral sets of sketches, as well as some of the interpolations generated
by our algorithm during interactive exploration. The accompanying
video shows how the shape and view transitions produced by our
morphing provide a vivid sense of continuous navigation within the
design space. In the field of data visualization, such animated tran-
sitions have been shown to improve graphical perception of inter-
related data as they convey transformations of objects, cause-and-
effect relationships and are emotionally engaging [HR07].

Figures 8 and 9 illustrate two application scenarios where our
interpolated sketches support the creation of new concepts. In Fig-
ure 8, a designer aligns two sketches of airplanes using our tool
before selectively erasing parts of each sketch to create a new mix-
and-match airplane with more propellers. In Figure 9, a designer
uses interpolated sketches as inspirational underlays to draw new
shapes. Once created, these new drawings can be injected back in
our algorithm to expand the design space for iterative design explo-
ration. The accompanying video shows how a design student used
this feature to design an iron. While informal, this user test con-
firmed that blended sketches form an effective guidance for design
exploration.

At the core, our algorithm relies on good quality shape con-
text matches for sketch alignment. In cases where the difference
in shapes of the drawn concepts is too high or the viewpoints are
very far apart, our algorithm fails to produce acceptable results, as
shown in Figure 10. Providing manual correspondences, or adding
more drawings to the dataset, can alleviate this limitation by relat-
ing very different sketches via more similar ones.

7. Conclusion

We have adapted and reformulated a number of 2D image pro-
cessing techniques to enable matching, warping and blending de-
sign sketch input. These ideas can impact other problems in the
space of sketch-based interfaces and modeling. In the future, we
also plan to explore the use of non-rigid 3D reconstruction algo-
rithms [VCAB14] to recover the 3D object depicted by multiple
concept sketches along with the variations specific to each sketch.

While there is a rich body of work in exploring collections of
well-defined 3D shapes, there are few tools to support the unstruc-
tured and messy space of design ideation. SketchSoup thus fills a
void, empowering designers with the ability to continuously ex-
plore and refine sparsely sampled design sketch spaces in 2D itself,
at the same level of detail and sophistication as the input sketches.
By registering and morphing unstructured sketch collections, au-
tomatically or with minimal user interaction, SketchSoup further
allows designers to present their design spaces better to others, via

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

(a) Source image (b) Target image (c) Sýkora et al. [SDC09] (d) [SDC09] + [GKT∗08] (e) Liao et al [LLN∗14] (f) Ours

Figure 6: Comparison of our approach for sketch alignment (f) with an existing natural image alignment algorithm [LLN∗14] (e); and
with a cartoon image alignment method [SDC09], the latter both with (d) and without (c) a dense alignment post-process. Red dots on
the input images show user correspondences. Fine-level distortions and misalignments have been indicated using orange and blue arrows,
respectively. Please refer to the accompanying video for animated versions of these comparisons.

Source sketch Target sketch Our result Post-processed

Figure 7: Applying a dense registration method [GKT∗08] as a
per-frame post-process on our method can improve alignment when
the shape difference between sketch pairs is small.

a layout that reflects design similarity and interpolated animations
that can better mimic animated view transitions and convey part
relationships between designs.

Acknowledgements

The authors thank Candice Lin for narrating the video. This work
was partially supported by research and software donations from
Adobe.

References
[AECOK16] AVERBUCH-ELOR H., COHEN-OR D., KOPF J.: Smooth

image sequences for data-driven morphing. Computer Graphics Forum
(Proc. Eurographics) 35, 2 (2016). 3

[BA06] BAXTER W., ANJYO K.-I.: Latent Doodle Space. Computer
Graphics Forum (2006). 3

[BBA09] BAXTER W., BARLA P., ANJYO K.-I.: N-way morphing for
2D Animation. Computer Animation and Virtual Worlds 20, 2 (2009). 3

[BBS08] BAE S.-H., BALAKRISHNAN R., SINGH K.: ILoveSketch:
As-natural-as-possible sketching system for creating 3d curve models.

Input sketches

Alignment (left) and selective combination (right)

Figure 8: Mixing parts of two sketches. Top: The two original
sketches. Bottom: Their aligned versions, and novel sketch gener-
ated by selective erasing parts of each drawings.

In Proceedings of the 21st Annual ACM Symposium on User Interface
Software and Technology (Monterey, CA, USA, 2008), UIST ’08, ACM,
pp. 151–160. 2

[BC13] BONNICI A., CAMILLERI K.: A circle-based vectorization al-
gorithm for drawings with shadows. In Proceedings of the International
Symposium on Sketch-Based Interfaces and Modeling (Anaheim, Cali-
fornia, 2013), SBIM ’13, ACM, pp. 69–77. 2

[BMP02] BELONGIE S., MALIK J., PUZICHA J.: Shape matching and
object recognition using shape contexts. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 24, 4 (4 2002), 509–522. 4

[CC00] COX T. F., COX M. A.: Multidimensional scaling. CRC Press,

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

Figure 9: Interpolations generated by our method (top) guide the
creation of polished novel sketches (bottom, with faded blue guid-
ance).

Figure 10: Limitation. Our algorithm fails to align sketches prop-
erly when the shape or view difference is too large.

2000. 6

[CCT∗09] CHEN T., CHENG M.-M., TAN P., SHAMIR A., HU S.-M.:
Sketch2photo: Internet image montage. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia) 28, 5 (2009). 4

[CDSHD13] CHAURASIA G., DUCHÊNE S., SORKINE-HORNUNG O.,
DRETTAKIS G.: Depth synthesis and local warps for plausible image-
based navigation. ACM Transactions on Graphics 32 (2013). 2, 3, 5

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for image syn-
thesis. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques (Anaheim, CA, 1993), SIGGRAPH
’93, ACM, pp. 279–288. 3

[DXS∗07] DORSEY J., XU S., SMEDRESMAN G., RUSHMEIER H.,
MCMILLAN L.: The mental canvas: A tool for conceptual architec-
tural design and analysis. In The 15th Pacific Conference on Computer
Graphics and Applications (Washington, DC, USA, 2007), IEEE Com-
puter Society, IEEE Computer Society. 2

[ES11] EISSEN K., STEUR R.: Sketching: The Basics. BIS, 2011. 2

[GKT∗08] GLOCKER B., KOMODAKIS N., TZIRITAS G., NAVAB N.,
PARAGIOS N.: Dense image registration through MRFs and efficient
linear programming. Medical image analysis 12, 6 (2008), 731–741. 7,
8

[HR07] HEER J., ROBERTSON G.: Animated transitions in statistical
data graphics. IEEE Transactions on Visualization and Computer Graph-
ics 13, 6 (Nov. 2007), 1240–1247. 2, 7

[HS88] HARRIS C., STEPHENS M.: A combined corner and edge de-
tector. In In Proc. of Fourth Alvey Vision Conference (Manchester, UK,
1988), Organizing Committee AVC 88, pp. 147–151. 4

[LGJA09] LIU F., GLEICHER M., JIN H., AGARWALA A.: Content-
preserving Warps for 3D Video Stabilization. ACM Trans. Graph. 28, 3
(7 2009), 44:1–44:9. 5

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Inter-
active Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, ACM,
pp. 31–42. 3

[LLN∗14] LIAO J., LIMA R. S., NEHAB D., HOPPE H., SANDER P. V.,
YU J.: Automating image morphing using structural similarity on a
halfway domain. ACM Trans. Graph. 33, 5 (Sept. 2014), 168:1–168:12.
3, 5, 7, 8

[LWS98] LEE S., WOLBERG G., SHIN S. Y.: Polymorph: morphing
among multiple images. Computer Graphics and Applications, IEEE
18, 1 (Jan 1998), 58–71. 6

[LZC11] LEE Y. J., ZITNICK C. L., COHEN M. F.: Shadowdraw: Real-
time user guidance for freehand drawing. ACM TOG (Proc. SIGGRAPH)
30, 4 (July 2011), 27:1–27:10. 3

[MHM∗09] MAHAJAN D., HUANG F.-C., MATUSIK W., RAMAMOOR-
THI R., BELHUMEUR P.: Moving gradients: A path-based method for
plausible image interpolation. ACM Trans. Graph. 28, 3 (July 2009),
42:1–42:11. 3

[Mun57] MUNKRES J.: Algorithms for the assignment and transportation
problems. Journal of the society for industrial and applied mathematics
5, 1 (1957), 32–38. 4

[NBCW∗11] NGUYEN A., BEN-CHEN M., WELNICKA K., YE Y.,
GUIBAS L.: An optimization approach to improving collections of shape
maps. In Computer Graphics Forum (2011), vol. 30, Wiley Online Li-
brary, pp. 1481–1491. 3

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.: Fiber-
mesh: Designing freeform surfaces with 3d curves. ACM Trans. Graph.
26, 3 (7 2007). 2

[NNRS15] NGUYEN C. H., NALBACH O., RITSCHEL T., SEIDEL H.-
P.: Guiding image manipulations using shape-appearance subspaces
from co-alignment of image collections. Computer Graphics Forum
(Proc. Eurographics) 34, 2 (2015). 4, 5

[OK11] ORBAY G., KARA L. B.: Beautification of design sketches us-
ing trainable stroke clustering and curve fitting. IEEE Transactions on
Visualization and Computer Graphics 17, 5 (2011), 694–708. 2

[OSSJ09] OLSEN L., SAMAVATI F. F., SOUSA M. C., JORGE J. A.:
Technical section: Sketch-based modeling: A survey. Comput. Graph.
33, 1 (Feb. 2009), 85–103. 2

[PKM∗11] PACZKOWSKI P., KIM M. H., MORVAN Y., DORSEY J.,
RUSHMEIER H., O’SULLIVAN C.: Insitu: Sketching architectural de-
signs in context. ACM Transactions on Graphics 30, 182 (12/2011 2011).
2

[RID10] RIVERS A., IGARASHI T., DURAND F.: 2.5d cartoon models.
ACM Trans. Graph. 29, 4 (July 2010), 59:1–59:7. 2, 3

[SBSS12] SHAO C., BOUSSEAU A., SHEFFER A., SINGH K.:
Crossshade: Shading concept sketches using cross-section curves. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2012) 31,
4 (2012). 2

[SD96] SEITZ S. M., DYER C. R.: View morphing. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 21–30.
3

[SDC09] SÝKORA D., DINGLIANA J., COLLINS S.: As-rigid-as-
possible image registration for hand-drawn cartoon animations. In Pro-
ceedings of International Symposium on Non-photorealistic Animation
and Rendering (New Orleans, Louisiana, USA, 2009), ACM, pp. 25–33.
3, 5, 7, 8

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

Input sketches Embedding Interpolation at orange dot Interpolation at green dot

Figure 11: 2D interpolation spaces and selected interpolated sketches for different concepts.

[SLZ∗13] SHAO T., LI W., ZHOU K., XU W., GUO B., MITRA N. J.:
Interpreting concept sketches. ACM Trans. Graph. 32, 4 (July 2013),
56:1–56:10. 3

[SMW06] SCHAEFER S., MCPHAIL T., WARREN J.: Image deforma-
tion using moving least squares. ACM Transactions on Graphics (Proc.

SIGGRAPH) 25, 3 (2006). 4, 5

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo tourism: Ex-
ploring photo collections in 3d. In SIGGRAPH Conference Proceedings
(New York, NY, USA, 2006), ACM Press, pp. 835–846. 2, 3

[VCAB14] VICENTE S., CARREIRA J., AGAPITO L., BATISTA J.: Re-

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

R. Arora & I. Darolia & V. Namboodiri & K. Singh & A. Bousseau / SketchSoup: Exploratory Ideation using Design Sketches

constructing pascal voc. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Columbus, Ohio, June 2014), IEEE
Computer Society. 7

[WNS∗10] WHITED B., NORIS G., SIMMONS M., SUMNER R., GROSS
M., ROSSIGNAC J.: Betweenit: An interactive tool for tight inbetween-
ing. Comput. Graphics Forum (Proc. Eurographics) 29, 2 (2010), 605–
614. 3

[XCS∗14] XU B., CHANG W., SHEFFER A., BOUSSEAU A., MCCRAE
J., SINGH K.: True2form: 3d curve networks from 2d sketches via selec-
tive regularization. ACM Transactions on Graphics (Proc. SIGGRAPH
2014) 33, 4 (2014). 2

[XWL∗08] XU X., WAN L., LIU X., WONG T.-T., WANG L., LEUNG
C.-S.: Animating animal motion from still. ACM Transactions on
Graphics (Proc. SIGGRAPH Asia) 27, 5 (December 2008), 117:1–117:8.
3, 4

[XWSY15] XING J., WEI L.-Y., SHIRATORI T., YATANI K.: Autocom-
plete hand-drawn animations. ACM Trans. Graph. 34, 6 (Oct. 2015),
169:1–169:11. 3

[ZCHM09] ZHANG G.-X., CHENG M.-M., HU S.-M., MARTIN R. R.:
A shape-preserving approach to image resizing. Computer Graphics Fo-
rum 28, 7 (2009), 1897–1906. 5

[ZJLYE15] ZHOU T., JAE LEE Y., YU S. X., EFROS A. A.: Flowweb:
Joint image set alignment by weaving consistent, pixel-wise correspon-
dences. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (Boston, MA, USA, June 2015), IEEE Computer Society.
3, 4, 7

[ZKP10] ZACH C., KLOPSCHITZ M., POLLEFEYS M.: Disambiguating
visual relations using loop constraints. In Computer Vision and Pattern
Recognition (CVPR) (San Fransisco, CA, USA, June 2010), IEEE Com-
puter Society, pp. 1426–1433. 3

[ZSXJ14] ZHANG Q., SHEN X., XU L., JIA J.: Rolling guidance filter.
In Computer Vision âĂŞ ECCV 2014, Fleet D., Pajdla T., Schiele B.,
Tuytelaars T., (Eds.), vol. 8691 of Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 815–830. 3

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

