CSC418 Computer Graphics

- Polygons
 - Triangulation
 - Scan conversion
 - Convex/Concave
 - clipping)
- 2D affine transformations and properties, Homogeneous coordinates

Scan Conversion

- Convex versus concave polygons?
- Triangulating a polygon
- Scan Converting a triangle
- Pattern Filling a polygon
- Flood filling a polygon

Polygon Clipping

- Clipping is a procedure for spatially partitioning geometric primitives, according to their containment within some region.
- Why do we clip?
 - Distinguish whether geometric primitives are inside or outside of a viewing region
 - Distinguish whether geometric primitives are inside or outside of a *picking region*
 - Detecting intersections between primitives
 - Binning geometric primitives into spatial data structures.
 - Shadows.

Sutherland-Hodgman clipping

Given: Polygon (list of vertices), clipping window (convex)

Sutherland-Hodgman clipping

case	first	second	output
#	point	point	point(s)
1 2 3 4	inside inside outside outside	inside outside outside inside	second point intersection point none intersection point and second point

Sutherland-Hodgman clipping

case	first	second	output
#	point	point	point(s)
1 2 3 4	inside inside outside outside	inside outside outside inside	second point intersection point none intersection point and second point

2D Primitives

Conic Section: Defined as the intersection of an ellipse and a plane.

Circle

Parabola (h)

Hyperbola (h)

Ellipse (v)

Parabola (v) Hyperbola (v)

Conics

- The General Equation for a Conic Section: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
- The type of section can be found from the sign of: B² 4AC
- If B² 4AC is
 - < 0ellipse, circle, point or no curve.
 - = 0parabola, 2 parallel lines, 1 line or no curve.
 - > Ohyperbola or 2 intersecting lines.

2D Transformations

- •Live maya demo
- •Coord-free Geom.
- •Translate/Rotate/Scale
- •Rotate about a point
- •Transform Matrices
- •Composition/Inversion of Transforms
- •Homogeneous Coordinates, Affine Transforms
- •Hierarchies