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Functional mapping from                .

Affine Transformations

Nonlinear Deformations Axial Deformations

Free-form Deformations Wires

What are spatial deformations?

Increasingly complex
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Surface deformation may require the coordinated control of many 
points defining the surface.

Why spatial deformations?

easy difficult
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Deformation used for film Faim (NFB 1974) using bilinear 
interpolation within grid cells.

Grid Deformation
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Bezier introduced the idea of deforming shape through a mapping 
implemented as a free-form (tensor product) spline.

Notion of spatial deformation
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Barr 1984: Apply an affine transformation whose parameters vary 
spatially.

Nonlinear deformations

Taper: p’=Sxyp, where the scale value s in the xy plane Sxy,
is a function of p.z,  s(z)= .  (maxz –z)

(maxz – minz)
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Barr 1984: Apply an affine transformation whose parameters vary 
spatially.

Nonlinear deformations

Twist Bend Compound
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Lazarus et al 1994: Apply the transformation of a proximal 
reference frame along a curve.

Axial Deformations



9

Sederberg and Parry 1986: Grid deformation in 3D using tricubic
Bezier interpolation.

Free-form Deformations
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FFD Algorithm

• Define a local coordinate frame on a parallelopiped.
• Compute the (s,t,u) coordinates of any point in the parallelopiped.
• Impose an (l,m,n) grid of control points on the parallelepiped.
• Move the control points around.
• Evaluate new position of model point based on trivariate Bersntein

polynomials or other type of volumes.

ff

[T.Sederberg & S.Parry’86]
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FFD Algorithm

• A point in the STU coordinate system:

• A deformed point:
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FFD Shortcomings

• Parallelopiped lattice shape limits deformation shape.

• No control over spatial distribution of control points.

• Bezier basis functions have a global influence.

• Discontinuity in deformed space at lattice boundary. 
How do overlapping lattices deform space?

[T.Sederberg & S.Parry’86]
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FFD Shortcomings

• B-spline basis FFD (Purgathofer).

• Extended FFD (Coquillart)

• deCasteljau FFD (Chang & Rockwood)

• Catmull-Clark FFD (McCracken & Joy)

• Dirichlet FFD (Moccozet & Thalmann)
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Extended FFD

• Edit the lattice before associating the model with it.

• Arbitrary lattices:
• Prismatic lattices
• Tetrahedral
• …
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Computing (s, t, u) coordinates

• Subdivision.
• Newton iteration.
• Projection (limited, but fast).
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De Casteljau FFD

• Sequence of affine transformations

xx 00
zz 00..xx 11

zz 11..

xx 22 zz 22..

xx 33

zz 33

..

pp 00

pp 11

pp 22

pp 33

f( f( ppzz ))

..

zz

xx

..

pp



17

Catmull-Clark FFD

• Lattice = subdivision volume.

face pointface point
edgeedge pointpoint
vertex pointvertex point

cellcell pointpoint

[R.MacCracken & K.Joy’96] 

How do we parameterize How do we parameterize 
a point in a point in the latticethe lattice??
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Catmull-Clark FFD

•• Find position of Find position of pp in lattice and hold local coordinates.in lattice and hold local coordinates.
•• Move lattice.Move lattice.
•• Trace new position of Trace new position of pp in new lattice using local coordinates.in new lattice using local coordinates.

point location: point location: pathpath throughthrough subdivision + local subdivision + local cellcell coordinatescoordinates

p .p .

p p ..

44--cellcell [R.MacCracken & K.Joy’96] 

[R.MacCracken & K.Joy’96] 
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Dirichlet FFD

• Lattice implied by Voronoi space.
• Sibson coordinates used as a linear interpolant.
• Smoothed by multivariate Bernstein polynomials.
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[L.Moccozet & N.Magnenat-Thalman’97] 
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Continuity, overlap at lattice boundaries
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Space deformations and surface resolution

• Surface resolution and topology is still a problem!
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Coffeeeeeeeeeeeeee…
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Motivation for Wires and wraps

• To provide a direct object deformation tool that is independent 
of the object’s underlying geometric representation.

• To provide a minimalist visual model of the object that 
highlights the important deformable features of the object.
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Inspiration

• Wires define and control an object’s features like a sculptor’s 
armature.

• Projections of wire curves directly map to sketches or line 
drawings of the object.
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Contributions

• Effective deformation technique employing space curves and 
implicit functions (wire). 

• An implicit function primitive defined by space curves (wire). 

• Effective deformation technique using polymeshes (wrap).

• Multiresolution modeling appeal of subdivision surfaces made 
applicable to arbitrary surface representations (wrap).

• Construction of the deformer from underlying geometry can 
be automated (wire,wrap).

• An efficient and controlled approach to the aggregation of multiple 
deformations (wire,wrap).
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Wire Overview

• Wire definition and algorithm. 

• Spatial control of wire parameters.

• Multiple wire interaction. 
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Wire definition

•A free-form curve whose manipulation deforms 
an associated object (or space).

• W :The wire curve. A free-form curve representing the wire.

• R : The reference curve. A copy of W is made when objects 
are bound to the wire.

• r : Radius of influence around the wire.

• s : Radial scaling factor around the wire.

• f : Scalar sigmoid function
+

->[0,1] (density function).
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Wire definition
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Wire algorithm (Binding)

•Binding an object to a wire < W,R,r,s,f >

•For every point P representing the object:

• Calculate pR, the parameter value corresponding to the 
Euclidean closest point to P on curve R, R(pR ).

• Calculate F(P,R), the influence function for curve R at P.
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Influence function F(P,R) of a wire < W,R,r,s,f >
at a point P :

F(P,R) = f ( ||P-R(p
R

)|| ).

Wire algorithm (Binding)

rr
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Wire algorithm (Deformation)

•Deforming an object by the wire  < W,R,r,s,f >

•For every point P representing the object:

• Scale P by a factor of s radially around R.
• Rotate the result around R( pR ) by the angle between the 

tangents to curves W and R at parameter value pR.

• Translate the resulting point by the relative translation of 
points on curve W and R at parameter value pR.
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Wire algorithm (Deformation)

•Deformation of a point P by a wire <W,R,r,s,f>

Scale



33

Wire algorithm (Deformation)

•Deformation of a point P by a wire <W,R,r,s,f>

Rotate
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Wire algorithm (Deformation)

•Deformation of a point P by a wire <W,R,r,s,f>

Translate



35

Wire algorithm (Deformation)

•Deforming an object by the wire  < W,R,r,s,f >

•For every point P representing the object:

• Scale P by a factor of s radially around R.
• Rotate the result around R(pR ) by the angle between the 

tangents to curves W and R at parameter value pR.

• Translate the resulting point by the relative translation of 
points on curve W and R at parameter value pR.
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Wire algorithm parameters

Varying r Varying s

Tangency and Twist
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Spatial control of wire parameters

•Locators : define wire parameter values by interpolating 
along the wire curve.

•Domain Curves : spatially define wire parameter values 
using free-form curves.
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Domain curve algorithm

•
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Domain curve algorithm

•
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Domain curve algorithm

•



41

Multiple Wires

•A smooth union of individual wire deformations 
defines overall shape (Sculptor’s armature 
metaphor) : 

Let the i th wire displace a point P by ∆Pi :

 Pdef = P + Σ (||∆Pi||
m∆Pi)

 Behavior varies from an average at m=0 to max(∆Pi) for 
large m.

i=1

n

Σ (||∆Pi||m)
i=1

n
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Multiple Wires

•

Integrated deformation                  Additive deformation

deformation 1 deformation 2 m=1 m=5
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Multiple Wires (local control)

•Control for wire curves in the proximity of the 
curve to limit global deformation in a region :

Let the ith wire displace a point P by ∆Pi :

 Pdef = P + Σ (F(P,Ri)
k ∆Pi) 

 Behavior in a region of the object is strongly influenced by 
proximal   wires for large k.

i=1

n

Σ F(P,Ri )k

i=1

n
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Multiple Wires (local control)

 

Local controlGlobal control



45

Wrap definition

•A polymesh whose manipulation deforms an 
associated object (or space).

• D:The wrap deformer mesh.

• R : The reference mesh. A copy of D is made when objects 
are bound to the wrap.

• r : Radius of influence around the mesh.

• local : Scalar to control locality of deformations.

• f : Scalar sigmoid function
+

->[0,1] (density function).
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Wrap algorithm (Binding)

•Every face of the mesh R is a control element k.
• Influence function F(P,k) of a wrap at a point P :

F(P,k)= f( dist(P,k)).

• P is computed in a coordinate system local to  control 
element k. 

locallocal
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Wrap algorithm (Deformation)

•Every face of the mesh D is a control element k.
• P is deformed to preserve the local coordinates 

computed when bound to  the control element k.

• The overall deformation to point P is a weighted -
average of the deformation from all control elements 
based on their influence function.
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Example Applications

• Facial animation.

• Wrinkles.

• Kinematics for flexible skeletons.

• Character skinning workflow.
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Wrinkles

Wrinkle propagation
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Kinematics for flexible skeletons

No flexibility Highly flexible
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Automated Character Skinning

• Create wrap meshes from skin geometry.

• Stitch to a single skin mesh.

• Bind wrap mesh to the skeleton

• Bind skin to wrap mesh.

• Customize : Add resolution, skeletal control to the wrap mesh. 
Edit the mapping from skin to control elements of the wrap 
mesh.
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Automated Character Skinning

• Create wrap meshes from skin geometry.

• Stitch to a single skin mesh.



53

Automated Character Skinning

• Bind wrap mesh to the skeleton

• Bind skin to wrap mesh.
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Automated Character Skinning

•Examples
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Summary

• An effective deformation technique employing space 
curves and implicit functions.

• An efficient and controlled approach to the aggregation 
of the results of multiple deformations...

• An implicit function primitive defined by space curves. 

• Applications that illustrate the power and utility of the 
described techniques.
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