Spatial Deformations: FFDs, wires, wraps...

Karan Singh

Dynamic Graphics Project dgp Dynamic Graphics Pro University of Toronto www.dgp.toronto.edu

What are spatial deformations?

Functional mapping from

$$\mathbb{R}^n \to \mathbb{R}^n$$

Axial Deformations

Affine Transformations

Nonlinear Deformations

Free-form Deformations Wires

Increasingly complex

Why spatial deformations?

Surface deformation may require the coordinated control of many points defining the surface.

Grid Deformation

Deformation used for film *Faim (NFB 1974)* using bilinear interpolation within grid cells.

Notion of spatial deformation

Bezier introduced the idea of deforming shape through a mapping implemented as a free-form (tensor product) spline.

Nonlinear deformations

Barr 1984: Apply an affine transformation whose parameters vary spatially.

Taper: $p'=S_{xy}p$, where the scale value s in the xy plane S_{xy} , is a function of p.z, s(z) = (maxz - z). (maxz - minz)

Nonlinear deformations

Barr 1984: Apply an affine transformation whose parameters vary spatially.

Axial Deformations

Lazarus et al 1994: Apply the transformation of a proximal reference frame along a curve.

Free-form Deformations

Sederberg and Parry 1986: Grid deformation in 3D using tricubic Bezier interpolation.

FFD Algorithm

- Define a local coordinate frame on a parallelopiped.
- Compute the (s,t,u) coordinates of any point in the parallelopiped.
- Impose an (I,m,n) grid of control points on the parallelepiped.
- Move the control points around.
- Evaluate new position of model point based on trivariate Bersntein polynomials or other type of volumes.

[T.Sederberg & S.Parry'86]

FFD Algorithm

• A point in the STU coordinate system:

$$\mathbf{X} = \mathbf{X}_0 + s\mathbf{S} + t\mathbf{T} + u\mathbf{U}.$$

$$s = \frac{\mathbf{T} \times \mathbf{U} (\mathbf{X} - \mathbf{X}_0)}{\mathbf{T} \times \mathbf{U} \cdot \mathbf{S}}, \ t = \frac{\mathbf{S} \times \mathbf{U} \cdot (\mathbf{X} - \mathbf{X}_0)}{\mathbf{S} \times \mathbf{U} \cdot \mathbf{T}}, \ u = \frac{\mathbf{S} \times \mathbf{T} \cdot (\mathbf{X} - \mathbf{X}_0)}{\mathbf{S} \times \mathbf{T} \cdot \mathbf{U}}$$

$$0 < s < 1, \ 0 < t < 1 \ \text{and} \ 0 < u < 1.$$

• A deformed point:

$$\mathbf{X}_{ffd} = \sum_{i=0}^{l} \binom{l}{i} (1-s)^{l-i} s^{i} \left[\sum_{j=0}^{m} \binom{m}{j} (1-t)^{m-j} t^{j} \left[\sum_{k=0}^{n} \binom{n}{k} (1-u)^{n-k} u^{k} \mathbf{P}_{ijk} \right] \right]^{n-k}$$

FFD Shortcomings

[T.Sederberg & S.Parry'86]

- Parallelopiped lattice shape limits deformation shape.
- No control over spatial distribution of control points.
- Bezier basis functions have a global influence.
- Discontinuity in deformed space at lattice boundary. How do overlapping lattices deform space?

FFD Shortcomings

- B-spline basis FFD (Purgathofer).
- Extended FFD (*Coquillart*)
- deCasteljau FFD (Chang & Rockwood)
- Catmull-Clark FFD (McCracken & Joy)
- Dirichlet FFD (Moccozet & Thalmann)

- Edit the lattice before associating the model with it.
- Arbitrary lattices:
 - Prismatic lattices
 - Tetrahedral
 - ...

Computing (s, t, u) coordinates

- Subdivision.
- Newton iteration.
- Projection (limited, but fast).

De Casteljau FFD

• Sequence of affine transformations

Catmull-Clark FFD

• Lattice = subdivision volume.

vertex point edge point face point cell point —

How do we parameterize a point in the lattice?

Catmull-Clark FFD

- Find position of *p* in lattice and hold local coordinates.
- Move lattice.
- Trace new position of *p* in new lattice using local coordinates.

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu

[R.MacCracken & K.Joy'96]

Dirichlet FFD

- Lattice implied by Voronoi space.
- Sibson coordinates used as a linear interpolant.
- Smoothed by multivariate Bernstein polynomials.

[L.Moccozet & N.Magnenat-Thalman'97

Continuity, overlap at lattice boundaries

Space deformations and surface resolution

• Surface resolution and topology is still a problem!

Coffeeeeeeeeeee...

Motivation for Wires and wraps

- To provide a direct object deformation tool that is independent of the object's underlying geometric representation.
- To provide a minimalist visual model of the object that highlights the important deformable features of the object.

Inspiration

- Wires define and control an object's features like a sculptor's armature.
- Projections of wire curves directly map to sketches or line drawings of the object.

Contributions

- Effective deformation technique employing space curves and implicit functions (wire).
- An implicit function primitive defined by space curves (wire).
- Effective deformation technique using polymeshes (wrap).
- Multiresolution modeling appeal of subdivision surfaces made applicable to arbitrary surface representations (wrap).
- Construction of the deformer from underlying geometry can be automated (wire, wrap).
- An efficient and controlled approach to the aggregation of multiple deformations (wire, wrap).

Wire Overview

- Wire definition and algorithm.
- Spatial control of wire parameters.
- Multiple wire interaction. •

•A free-form curve whose manipulation deforms an associated object (or space).

- **W** : *The wire curve*. A free-form curve representing the wire.
- **R** : *The reference curve*. A copy of **W** is made when objects are bound to the wire.
- **r** : Radius of influence around the wire.
- **s** : Radial scaling factor around the wire.
- **f** : Scalar sigmoid function $\mathcal{R}^+ \rightarrow [0,1]$ (density function).

Wire definition

Wire algorithm (Binding)

- •Binding an object to a wire < W,R,r,s,f >
- •For every point **P** representing the object:
 - Calculate *p_R*, the parameter value corresponding to the Euclidean closest point to *P* on curve *R*, *R(p_R)*.
 - Calculate F(P,R), the influence function for curve R at P.

Wire algorithm (Binding)

Influence function **F(P,R)** of a wire < **W**,**R**,**r**,**s**,**f** > at a point **P** :

$$F(P,R) = f(\frac{\|P-R(p_R)\|}{r}).$$

- •Deforming an object by the wire < W,R,r,s,f >
- •For every point **P** representing the object:
 - Scale **P** by a factor of **s** radially around **R**.
 - Rotate the result around *R(p_R)* by the angle between the tangents to curves *W* and *R* at parameter value *p_R*.
 - Translate the resulting point by the relative translation of points on curve W and R at parameter value p_{R} .

•Deformation of a point **P** by a wire <**W**,**R**,**r**,**s**,**f**>

dgp

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu Scale

• Deformation of a point **P** by a wire <**W**,**R**,**r**,**s**,**f**>

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu

dø

33

•Deformation of a point **P** by a wire <**W**,**R**,**r**,**s**,**f**>

dgp

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu Translate

- •Deforming an object by the wire < W,R,r,s,f >
- •For every point **P** representing the object:
 - Scale **P** by a factor of **s** radially around **R**.
 - Rotate the result around *R(p_R)* by the angle between the tangents to curves *W* and *R* at parameter value *p_R*.
 - Translate the resulting point by the relative translation of points on curve W and R at parameter value p_R.

Wire algorithm parameters

Tangency and Twist

Spatial control of wire parameters

•Locators : define wire parameter values by interpolating along the wire curve.

• Domain Curves : spatially define wire parameter values using free-form curves.

Domain curve algorithm

Ť **Dynamic Graphics Project**

Domain curve algorithm

 $D(p_r)$

dgp

Domain curve algorithm

dgp

•A smooth union of individual wire deformations defines overall shape (Sculptor's armature metaphor) :

Let the *i*th wire displace a point P by DP_i :

$$P_{def} = P + \sum_{i=1}^{n} (\|DP_i\|^m DP_i)$$
$$\frac{\sum_{i=1}^{n} (\|DP_i\|^m)}{\sum_{i=1}^{n} (\|DP_i\|^m)}$$

Behavior varies from an average at m=0 to $max(\mathbf{DP}_i)$ for large m.

Multiple Wires

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu

dg

Multiple Wires (local control)

•Control for wire curves in the proximity of the curve to limit global deformation in a region :

Let the i^{th} wire displace a point P by DP_i :

$$P_{def} = P + \frac{\sum_{i=1}^{n} (F(P,R_i)^k DP_i)}{\sum_{i=1}^{n} F(P,R_i)^k}$$

Behavior in a region of the object is strongly influenced by proximal wires for large K.

Multiple Wires (local control)

Global control

Local control

Wrap definition

•A polymesh whose manipulation deforms an associated object (or space).

- **D**: The wrap deformer mesh.
- **R** : *The reference mesh.* A copy of **D** is made when objects are bound to the wrap.
- **r** : Radius of influence around the mesh.
- **local** : Scalar to control locality of deformations.
- **f** : Scalar sigmoid function $\mathcal{R}^+ \rightarrow [0,1]$ (density function).

Wrap algorithm (Binding)

- •Every face of the mesh **R** is a control element **k**.
 - Influence function F(P,k) of a wrap at a point P :
 F(P,k) = f(dist(P,k)).
 - *P* is computed in a coordinate system local to control element *k*.

- •Every face of the mesh **D** is a control element **k**.
 - **P** is deformed to preserve the local coordinates computed when bound to the control element **k**.
 - The overall deformation to point **P** is a weighted average of the deformation from all control elements based on their influence function.

Example Applications

- Facial animation.
- Wrinkles.
- Kinematics for flexible skeletons.
- Character skinning workflow.

Wrinkles

Kinematics for flexible skeletons

No flexibility

Highly flexible

- Create wrap meshes from skin geometry.
- Stitch to a single skin mesh.
- Bind wrap mesh to the skeleton
- Bind skin to wrap mesh.
- Customize : Add resolution, skeletal control to the wrap mesh.
 Edit the mapping from skin to control elements of the wrap mesh.

- Create wrap meshes from skin geometry.
- Stitch to a single skin mesh.

- Bind wrap mesh to the skeleton
- Bind skin to wrap mesh.

•Examples

Summary

- An effective deformation technique employing space curves and implicit functions.
- An efficient and controlled approach to the aggregation of the results of multiple deformations...
- An implicit function primitive defined by space curves.
- Applications that illustrate the power and utility of the described techniques.

Acknowledgements

Alias Inc. Eugene Fiume Alexis Angelidis

