
Stroke processing & gestures

Karan Singh

2

Issues in Digital Sketching

2D

• Stroke filtering. (clothoids, multi-stroke… what are we filtering?)
• Stroke Processing. (sketch widgets, gestures…)
• Strokes and multi-touch. (gestures, symmetric drawing…)
• Stroke appearance (NPR, neatening…)
• Stroke dynamics (pressure, tilt, direction, temporal order…)
• Seamless UI Control (sketch widgets, crossing menus, gestures…)
• Navigation (paper manip., onion skinning…)
• 2D curve creation: (What are desirable curves, how do we
 perceive them in relation to our design knowledge?).
• Stroke Perception (what spatio-temporal information do they convey?)

3D (Additional dimension for 3D design, animation or 2D design explorations)

• 3D Navigation. (camera tools, single/multi-view, view bookmarks…).
• 3D curve creation: (2D stroke to 3D curves perception & inference).
• Animation (motion trails, evolving shape fronts…)
• Alternate Designs (co-locating them in space…)

3

Stroke processing: widgets & UI

• WIMP GUI not well-suited to sketching.

• Typical 3D manipulation widgets not suited to
sketching.

CrossY: Crossing-Based Drawing

CrossY: Crossing-Based Drawing

[Apitz, G. and Guimbretière, F.
CrossY: A Crossing-Based Drawing Application ACM UIST, 2004]

http://doi.acm.org/10.1145/1029632.1029635
http://doi.acm.org/10.1145/1029632.1029635
http://doi.acm.org/10.1145/1029632.1029635
http://doi.acm.org/10.1145/1029632.1029635

6

Sketch widgets

suggested axes

crossing interaction and composition

[Schmidt, Singh & Balakrishnan Sketching and Composing Widgets
for 3D Manipulation, Eurographics 2008]
http://www.dgp.toronto.edu/~rms/pubs/SketchWidgetsEG08.html

http://www.dgp.toronto.edu/~rms/pubs/SketchWidgetsEG08.html

7

Stroke processing: Sketch widgets

suggested axes

crossing interaction and composition

[Schmidt, Singh & Balakrishnan Sketching and Composing Widgets
for 3D Manipulation, Eurographics 2008]
http://www.dgp.toronto.edu/~rms/pubs/SketchWidgetsEG08.html

Sketching 2D projections of
desired 3D strokes is hard!!

http://www.dgp.toronto.edu/~rms/pubs/SketchWidgetsEG08.html

Further stroke processing

• Abstraction.

• Segmentation, classification, recognition.

• Beautification.

• Oversketching.

Stroke recognition

circle

rectangle

Stroke abstraction: finding corners

Direction Curvature Speed

[T. Sezgin et al., Sketch Based Interfaces: Early Processing for Sketch
Understanding, Workshop on Perceptive User Interfaces, 2001.]

Beautification

• Fit primitive shapes.

• Infer geometric relations and constraints.

• Parallelism

• Perpendicularity

• Symmetry

• Isometry

• Snapping

Oversketching

• Interactive sketch correction

1. Find affected region

2. Splice in new stroke

3. Smooth connection

Gestural input

• “Gesture-based interfaces offer an alternative
to traditional keyboard, menu, and direct
manipulation interfaces.” [Rubine]

• “Pen, finger, and wand gestures are
increasingly relevant to many new user
interfaces.” [Wobbrock]

 Recognizable spatio-temporal strokes.

What can gesture?

mouse, pen, wands, fingers, hands, face, body...

Why support gestures?

• Natural form of communication

• Efficient

• A single stroke can indicate:

• The operation

• The operand

• Additional parameters

• A proofreader’s mark indicates [Rubine] :

• that a move should occur (operation)

• the text that should be moved (the operand)

• and the new location of the text (an additional param)

Gesture support

• Ad-hoc or pre-defined: “Recognizers that use

heuristics specifically tuned to a pre-defined set of
gestures.” [Wobbrock 2007]

• Application specific: shorthand, chinese Brush
Painting, musical scores, chemical formulas.

• Platform specific: gesture libraries.

• Template-based or systematic.

• Toolkit or framework

• Simple algorithm

Ad-hoc vs. template-based

• Ad-hoc can recognize more complex gestures.

• Harder to train template-based gestures.

• Better consistency of gestural use in ad-hoc systems.

• Better gesture collision handling in ad-hoc systems.

• Ad-hoc doesn’t allow new gestures and limited
customization.

GRANDMA approach

1. Create a new gesture handler and associate it
with a class.

2. Draw gesture ~15 times.

3. Define semantics (in Objective C)

Problem Statement

• Gesture is represented as an array g of P
sample points:
 Gp = (xp, yp, tp)
 0 ≤ p ≤ P

• Problem: Given an input gesture g and set {C1,
C2,…} of gesture classes determine which class

g belongs to.

GRANDMA Algorithm

• 13 Features

• A gesture class is a set of weights assigned to
each feature

• Gestures are given a grade by the linear evaluation
function resulting from the weights

• A gesture is assigned to the class with the maximum
grade.

• Training assigns weights to the 13 features

• Gestures are rejected if the grade assigned to
two classes is similar

$1 recognizer

• Most recognizers are hard to write and involve
a certain amount of machine learning.

• Toolkits are not available in every setting.

• i.e. easily implement your own.

$1 goals

• Resilience to sampling.

• Require no advance math.

• Small code.

• Fast.

• 1-gesture training.

• Return an N-best list with scores.

$1 algorithm

• Resample the input

• N evenly spaced points

• Rotate

• “Indicative” angle between centroid and start point

• Scale

• Reference square

• Re-rotate and Score

• Score built from average distance between candidate
and template points

Limitations

• Cannot distinguish between gestures whose
identities depend on aspect ratios, orientations.

• Square from rectangle

• Up arrow from down arrow

• Cannot be distinguished based on speed.

• Only single strokes.

• Stroke order is important.

• Closed strokes?

• Gestalt gestures!

